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ISOMORPHISM PROBLEMS FOR THE
BAIRE CLASSES

F. K. DASHIELL, JR.

For each ordinal a > 0, the αth Baire class of bounded
measurable functions on the topological space S, denoted ^«(S),
has an algebraic and isometric representation as a space C{Ωa)
of all continuous functions on a totally disconnected compact
space Ωa. This representation is used to study the Baire
classes from the point of view of nonseparable Banach spaces
of continuous functions. It is shown that if the compact
space & contains an uncountable compact metrizable subset,
then, for each countable ordinal a, &a{S) is not isomorphic
(i.e., linearly homeomorphic) to any complemented subspace
of a Banach space C(Ω) for σ-Stonian Ω. Since the space &ωi(S)
of all bounded Baire functions is a C(Ω) space for a certain
σ-Stonian Ω, &a(S) (for a < ωt) is therefore not isomorphic to
any complemented subspace of &ωi(S).

The isomorphic invariant used here is a linear topological property
of Banach spaces (see Definition 2.1) which, for spaces C(Ω) with Ω
compact, is equivalent to the existence of a complementary subspace
for C(Ω) in ^ί(β), i.e., a closed subspace Γ c ^ ( f l ) such that
Yd Cψ) = {0} and Y + C(Ω) = ̂ (Ω). This property passes from a
space to its complemented subspaces. Thus the method consists of
representing each Baire class &a(S) as C(Ωa), forming the first Baire
class &[(Ωa) over Ωaj and then showing that for a < ω19 C(Ωa) is
not complemented in &[(Ωa). (In fact, a slightly stronger result is
proved in Corollary 2.10.) We obtain as a consequence the result
of W. G. Bade [2] that ^ ( [ 0 , 1]) is not complemented as a closed
subspace of &a+ί([0, 1]) (Corollary 3.9). On the other hand, it is
proved in Theorem 2.11 that a compact space Ω is σ-Stonian (basically
disconnected) if and only if C(Ω) is the range of a norm 1 projection
from ^i(fl).

For any set S and field Σ of subsets of S, B(S, Σ) denotes the
sup norm closed subspace of l°°(S) generated by the characteristic
functions of sets in I7. If S is compact, then ^J(S) = B(S, Σt) for
a certain field Σ1 (see Theorem 1.1), and the existence of a comple-
ment for C(S) in ^(S) is equivalent to the existence of a projection
of B(S, Σj) onto C(S). A topological condition on S is obtained which
prevents the existence of such a projection (see Definition 2.9). This
condition is a consequence of an extended version of Amir's theorem
[1] which provides, for certain compact spaces S and fields Σ with
C(S) c B(S, Σ), a lower bound for the norm of any projection from
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B(S, Σ) onto C(S) (see Theorem 2.6). This version of Amir's theorem
is obtained as an application of Ditor's theorem [4] on lower bounds
for norms of "averaging operators" for a continuous surjection between
compact spaces.

In §3, attention is focused on the Baire classes over [0, 1], the
results being extendable to &a(S) for more general S by the Borsuk-
Dugundji theorem. We abbreviate ^ ( [ 0 , 1]) simply by ^ . In order
to apply the above-mentioned Amir theorem to £@a = C(Ωa), it becomes
necessary to investigate the topological structure of the maximal
ideal space Ωa. This topological structure is related to the Boolean
structure of certain subfamilies of Borel sets in [0, 1], The relevant
information is provided by results in descriptive set theory regarding
the status of the Lusin separation principles at each level of the Borel
heirarchy in [0,1] (see Lemma 3.1).

Corollary 3.7 implies that, for countable ordinals a, &a is not
isomorphic to ^P^. (It is already not easy to see that έ%?a Φ &ω ,
this is Lebesgue's classical result [13, Ch. 15].) It follows from
[3, Corollary 8, p. 336] that for a > 1, there is no continuous linear
injection of &u into ^ . Thus there are at least three isomor-
phic types of Banach space represented among the Baire classes
&a, H α ^ ό)1( At present it is unknown whether, for countable
ordinals a > β ^ 2, &a and ^ can be isomorphic (although it is shown
in Theorem 3.11 that ^ and ^ can not be isometric Banach spaces).

The subject matter and methods of this paper grew out of the
paper [2] of W. G. Bade. I would like to express my gratitude to
Professor Bade for his assistance during the course of this investi-
gation.

1* Baire classes, Baire sets, and B(S, Σ). In this section S is
an arbitrary topological space.

