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ON THE NIELSEN NUMBER OF A FIBER MAP

DENNIS MCGAVRAN AND JINGYAL PAK

Suppose ^ ~ = {E, π, B, F} is a fiber space such that 0-»

π^F) ^i πt{E) 3 πx{B) -> 0 is exact. Suppose also that the above
fundamental groups are abelian. If /: E -» E is a fiber pre-
serving map such that /#(<*) = a if and only if a — 0, then it is
shown that R(f) = R(ff)-R(fh) where R(h) is the Reidemeister
number of the map h.

A product formula for the Nielsen number of a fiber map
which holds under certain conditions was introduced by R.
Brown. Let ^"= {E, π, L, (p, q), s*}be a principal sx-bundle
over the lens space L(p, q)9 where «-̂~ is determined by [fj] e
[L(p, q), cp°°] ~ H2(L(p, q), z)~zp. Let f:E->E be a fiber
preserving map such that fH(ϊ) — c2, fί(lP) = cί9 where 1 gener-
ates π^s1) czz and ΐp generates πι(L(p, q)) czzp. Then the Niel-
sen numbers of the maps involved satisfy

where d = (j, p) and s = j/p(Cι — c2).

I Introduction. Let ^~ = {E, π, B, F) be a fiber space. Any
fiber preserving map /: E—> E induces maps / ' : B~»B, and, for each
b e B, fb: π~\b) ~> π-\b)f where π~\b) ~ F. The map / will be called
a fiber map (or bundle map if J?~ is a bundle).

Let N(g) denote the Nielsen number of a map g. The Nielsen
number, N(g), serves as a lower bound on the number of fixed points
of a map homotopic to g, and under certain hypotheses, there exists
a map homotopic to g with exactly N(g) fixed points. R. Brown
and E. Fadell ([2] and [3]) proved the following:

THEOREM. Let ^?~ = {E, π, B, F) be a locally trivial fiber space,
where E, B, and F are connected finite polyhedra. Let f: E-+E be
a fiber map. If one of the following conditions holds:

( i ) π,(B) = π2(B) = 0 .
(ii) ^(F) = Q.
(iii) J7~is trivial and either πjβ) = 0 or f = f x fb for all

beB then N(f) = N(f)-N(fb) for all beB.

These strong restrictions on the spaces involved eliminate some
interesting fiber spaces. For example, any circle bundle over B with
π^B) ^ 0 is excluded. Furthermore, if π,(B) = π2(B) = 0, then the
total space E is B x S1.

This paper has two objectives. The first is to try to generalize
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the above result to the case of a bundle ^~ = {E, π, B, F) where
πJ^B) is a nontrivial abelian group, and π2(B) = 0. The second is to
investigate the relationships between the Nielsen numbers of the
maps /, /', and fb for particular circle bundles.

In this paper all spaces are path-connected.

II* Some general results* The reader may refer to [1] and [2]
for definitions and details concerning the Nielsen number N(f),
Reidemeister number R(f), and Jiang subgroup T(f) of a map
f:X-+X.

We will be particularly interested in the Reidemeister number.
It serves as an upper bound on JV(/) and in many cases R(f) = N(f).
Let h:G —>G be a homomorphism where G is an abelian group. It
is shown in [1] that R(h) = | coker (1 — h) | (| | means the order of a
group). The Reidemeister number -of a map/:X--»X is defined to
be the Reidemeister number of the induced homomorphism /#: πx(X) —>
π^X). Now let ̂ ~ be a fiber space. Let Fb = π~\b). If w: I-+B
is such that w(0) = b and w(l) = δ', we may translate Fh, along the
path w to Fb (see [6]). This gives a homeomorphism w:Fb,-+Fb.
Given a fiber map f: E—> E, we have the natural map fζ: Fb —*Ff,{h),
the restriction of / to Fb. Then by definition fb = w°fb. For more
details on fb:Fb—>Fb readers are referred to [2].

