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ON AN INVERSION THEOREM FOR THE GENERAL

MEHLER-FOCK TRANSFORM PAIR

P. ROSENTHAL

Let P£(y) be the Legendre function of the first kind and
let Γ(z) be the Gamma function. Then the general Mehler-
Fock transform of complex order k of a function g(y) is de-
fined by the equation

f(x) = L2(g) — π~xx sin h(πx)r(— — k — ixj

x r(± - fc +

the inversion theorem states

g(y)=L1(f) -

It is stated on page 416 of I. N. Sneddon's book 'The Use of
Integral Transforms, (1972) that apparently a class of functions
g(y) for which this result is valid is not yet clearly defined.
The purpose of this paper is to define a class of functions
g(y) as well as a class f(x) and give proofs that the above
inversion formula hold for these classes.

Introduction* The theorem and proofs presented in the paper
are basically a generalization of those in a paper of V. Fock [4] who
treated the case k = 0, the Mehler-Fock transform. Some applications
of the Mehler-Fock transform and general Mehler-Fock transform
are given in [7], [8]. Tables of these transforms are given in [6].

All integrals are taken in the improper (complex) Riemann sense.
x — h co means x positive and sufficiently large, x h 1 = sufficiently
close to 1, x > 1.

THEOREM 1. Let G be the class of complex valued functions
such that g eG if and only if

1. g(y) = {V — I)~kl29i(y), y > 1, 9i(y) is twice differentiable and
continuous for y ^ 1, the real and imaginary parts of g"(y) are of
bounded variation on any closed and bounded interval contained in
oo > y ^ 1.

2. dngjdyn = O(y-{ll2)'n+{kl2)'ε)f y ^ 1, 1/4 > ε > 0, 0 = large order
relation, n = 0, 1, 2 (the case n = 0 means gt).
Then L^Llg)) = g9 y > 1, |Re k\ < 1/4.
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Proof of Theorem 1.

LEMMA 1. Let

rt

geG, h(t) = 1 p(tf q)dq1 p = (sinh qY~k(cosh t — cosh q)~iμ+kg (cosh q) ,
Jo

S o

0

cos {xt)h\t)dt, I Re A; I < — .
4

Then

1. f(x) = 0(αΓ2), x ~ + oo, [~\f(x)\dx < oo.
Jo

2a. Λ/(£) is continuous for t ^ 0.
2b. &'(£) satisfies the conditions of a Fourier inversion theorem

[9, p. 13], h', h" are both absolutely integrable over the infinite
interval oo ;> t ^ 0, lim t_+ O f + β β h = 0, l im^ + o o /?,' •= 0.

3.

Proof of Lemma 1. Let s = cos/z, ί, r = cos/z, ĝ, r = (s — l)w + 1.
Then

p = (β -

c(w) = (1 -

Hence there exists cw(w) independent of t such that

C | | |d ι ι ;< - , 1 > e > 0, n

= 0,l,2,|Befc|<l.

(

oo > ί ;> 0, w = 1, 2, |Ee fc| < 1/4. Hence parts 2, 3 of Lemma 1 hold.
We are now permitted to integrate by parts with respect to t the
right-hand side of the defining formula for f(x) in the hypothesis

sin {xt)hrr{t)dt. Since
Jo

h"(t) = O(e~εt), t ~ + oo, 1/4 > ε > 0, we conclude the real and im-
aginary parts of h"(t) are of bounded variation in the infinite interval
oo >̂ t ^ 0 (see I.P. Natanson "Theory of Functions of a Real Vari-
able", p. 238, for definitions and theorem). This implies F(x) —
O(x~ι), x ~ + oo. This completes the proof of Lemma 1.

LEMMA 2. Let geG. Then
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lim \Λ>Ί\'?dq)dt = lim \A(\A}dt)dq =
A-* + 00 Jθ \Jθ / ^->+ooJθ\J9 /

/ = p sin (a?ί), » ^ 0, I Re fc| < — .
4

(See Lemma 1 for the definition of p.)

Proof of Lemma 2. Since g e G, the iterated integrals in Lemma
2 are equal for finite A. Part 3 of Lemma 1 implies absolute
integrability of the first iterated integral in Lemma 2. Hence we
satisfy Fubini's theorem which implies Lemma 2.

LEMMA 3. Let

F(v) = [\v - s)-^2+krdsf r = (s2 - iγhιtg(s\ geG .

Then

— Γ ( t - v)-ι*-hF(v)dv = \\t - v)"i2-hC^dv, |Rβfc| < 4-
dt Ji Ji dv 4

Proof of Lemma 3. Part 2 of Lemma 1 implies F(v\ F\v) are
both continuous for v>l, lim^+1 F(v) — 0. Hence we satisfy a theorem
(relating to the Abel integral equation) [1, p. 5] (this theorem can
be modified to include singularities of the type (x — l)α, x h i ,
Re a > — 1, our case, see [1, p. 6]), which implies the conclusion of
Lemma 3.