The bounded real-valued Baire functions on S are classified as
follows: The functions of class 0 are the bounded continuous func-
tions, and if the functions of class a are defined (which class is
denoted by &Jβ)), then &a+1(S) consists of all bounded functions
which are pointwise limits of convergent sequences in &a(S). For
a limit ordinal λ, &λ(S) is defined (following Hausdorίf [9, pp. 292-
293]) to consist of all functions which are pointwise limits both of
increasing sequences and of decreasing sequences in \Ja<x £@a(β).
(This definition of &λ{S) for limit ordinals λ produces exact agreement
between the classes of functions and classes of sets as given below
in Theorem 1.1.) &λ+1(S) then coincides with the family of all bounded
pointwise limits of convergent sequences in \Ja<λ &Jβ). For a ^ ω19

these classes coincide with the class of all bounded Baire functions
on S, i.e., the smallest class of functions containing the bounded
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continuous functions and closed under pointwise convergence of
bounded sequences, and clearly, &ωχ(S) = \Ja<ω, &a(S). Thus only
ordinals a ^ ωλ are of interest.

The Baire sets in S are classified as follows: The sets of multi-
plicative class 0, denoted Z0(S), are the "zero sets" of Sf i.e., the sets
/"'(O) for continuous f:S-+ R; the sets of additive class 0, denoted
CZQ(S), are the complements of zero sets. Inductively, the sets of
multiplicative class a, denoted Za(S), are the countable intersections
from {Jβ<aCZβ(S)9 and the sets of additive class a, denoted CZa{S),
are their complements. The sets in AJβ) = ZJβ) ΓΊ CZa(S) are called
the sets of ambiguous class a. For a ^ colf these classes coincide
with the tf-field of Baire sets in S, i.e., the smallest σ-field for which
each continuous function / : S —> R is measurable. Again, only ordi-
nals a £ α>! are of interest. (This definition of the Baire sets, although
different from another common definition, is justified in the present
context by Theorem 1.1.) A simple induction shows that Za(S) U
CZa(S) c Aa+1(S) and that Aa(S) is a field of sets. Also, Zωi(S) =
CZωi(S) = \Ja<ωi Aa(S). In a metric space S, Z0(S) is just the family
of closed sets, ZJβ) is the family of Gδ sets, A^S) is the family of
sets both Fσ and Gδ, etc.

The fundamental connection between the above classifications
of Baire functions and Baire sets is given in the following theorem,
which is due to Lebesque, Hausdorff, and others. This theorem was
essentially known in the 20's, although there does not seem to be
any one place in the literature which summarizes the relationship
between sets and functions in this way. The following formulation
is particularly useful in the study of Baire classes as Banach spaces
of continuous functions (see Theorem 1.4).

We recall that if Σ is a field of subsets of S (not necessarily a
α-field), then B(S, Σ) denotes the closed subspace of l°°(S) generated
by {kB: Ee Σ), where kE is the characteristic function of the set E.
The scalar field is assumed real.

THEOREM 1.1. For a^l, &a(S) = B(S, Aa(S)), i.e., the αth
Baire class is the closed linear span of characteristic functions of
ambiguous class a sets.

Proof. &Jβ) consists of all bounded functions f:S—*R such that
for each t e R, {xe S: f(x) ^ t}e Za(S) and {xe S: f(x) > t}eCZa(S)
(see Hausdorff [9, §43.1]). Thus for each EeAa(S), kEe<^a(S), and
since &a(S) is complete in the sup norm (Hausdorff [9, p. 269]), we
have B(S,Aa(S))c:&a{S). Conversely, each fe^a(S) is uniformly
approximated by a sequence of step functions in B(S, Aa(S)) (Hahn
[7, Theorem 34.4.31], Hausdorff [9, p. 280], Kuratowski [10, p. 388]).
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This finishes the proof.

REMARK 1.2. It follows easily from the proof of Theorem 1.1
that (a) Za(S) is precisely the family of zero sets f~\0) for / e ^ α (S) ,
and (b) &ωi(S) is precisely the family of bounded functions f:S—*R
which are measurable with respect to the <7-field Zωi(S) of Baire sets
in S.

COROLLARY 1.3. If S is a normal space and Σ is the field of
all subsets of S which are both Fσ and Gδ in S, then .^(S) — B(S, Σ).

Proof. Obviously, A^S) c Σ, so it suffices to show that B(S, Σ) c
S). It is enough only to show kE e ^(S) if E e Σ. If E = U Fn =

Π Gn with f i C ^ c closed and Gι => G2 ID open, choose by
Urysohn's lemma continuous fn such that fn(Fn) = 1, fJGe

n) = 0. Then
lim fn = kEe &Jβ). This proves the corollary.