Suppose J7~ is a fiber space and w is a loop based at 6. Then
we have w: π~\b) —* π~ι{b). The fiber space J7~ is said to be orientable
if the induced homomorphism w^\ H^iπ'^b), z) —* H^π'^b), z) is the
identity homomorphism for every loop w based at b. It is shown in
[2] that if ^~ is orientable and if the Jiang subgroup T(p~\b)t eQ) =
πjj)~ι{b)f β0) for a fixed be B then the Nielsen number of fb is inde-
pendent of the choice of path from /'(&) to 6. Furthermore, the
Nielsen number N(fb) is independent of the choice of be B.

LEMMA 1. Let ̂ ~ be a fiber space with π1(F)f π^E), and πx{B)
abelian. Suppose f:E-+E is a fiber map. Then the following
diagram commutes:

%—> π,(E)

jΛJi-Λi ji-

Proof. First, by [6], the map w is homotopic in E to the identity
map on Ff,{b). Hence we have

V( l -fbί)(a) = ilex - («)o/;)t(α)]
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LEMMA 2 [4]. Suppose we have the following commutative
diagram of modules, where the rows are exact:

0

U [β [r
0 > A' -£-» 5 ' -i-> C" > 0 .

there is an exact sequence

0 > ker α -^-> ker β -^-> ker 7

> coker α: — -̂* coker β — -̂> coker 7 > 0 .

The homomorphisms μ% and ε* are restrictions of μ and ε, and
ju'* and ε* are induced by μ' and ε' on quotients. The connecting
homomorphism ω: ker 7 —» coker a is defined as follows. Let c e ker 7,
choose 6 e I? with εδ = c. Since ε'/3δ = 7εδ = ΊC = 0 there exists
α'e A' with βb = μfa'. Define ω(c) = [α'J, the coset of a' in coker a.
Then ω is a well-defined homomorphism. See [4, p. 99] for the proof
of the lemma.

THEOREM 3. Suppose S~ = {E, π, B, F) is a fiber space such that

0 > π, (F) - X πi(E) - ^ ^ ( 5 ) > 0

is an eίcacί sequence of abelian groups. Suppose f: E-+ E is a fiber
map and w:I—>B is a path from b to f'φ). Then we have the
following exact sequence:

0 > k β r ( l -fH) >ker (1 - / , ) >ker( l -/*')

> coker (1 - U) > coker (1 - f%) > coker (1 - //) > 0 .

Proof. The fiber map induces the following commutative diagram:

0 > π,(F) *i—> π^E) **—+ π^B) > 0

d-Λ) |

0 > πx{F) k—~> πx{E) π*—•> πx{B) > 0 .

Now the result becomes a simple application of Lemmas 1 and 2.

COROLLARY 4. ker (1 — /6#) is independent of w and b.

Proof, ker (1 — /w) is isomorphic to the kernel of the map

ker (1 — /#) - ^ U ker (1 — //). But this map is the restriction of
πf τr1(JS

r) —• πΊ(JS), which is independent of w and b.
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Suppose h:G—*G is a homomorphism of abelian groups. We
will say that h satisfies Condition A if h(a) = a if and only if a = 0.

THEOREM 5. Suppose J7~ is a fiber space satisfying the hypothe-
ses of Theorem 3. Suppose f:E—*E is a fiber map such that fi
satisfies Condition A. Then R(f) = R(f') R(fb) for all beB.

Proof. We have (1 - fl)(a) = 0 if and only if /#(«) = a if and
only if a = 0. Therefore, 1 — // is injective and we have the fol-
lowing exact sequence:

0 — coker (1 - fhi) — coker (1 - /,) — coker (1 - /,') — 0 .

The theorem follows from the properties of R(f).

COROLLARY 6. Under the hypotheses of Theorem 5 R(fh) is
independent of w and b.

Proof. This follows since both R(f) and R{f) are independent
of w and b.