If Σ is a field of subsets of S, denote by SΣ the space of all
multiplicative linear functionals on B(S, Σ), endowed with the w*
topology. Then SΣ is a compact Hausdorff space, and if for / e B(S, Σ)
we define fe C(SΣ) by f(x) = x(f) (x e SΣ), then the map / —>/ defines
an algebraic isometry of B(S, Σ) onto C(SΣ). For each seS, let
τ(s) e SΣ be the multiplicative linear functional on B(S, Σ) obtained
by evaluation at s. The space SΣ is totally disconnected, and the
map E —• τ(E) (E e Σ) defines a Boolean algebra isomorphism of Σ onto
the field of clopen (closed and open) sets in S . Thus SΣ is a Stone
representation space for Σ. (See Dunford-Schwartz [5, pp. 311-312]
for details regarding this discussion.) We therefore infer from
Theorem 1.1 the following representation of &a{β) (for S = [0, 1],
see Bade [2, p. 3]):

THEOREM 1.4. &a{S) is algebraically isometric to a space
C(Ωa), where Ωa is a compact totally disconnected Hausdorff space.
Furthermore, there exists a function τa: S—> Ωa such that

( a ) /(τα(s)) = f(s) for all se S (where f is the correspondent in
C(Ωa) to fe<^a(S))> and

( b) E—*τa{E)> Ee Aa(S), defines a Boolean isomorphism of Aa(S)
onto the field of clopen sets in Ωa.

2. Baire complemented C(S) spaces*

DEFINITION 2.1. For the Banach space Xy denote by X^ the first
Baire space for X, i.e., the set of all limits in X** of w* convergent
sequences in X (regarded as a subspace of X**). The space X is
called Baire complemented if there is a continuous linear projection
from Xx onto X.
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R E M A R K S 2.2.

(1) Xι is a closed subspace of X** (McWilliams [12]).
(2) X is Baire complemented if and only if X has a comple-

mentary closed subspace in Xx.
(3) If X and Y are isomorphic Banach spaces and X is Baire

complemented, then Y is Baire complemented.
(4 ) If X is Baire complemented and Y is a complemented sub-

space of X, then Y is Baire complemented. (For if P: X1—>X and
Q:X-+Yare projections and J: Y—>X is the inclusion map, then
QPJ** I Y1 is a projection of Yι onto Y.)

(5) If X = C(S) for the compact Hausdorff space S, then XL is
isometrically identified with ^ ( S ) by the map u: ^{(S) —• Xx defined
by u(f)(μ) = \ /dμ for / e ^ ( S ) and μe X* = C(S)* = M(S). (By

the Lebesgue dominated convergence theorem, a bounded sequence
fn e C(S) is pointwise convergent on S to an / e ^{(S) if and only if
fn converges w* in C(S)** to u(f)eX1 = C(S)lβ) Therefore, C(S) is
Baire complemented if and only if C(S) is complemented in ^(S).

(6) If T: X-+ Y is an isomorphism of X onto Y, then T** | X,
is an isomorphism of Xx onto Ylu Thus, by Remark (5), if S and S'
are compact Hausdorff spaces such that C(S) and C(S') are isomorphic,
then &{(S) and ^{(Sf) are also isomorphic. By a simple induction,
&Jβ) and ^r(S') are isomorphic for all α.

The next objective is to establish a topological condition on S
which prevents C(S) from being Baire complemented. First, some
terminology is needed.

Suppose S and T are compact Hausdorff spaces and φ: S—> Γ is
a continuous map of S onto T. An averaging operator for φ is a
continuous linear map P: C(S)—+C(T) such that P(foφ) = /,
If {ία} is a net in Γ and ta —+1, let

fsGiS: for each a0 and neighborhood U
lim sup <p (ία) = \

(of s, φ~\ta) Π U Φ φ for some α ^ a(

The set lim sup φ~\ta) is a nonempty compact subset of φ~\t). For
the integer n > 1, define

ίίe T: φ~Ht) contains π disjoint sets of

(the form lim sup φ~ι{ta) for nets ta—>t

For integers k, nlf , nk > 1 define, inductively on &,

ί G Γ: φ~ι{t) contains nk disjoint sets of)

., •• 9 n k ) = t h e f o r m l i m s u p φ~H(a) f o r n e t s ta—>tr .

such t h a t tae M{

ψ

k~ι){nly , ^ _ x ) j
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THEOREM 2.3. (S. Z. Ditor [4, p. 204]). IfM{

Ψ

k){nlf --9nk)Φφ and
P is an averaging operator for <p, then \\ P\\ ^ 1 + 2 ΣίU (1 — IMi).

Throughout the remainder of this section, S is a compact Hausdorff
space and I7 is a field of subsets of S such that C(S) c B(S, Σ). These
fields are characterized in the next lemma. A neighborhood base
in S is a family &~ of subsets of S (not necessarily open) such that
if U is open in S and s e U, then for some E e Jf, s e int (E) and
Ed U.

LEMMA 2.4. These are equivalent:
(1) C(S)<zB(S,Σ);
(2) Σ contains a neighborhood base;
(3) Any two disjoint closed subsets of S are contained in disjoint

members of Σ.

Proof. (3) => (1): For / 6 C(S) and e > 0, choose α0 < a, < < an

so that f(S) c [α0, an] and αέ - α,^ < ε, 1 ̂  i ^ w. By (3), pick Ao,
• , Ane 2* with Ao = 0, A, = S9 and for 1 ̂  i < w, {ί: f(t) ^ α<} c A<
and {t: f(t) ^ αi+1} Π At = φ. If # = Σ?=i a^Ai-Ai^ then # e JB(S, J?)
and || flr — / | | < e, proving (1). (1) ==> (3): For i^, Ft closed and disjoint
pick / G C(S) with /(JP0) = 0, f{Fλ) = 1. Choose by (1) a step function
ge B(S, Σ) with Ik - / | | < 1/2. If A = {t: g(t) < 1/2}, then AeΣy

Fo c A, and Ft c Ac e J?, proving (3). (2) <=> (3) by normality and com-
pactness. This proves the lemma.

If EczS, then E~ = E = the closure of E.

DEFINITION 2.5. For the integer n > 1, let Γψ(ri) be the set of all
x in S such that there exist n disjoint sets Gl9 - 9GneΣ with

xeQ[mt(Gt)]- .

For the integers k, nlf , nk > 1, define, inductively on fc, ΓΣ

k)(nlf

• , nk) be the set of all xe S such that there exist nk disjoint sets
Gί9 ~,G%heΣ with

xeΓ\ [int (Gi) Π Γψ~ι){nu , ̂ - 0 ] " .

THEOREM 2.6. If P is a projection of B(S, Σ) onto C(S) and

Γψ(nly ---,nh)Φφ, then \\ P\\ ^ 1 + 2 Σf-i (1 ~ Vnt).

Proof. Use the notation (r: S-+ SΣ; f —>/) preceding Theorem
1.4. Define the continuous map φ from SΣ onto S by f(φ(x)) =/(»)
for ^ e S j and feC(S). If ffcS is open and xeφ'ι{G), then there
exists a net #α = τ(sα) —• a; (since τ(S) = SΣ), and 9(τ(sΛ)) = sa—>φ(x) e G,
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so that 8a is eventually in G. Thus τ(sa) is eventually in r(G), so
x 6 τ(G). Thus

( * ) φ-\G) c T(G) for open GaS .

Suppose now that P: J5(S, Σ)->C(S) is a projection. If Q: C(SΣ)-+
C(S) is defined by Q(/) - P(/), / e B(S, Σ), then Q is an averaging
operator for φ and | | Q | | = | | P | | . The theorem is proved by showing,
inductively on k, that Γ[k)(nlf •••, nk) c M^k)(nlf -"fnk) and applying
Ditor's theorem.

For k = 1, pick seΓ α ( (w) and disjoint sets G:, •• , G w e ί such
that se Π?=i [int (Gt)]~. In each set int(Gt) there is a net sa—>s,
and b y _ Π , ^"1(sα) c ζP"1 (intjG^)) c τ ^ ) . Thus lim sup φ" 1 ^) c
φ~\s) n r(G<). But since E->τ(E) is a Boolean isomorphism, the sets
τ(G^f •••, τ(Gn) are disjoint. Thus ^""^s) contains n disjoint sets of
the form lim sup φ~\sa) for nets sa—>s, i.e., seM^\n).

Now suppose k > 1 and Γ{k~ι){nu , w^) c Af^-1^, , ^ - 0 .
Pick seΓψ(nu -—,nk) and disjoint sets Gl9 -—,GnkeΣ such that
s e ΠUΛint (Gi) Π Γ[k-"](nlf "%nk^)]'. In each set i n t ^ ) there is
a net sα —> s with sα e /'ifc""1)(w1, , w^) c M^in,, , ^ , 0 . As

before, lim sup φ'^Sa) c ^"'(s) Π τ(Gi), and the τ{Gt) (1 ^ i ^ wA) are
disjoint. Thus ^ ( s ) contains ^fc disjoint lim sup sets of nets of
fibers φ~\sa) for sa e Λfί*"1>(^1, , u*_i). This means s e M^^^, , nk).
This proves the theorem.

REMARK 2.7. A different proof of Theorem 2.6 was given by
Amir [1] under the assumption that Σ contains an open base for S
and is stable under the closure operation. However, Theorem 2.6
is applied below in Corollary 2.10 to fields Σ which are not necessarily
stable under closure. The preceding proof supplies details for the
method outlined by Ditor [4, p. 205].