EXAMPLE 1. Let ̂ ~ be a principal Tfc-bundle over a (2n + 1)-
dimensional lens space L{p)9 p ^> 1. We know from [5] that L —
L(d) x Tk where d divides p. Let f:E—>E be a bundle map. It
follows easily from results in [1] that N(fb) = R(fb). It is also
shown in [1] that N(f') = JB(/') for n = 1, and the proof can be
easily generalized to higher dimensions. Furthermore, by showing
that T(f) = ̂ (L(d!) x Tfc), where Γ(/) is the Jiang subgroup of /,
one can show that N(f) = JB(/). NOW such a bundle satisfies the
hypothesis of Theorem 3. Hence, if /#: πjjj{p)) —• π^Lίp)) satisfies the
hypothesis of Theorem 5, we have N(f) = N(f') N(fb) for all δ e £ .

EXAMPLE 2. If G is a compact connected semi-simple Lie group,
then ^ = {E, π, G, S1} satisfies the hypothesis of Theorem 3. If
f:E-+ E is a fiber map then N(f) = N(f') N(fb) follows from [3]
since the second integral cohomology group of G vanishes. Assume
N(f') ΦO^ N(fb). Then since G and S1 are iϊ-spaces T(f') = π,{G)
and T(fb) = π^S1); and we have N(f') = R(f) and N(fb) = R(fb). It
follows that R{f) = R(f)-R(fb) independent of Condition A.

LEMMA 7. Suppose h:Zp—*Zp is such that h(ϊ) = m. Then
Condition A holds iff (1 — m, p) — 1.

Proof. Suppose (1 — m, p) = 1. If ft(w) = m^ = ή, 1 ̂  ^ < p,
then mn = ^(mod p). Hence p divides (1 — m)n, which is impossible
if (1 — m, p) = 1.
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Now suppose h{ά) — a iff a = 0. Suppose (1 — m, p) = d. Let
1 — m = Cid, p = c2c£. Then /&(c2) = mc2. Now

mc2 — c2 = c2(m — 1) = — c^d = — cxp .

Thus h{c2) = c2 and d = 1.

EXAMPLE 1 (con't). We have π ̂ Lίp)) ~ i^. Suppose /#'(!) = m.
Then iV(/') = (1 - m, p). Hence Theorem 5 is applicable if and only
if N(f) = 1.

Ill* A general solution to Example 1* Let Jf~ — [E, π, L(p, q), s1}
be a principal s^bundle over a 3-dimensional lens space L(p, q). If
j T is induced by [/,-] e [L(p, q), CP~] ~ H\L(p, q), Z) ~ Z9, then E a
L(d, q) x s\ where d = (i, p)(see [7]). Let j = j'd, p =

THEOREM 8. Lei J?~ he, as afeo ê aπd f: E-+ E a fiber map suck
that, for a particular choice ofbeB and w, fH(ϊ) = c2 and fi(ϊp) = clf

where 1 generates π^s1) ~ Z and Tp generates πx{L(p, q)) a Zp. Let
s = j/picj. — c2). Then

Proof. We first examine the structure of L(d, q) x s1 as an
^-bundle over L(p, q) (see [7]). L(p, q) and L(d, q) are obtained from
s3 as the orbit space of a free inaction and ^-action, respectively.
Given ((rlf θ^), (r2, θ2)) e s3, let <(rx, ^x), (r2, 02)> represent its equivalence
class as an element in L{p, q). In L(d, q) x I, J = [0, 2ττ], identify
{<(n, ίθ, (r2, ^2)>, 2π} with {<(rlf ^ + j'v), (r2, ^2 + i'ςri;)), 0} to obtain
E, where v = 2π/p. Define Λ: E->L{d, q) x S1 by