COROLLARY 2.8. If there exists a nonempty subset Q c S such
that for every seQ, there exist disjoint sets Gu G2 e Σ with

s e [int (GO Π Q]~ f) [int (G2) ΓΊ Q]~ ,

then C(S) is not complemented in B(S, Σ).

Proof. By induction onfc,Qc 7^(2, , 2) for k = 1, 2, 3, .
By Theorem 2.6, a projection must then have norm ^ 1 + k for all
k, an impossibility.

Recall that a compact Hausdorff space is called an F-space (Gillman-
Jerison [6]) if disjoint open Fσ sets always have disjoint closures.
This motivates the following terminology.
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DEFINITION 2.9. A compact Hausdorff space S is called strongly
non-F if there exists a nonempty subset Q aS such that for each
s e Q, there exist disjoint open Fσ sets G± and G2 with

COROLLARY 2.10. Suppose Σ is the field generated by the open
Fa subsets of the compact space S. If S is strongly non-F, then
C(S) is not complemented in B(S, Σ). In particular, C(S) is not
Baire complemented.

Proof The first statement follows from Corollary 2.8 and Defi-
nition 2.9. By Corollary 1.3, B(S, 2 ' ) c ^ ( S ) , so C(S) is not Baire
complemented by Remark 2.2(5).

REMARK. An easy application of Phillips' lemma shows that if
S has a nontrivial convergent sequence, then C(S) is not Baire
complemented (due to Wells [18]).

There is a partial converse to the preceding corollary. Recall
that a compact Hausdorff is called σ-Stonian, or basically disconnected,
if the closure of each open Fa set is open. Thus each σ-Stonian
space is an .F-space. The next theorem gives an analogue for σ-
Stonian spaces of the well-known fact that a compact space S is
Stonian (extremally disconnected) if and only if C(S) is the range
of a norm 1 projection from C(S)** (see, e.g., Semadeni [17, §§25.5
and 27.1.2]).

THEOREM 2.11. For a compact Hausdorff space S, these are
equivalent:

(1) S is σ-Stonian;
(2) C(S) is Baire complemented by a projection of norm 1 from

(3) C(S) is the range of a norm 1 projection from B(S, Σ),
where Σ is the field generated by the open Fσ-sets in S)

(4) C(S) is the range of a multiplicative norm 1 projection
from &ωi(S), the space of all bounded Baire functions on S;

( 5 ) C(S) is a o-complete lattice.

Proof. The proof goes (1) ==> (4) => (2) =» (3) => (5) =* (1). (1) => (4):
Let S be σ-Stonian. Denote by & the σ-field of Baire sets and by
^ the field of clopen sets. For each Ez&, there exists a unique
p(E)e^ such that EAρ(E) is meager, and the map p:^-*^
is a Boolean retraction (Halmos [8, p. 102]). For seSt let δs be the
unit point mass measure at s. Define μs{E) = δs(p(E)), Ee&, and
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P\£&4β)-+C(β) by

(Pf)(s) = J f d μ . , / 6 ^ ( S ) , seS.

Observing that ^(S) = B(S, &) (Theorem 1.1) and C(S) = B(S, ΐf),
it is easy to check that P is the desired projection.

(4) => (2) => (3): Obvious since C(S) c B(S, Σ) c &(S) (Lemma 2.4
and Corollary 1.3).

(3) => (5): Let P: B(S, Σ) -> C(S) be a projection of norm 1, and
let f ^ f2 ^ be an increasing bounded sequence in C(S) with
jf(β) = lim/.(«). Then f e B(S, Σ) (Hausdorff [9, pp. 279-280 and
Theorem 5, p. 270]) and since P is order-preserving (Pelczynski [14,
Proposition 1.2]), we obtain / . = P/ ^ P/ If 9^ C(S) and f. ^ g,
n = 1, 2, , then / ^ ^ and P / ^ P^ = g. Therefore Pf = V /•> and
C(S) is a σ-complete lattice.

(5)^>(1) is well-known (Semadeni [17, Proposition 24.7.4]). This
concludes the proof.

REMARK. Because of (4), the projections in (2) and (3) can be
taken multiplicative.

3* Baire classes over [0, 1]* In this section the previous results
are applied to the Baire classes ^ ( [ 0 , 1]), denoted simply by &u.
The arguments which follow hold equally well if [0, 1] is replaced
by any uncountable complete separable metric space. Regarding the
representation <2$u = C(Ωa), the objective is to show that, for 0 <
a < cou Ωa is strongly non-F (Theorem 3.3). The crucial information
is provided by the following result of Lusin in descriptive set theory.

LEMMA 3.1 (Lusin). Denote by<J^the space of irrational numbers.
For each countable ordinal a, there exist in the space ^x J^ two
disjoint sets of additive class a which are not contained in disjoint
sets of ambiguous class a.

Proof. Lusin [11, p. 204] or Hahn [7, p. 274].

LEMMA 3.2. For every countable ordinal a, there exist in the
Cantor set K two disjoint subsets A and B of additive class a in K
such that, if A! a A and B' czB are any subsets with A — A! and
B — Br countable, then A' and B' are not contained in disjoint sets
of ambiguous class a.

Proof. We treat the cases a = 1 and a > 1 separately. For
a — 1, first notice that every open set VaK contains a perfect
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nowhere dense subset (see Kuratowski [10, p. 447]). Let Vu V2,
denote a base of open sets for K. Choose perfect nowhere dense
sets Aι c Vι and Bι c Vx — Alf and, inductively on n, let An and Bn

be disjoint perfect nowhere dense subsets of Vn — \Jl=l (Ak U Bk),
n = 2, 3, . The sets A = U~=i An and B = \Jn=i Bn are disjoint Fσ

sets in if (i.e., additive class 1), and if A' c A and B' c B with A — A!
and B — Bf countable then A! and I?' are still dense in K. Thus A'
and B' are not contained in disjoint sets of ambiguous class 1 because,
by the Baire category theorem, two dense Gδ sets must intersect.

For a > 1, first let D c K be a denumerable dense set, so that
K — D is homeomorphic to ^ (Kuratowski [10, p. 441]) and there-
fore to i ^ x ^Γ By the Lusin lemma, there exist in K — D two
disjoint sets A, B of additive class a (relative to K — D) which are
not contained in disjoint ambiguous class a sets. Since K — D is a
Gδ and α: ̂  2, A and B are additive class a relative to K (see Hahn
[7, Proposition 33.4.73]) and are not contained in disjoint ambiguous
class a sets in K. Since every countable set is ambiguous class 2, no
sets Af c A and B' c J?, such that A — A! and B — B' are countable,
can be contained in disjoint ambiguous class a sets. This proves
the lemma.

THEOREM 3.3. For each countable ordinal a > 0, the maximal
ideal space Ωa of the αth Baire class £&a is strongly non-F.

Proof. A set QaΩa is exhibited which satisfies Definition 2.9.
Let I = [0, 1]. Fix the countable ordinal a ^ 1, and define τa\ I—*Ωa

as in Theorem 1.4. Now define

Q = {x e Ωa: there exist two disjoint open Fσ sets in Ωa, Gx

and G2, such that if W is a neighborhood of xf then the

sets r ^ G i Π W) and τ~1(G2 Π W) are uncountable} .

It is first shown that if K c / is any homeomorphic image of the
Cantor set, then τa{K) contains a point of Q—showing in particular
that Q Φ φ. For such K, choose two disjoint additive class a sets
A, B as guaranteed by Lemma 3.2. Let ^~ denote the family of
compact subsets of Ωa defined by

— {τa(M): either Ma A and A — M is countable

or M c B and B — M is countable} .

We show that J?~ has the finite intersection property. If Mu

Mn c A and Mn+1, , MP c B with TjΆQ e j ^ ( l ^ i ^ p), let A' =
f|?=i Mid A and J5' = ΠfU+i ^ c 5 . Then A - A' and 5 - 5 ' are
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countable, so that A' and Bf are not contained in disjoint ambiguous
class a sets. But this implies that τa(Af) Γ) τa(Bf) Φ φ since by
Theorem 1.4, Ωa is totally disconnected and if τa{A') f] τa(Bf) = φ, then
for some clopen set C, τα(A') c C, C Π τa(Bf) = φ. But since E-*τa(E)
is a Boolean isomorphism of Aa(I) onto the field of clopen sets in Ωa,
we have C = τjE) for some EeAJJ). Then A' c ff and Bf c J£β, a
contradiction. Therefore, φ Φ τa(A') n τα(.B') c Πί=i ^(Λf,), and
has the finite intersection property.

Now choose xef){C:Ce ^~). Clearly, x e τa(K). We show xeQ.
Since A and B are additive class α sets, there exist sets Al9 A2, ,
Blf B2, G Aα(J) such that A = (J An and B = \J Bn. Define the
disjoint open Fσ sets Gx and G2 in ί2α by

Gi - U *«(A.) , G2 - U ^(5,) .

If W is a neighborhood of x, let £Ί — τ~\Gγ Γ\ W). If JSΊ were only
countable, then τa(A — EJe ^ 7 so a e τa(A — Eλ). Thus τa(t)e W
for some te A — Elf which is a contradiction. This shows τ~ι(G1 n TF)
is uncountable, and likewise τ~ι{G2 Π W) is uncountable. This con-
cludes the proof that for every subset Kal homeomorphic to the
Cantor set, τa(K) contains a point of Q.