J ^ 't;), (r2, ^. + - ^

Then h is a homeomorphism. Let π^Lid, q) x S1) be generated by
(id, 0) and (0, 1). Then (ϊd, 0) is represented by the loop di —
«(1, t(2π/d))9 (0, 0)>, 0}, 0 ^ t ^ 1, and (0, 1) is represented by σ2 =
{<(!, 0), (0, 0)>, t], 0 ^ t ^ 2ττ. Then in JP, σx = {<(1, ί(2τr/d)), (0, 0)>, 0}
and σ2 = {<(1, - t/(2π)j'v), (0, 0)>, t} represent (ίd, 0) and (0,1) re-
spectively. lp is represented by the loop 7 = (((1, tv), (0, 0)}) 0 <£ ί ^ 1.
Now the projection map π: E -+ L{p, q) is given by

π{<(n, θ,), (r2, ^2)>, ί} = «(rx, ^0, (r2

We have

πoσ, = ( ( ( l , t ^ ), (0, 0))) 0 ^ t £ 1 = (((1, tp'v), (0, 0))) .
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Hence

*&, 0) = Ψ

Also

πoσ, = ^/(l, - ^ ' ^ ) > (0, 0))\ 0 £ ί £ 2ττ

so

7Γ#(0, 1) - - / ' .

One fiber in E consists of

U K(l, Λi'v), (0, 0)>, t) .
n=0

Hence, in L(d, q) x S1, this fiber is

U {((l, (n + -^)i'v), (0, 0)), ί} = {<(1, ri'v), (0, 0)>, 2τττ}

where 0 <* τ ^ p ' and 2τff represents the equivalence class of
27rr(mod2τr). Hence i#(l) = (J', p').

We have the following commutative diagram:

0 > πtf1) -2-> ^(L(d, q) x S1) - ^ T Γ ^ L ^ , </)) • 0

0 > π^) ^U πι{L{d, q) x S1) - ^ π ι (L(p f ?)) > 0 .

We must compute the cokernel of (1 —/#) since iSΓ(/) = | coker (1 —/#) |.
Let

Commutativity of the r ight hand square implies that a = 1 — clf

while commutativity of the left hand square implies u = 1 — c2. Now

, 1) - P'8 - j'u = p's -

Hence

p's - j'(l - c2) Ξ - ( 1 - cO/

Therefore,

j'(c2 — cO + p's = fcp .

We must have j / | i'(c2 — cλ) so
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s = kd + ^-(c, - c2) .
V

Hence we may assume

= ^ i - C2) = ^-{C, - C2) .

P V

Therefore, Im(l — /#) is generated by (1 — cl9 0), (s, 0), and (0, 1 — c2).
Now the group π^Lid, q) x S1) c ί ^ φ j i , and the subgroup generated
by (1 — d, 0) and (s, 0) is the subgroup generated by ((1 — clf s), 0).
Consequently, the cokernel of (1 — /#) is isomorphic to zj(l — clf s)zd 0
z/(l — c2)z. Which, in turn, is isomorphic to zidΛ_CvS)Q)za_C2). Therefore,

I coker (1 - /f) | = N(f) = (d, 1 - el9 s) \ 1 - c2 \ - (d, 1 - clf 8) N(fh) .

(1) Since ^7~ is orientable and T(π~x(b), e0) = TΓ̂ TΓ'̂ δ), e0),
the above formula is independent of w and 6.

(2) In the above argument we could replace L(p, q) with the
generalized lens space as in [5].

(3) If p is a prime the product formula follows from results
of R. Brown and E. Fadell [3].

(4) Theorem 8 also indicates that a product theorem of the
type obtained by R. Brown and E. Fadell is hard to expect in general.

COROLLARY 9. Let ^ be as in Theorem 8. Suppose f:E->E
is a bundle map such that for some beL(p,q) fb: π~ι(b) —>π~ι{b) is
homotopic to a fixed-point free map. Then there exists a map
g: E—+ Ej homotopie to f which is fixed-point free.

Proof. Let fb be the fixed-point free map on π~ι(b) which is
homotopic to fb. Clearly N(fb) = 0 and since the Nielsen number is
a homotopy invariant, N(fb) — 0. Thus from Theorem 8, N(f) — 0,
and the corollary follows from the converse of the Lefschetz fixed-
point theorem of F. Wecken [8].
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