Now choose x e Q, and suppose Gι and G2 are disjoint open Fo

sets satisfying the definition of Q. Let W be a clopen set containing
x, and fix attention on G1 Π W. Write Gx = U"=i -F»» where each .Fn

is clopen. We have τ~1(G1 ΠW)= [J τ~ι(Fn f] W), which is uncountable,
so there must exist n0 such that τ~\FnQ Π W) is uncountable. But
F%Q ίΊ W is clopen hence FWo Π W = τ ^ ) for some .Ee Aα(/). Then
j& = Ta\FnQ Π TΓ), and the Baire set E, being uncountable, must contain
a copy K of the Cantor set (Kuratowski [10, p. 447]), and τa(K) c
i^0 ΓΊ IF. By what was shown above, τa{K) contains a point of Q,
so that (?! Π W. contains a point of Q. Since PF was arbitrarily chosen,
xeGίΓι Q. Similarly, x e G2 ΓΊ Q. Therefore, ζ) satisfies the condition
of Definition 2.9, and β« is strongly non-i*7. This concludes the proof
of Theorem 3.3.

REMARK 3.4. The preceding proof is more delicate than necessary
for a ^ 2. In case a Ξ> 2, one could simply take Q = \J (Gt f] G2),
where the union runs over all pairs (Gu G2) of disjoint open Fo sets
in Ωa. The "uncountability condition" is automatically satisfied.
However, for a = 1, the proof given seems to be required, and the
case a ^ 2 goes along for a free ride. However, we use the non-
separation result of Lusin (Lemma 3.1), which becomes decidedly
nontrivial in the case a ^ 2.

COROLLARY 3.5. For a < ωu &a is not Baire complemented.
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Proof. Corollary 2.10 and Theorem 3.3.

THEOREM 3.6. Suppose S is a compact Hausdorff space which
contains an uncountable compact metrizable subset. Then for each
countable ordinal a > 0, &Jβ) is not Baire complemented.

Proof. Let KaS be an uncountable compact metric space. By
Milutin's theorem (Pelczynski [14, Theorem 8.5]), C{K) and C([0, 1])
are isomorphic, so by Remarks 2.2(6), &a{K) and &a are isomorphic
for all a. But &a is not Baire complemented (Corollary 3.5), so ^a{K)
is not Baire complemented. (This conclusion can also be proved in
the same way as Corollary 3.5, thus avoiding Milutin.)

By the Borsuk-Dugundji theorem (see Pelczynski [14, Theorem
6.6]), there exists an "extension operator" E: C(K) —> C(S) such that
E is an isometry and E{f) | K = /. Regarding &a{K) and &a(S) as
subspaces of C(K)** and C(S)** under the canonical embedding, we
obtain by an easy induction argument that for each h e &a(K),
E**{h)e^a{S) and E**(h)\K = h. That is, E** extends E to an
"extension operator" from &*{K) into &Jβ). For fe&a(S), we
have that f\Ka&a(K), and by defining P(f) = E**(f |K) we obtain
a projection P of &a(S) onto E**(&a{K))9 which is isometric to
&a{K). Therefore, &a(S) can not be Baire complemented since &a(K)
is not Baire complemented (see Remarks 2.2(3) and 2.2(4)). This
proves the theorem.

COROLLARY 3.7. Suppose S is a compact Hausdorff space which
contains an uncountable compact metrizable subset. Then for each
countable ordinal a > 0, &a(S) is not isomorphic to any complemented
subspace of a space C(Ω) for σ-Stonian Ω. In particular, &Jβ) is
not isomorphic to any complemented subspace of &ωχ(S).

Proof. The first statement follows from Theorem 2.11 and
Remarks 2.2(3) and 2.2(4). For the second statement, represent
&ωι(S) by Theorem 1.4 as C(Ω), where Ω is a totally disconnected
compact space whose Boolean algebra of clopen sets is σ-complete
(being isomorphic to the σ-field of all Baire sets in S). It is well-
known that such a space Ω must be σ-Stonian (see Halmos [8, p. 99]).

REMARK. A Banach space X is called a Grothendieck space if
every continuous linear map T: X--*c0 is weakly compact. It is known
(see Seever [16, p. 272]) that if Ω is σ-Stonian (or even an i^-space),
then every quotient of C(Ω) is a Grothendieck space. A proof that
^a(a < (ύj) is not a Grothendieck space, together with the proof of
Theorem 3.6, would provide a stronger result than Corollary 3.7.
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However, it is at present unknown whether έ%ta is a Grothendieck
space. In fact, it is even unknown whether the maximal ideal space
Ωa contains any nontrivial convergent sequence (the existence of
such a sequence would prevent &a — C(Ωa) from being a Grothendieck
space).

PROPOSITION 3.8. Suppose S is a topologίcal space and a > 0 is
an ordinal such that &a(S) is not Baire complemented. Then
is not complemented in &β(S) for any β > a.

Proof. Use the notation (rβ: S-+Ωa; f h->/; &?a(S) « C{Ωa)) of
Corollary 1.4. Define T: ̂ L(Ωa)->^a+1(S) by Th = h°τa, he^(Ωa).
(To check that The &a+1(S), pick Ke C(Ωa) such that limK = he
^(Ωa), and choose fn e &Jβ) so that fn = hn. Then hnoτa=fnoτa=fn,
Th(s) = lim hn(τa(s)) = lim/n(s), and Th e &a+1(S).) Suppose there were
a projection P from ^a^{S) onto &a(S). Define R: ̂ (Ωa) -> C(Ωa)
by R{h) = (PT(h)y, he^[(Ωa). Then R is obviously a projection
onto C(42α), contradicting the assumption. Thus no such P can exist.
Obviously, therefore, there can be no projection from ^β(S) onto

for any β > a. This proves the proposition.
We obtain as a corollary the following result of W. G. Bade [2]:

COROLLARY 3.9. For the countable ordinals a < β, ̂ ( [ 0 , 1]) is
not complemented in ^s([0, 1]).

Proof. Corollary 3.5 and Proposition 3.8.

REMARK 3.10. By Theorem 3.6 and Proposition 3.8, the above
corollary remains true if [0, 1] is replaced by any compact Hausdorff
space which contains an uncountable compact metrizable subset.

Corollary 3.7 implies that &a is not isomorphic to ̂ , 1 for a < co^
It follows from [3, Corollary 8, p. 336] that ^ is not isomorphic
to έ$a f or a > 1. Although it is unknown whether £%a and ̂  are
isomorphic for 1 < a < β < ωlf it is shown in the next theorem that
they are not isometric.

THEOREM 3.11. If 0 < a < β ^ ωu then ^ a and &β are not
isometric.

Proof. By Theorem 1.4, &a = C(Ωa) and ̂  = C(Ωβ), where Ωa

(resp. Ωβ) is a totally disconnected compact Hausdorff space whose
field of clopen sets is Boolean isomorphic to the field Aa of ambiguous
class a sets (resp. to the field Aβ of ambiguous class β sets). If
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&* and &β are isometric, then Ωa and Ωβ are homeomorphic by the
Banach-Stone theorem, and so Aa and Aβ are isomorphic Boolean
algebras. Let p: Aa —> Aβ be a Boolean isomorphism. Since the
algebras Aa and Aβ are purely atomic, p must be induced by a point
map, i.e., there must exist a permutation π of [0, 1] such that
ρ(E) = π ^ ) , # 6 A*. If G c [0, 1] is open, then GeAβ so π-\G) e Aa

and π~\G) is a Borel set. Thus π is Borel measurable, so there
must exist a first category Fσ set i^ so that π\Fc is continuous
(Kuratowski [10, p. 400]). Since Fc is an uncountable Gδ, F

c contains
a copy K of the Cantor set. Thus π | iΓ is continuous and one-to-
one, therefore a homeomorphism. Thus π(E)eAa if EeAa(K) since
a homeomorphism preserves class. But this is a contradiction, because
π(K), being homeomorphic to i£, contains subsets in Â  — Aa (Haus-
dorff [9, p. 207]), each of which is assumed to be of the form π(E)
for EeAa(K). This proves the theorem.

REMARK. In connection with the above, it follows from a result of
Rosenthal [15, p. 242, Remark 3] that the dual spaces έ@a*{l^a^<^0
are all linearly isometric to each other and to (i°°)*.

THEOREM 3.12. // S and T are uncountable complete separable
metric spaces, then &ωi(S) and &ωi(T) are isometric by an algebraic
isometry which maps &a(S) onto &a{T) for all infinite ordinals a.

Proof. There exists a "Borel isomorphism" φ between S and T
which is class 1 in both directions (Kuratowski [10, p. 451]), i.e., a
bisection φ: S—> T so that φ and φ~ι are both class 1. Since ψ and
φ~ι change the class of a set by at most 1, φ and φ~ι in fact preserve
class at the first limit ordinal, and therefore at every higher level.
That is, EeAa(S) if and only if φ(E)e Aa(T), a ^ωQ. Thus A*(S)
and Aa(T) are isomorphic Boolean algebras, so that B(S, Aa(S)) **
B(T, Aa(T)), i.e., ^a(S) ** ^a(T) for a ^ ω0 by Theorem 1.1. This
concludes the proof.
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