The rest of the proof of Theorem 1 consists mainly in applying
the above lemmas to show that all the operations we use to show
that (2) is a solution to (1) are valid.

Using the integral representation for Pt-m from [5, p. 165], we
obtain from (2), the iterated integral,

(3) f(x) = α(fc)αίΎf"p sin (xs)ds)dt

(see Lemma 1 for the definition of p)

a(k) = Vi*π-wr(±- - Jfc) sin ((λ + JkV), x ^ 0, |Re k\ < ~ .

(We note (3) is valid by Lemma 2.)
We now apply to the right-hand side of (3) the following opera-

tions in this order,
1. integration over a triangular domain (see Lemma 2),
2. integration by parts with respect to s,
3. the Fourier cosine transform.

Since operations 1, 2, 3 are now permissible by Lemmas 1, 2 (g e G),
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we obtain from (3) the valid identity

I cos (tx)f(x)dx = aAk)—^- (see Lemma 1 for definition of h)

Jo dt

(4 ) am = (2τr)-1/2r(-| - *) sin ( ( 1 + k)π) ,

t > 0, |Reft| < —.
4

Lemma 3 implies all the operations (those indicated in Lemma 3) to
show the right-hand side of (4) is a solution to an Abel integral
equation are now permissible [1, p. 9]. (Again we note only real k
are treated on p. 9, but the theory can be extended to complex k,
our case.) Hence applying these operations (those indicated in Lemma
3 to the right-hand side of (4), we obtain the valid identity

fVf°° \
g(cosh t) = \ (\ udx)ds, u = a2(k)(smh ί)*(coshfc t — (tosh s)~lβ~k

cos (sx)f(x) , am = ( 2 - 1 τ r ) - 1 / 2 ( r ( l - kj)~\ t > 0, | R e k \ < λ .

Interchanging the order of integration of the iterated integral on
the right-hand side of (5) (which is now permissible by part 1 of
Lemma 1), then using the integral representation for PL-m from
[2, p. 156], we obtain the valid identity Lx{L2{g)) = g, t > 0, |Re k\ <
1/4. This completes the proof of Theorem 1.

COROLLARY 1. Let glf g2eG such that L2{g^) = L2(g2), then g^t) =
&(<), t > 0, |ReJfc| < 1/4.

Proof. Let u = g1 — g2. Then ueG. Hence L2(u) = 0 by linearity
of L2. Hence f(x) (of (3)) = 0, x ^ 0. We then obtain from (5) the
conclusion of Corollary 1.

THEOREM 2. Let F be the class of real valued functions such
that f eF if and only if

1. f(x) = x2fι{x), f[{x) is continuous for x ϋ> 0, and of bounded
variation on any closed and bounded interval contained m w > a ; ^ 0 .

2. / , / ' = O(χ-1-), x - + oo, e > 0.
Then L2(LX(/)) = / , x ^ 0, |Re k\ < 1/2.

Proof of Theorem 2.

LEMMA 4. Let f eF, g = Z/i(/),

l I U W I ^ exists for any A > 1.
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2. g = Otfcos/r1 y)-2(y2 - I)"1/4), V ~ + °°,
providing | Re k | < 1/2.

Proof of Lemma 4. From formula 26 [2, p. 129],
(a) P£_1/2(cos& ί) = (2τr sinh t)^\e'it9f1 + e« / 8 ),

i - fc - ixj
f / s = F(\+k, -ί-fc, 1 + is; - Aβ"'cosΛ t) ,

/ » = /i(-α), ^(α, 6, c; z) - ikf Γwds, w = ̂ ( l - s Γ ^ l - zs)~a ,
Jo

Re 6, Re (c - b) > 0, \z\ < 1, Λf independent of z[2, p. 59].
(b) 2:δ~α(Γ(2; + a)/Γ(z + 6)) ~ ĉ  + α^"1 + (an asymptotic

series), \z\ ~ + ^ uniformly for |arg z \ ̂  π — ε, π/2 > e > 0 [2, p. 47],
so differentiation of the right-hand side of (b) is permissible [3, p.
21]. From (a) we conclude (1 + x)~iμ+k fί(x\ (1 + a?)"1/2+*/ί'(α?) are
uniformly bounded for x ^ 0 and £ ̂  1, providing |Refe| < 1/2. In
(1) we now use the integral representation from (a), then integrate
by parts with respect to x, which is permissible (/ e F) to conclude

g{i)(y) = (cosh-1 yYι{y2 - I)"1'4 ίV^V^G/, x, k)dx, y ^ 2, |ReΛ;I < 1/2,
Jo

further the real and imaginary parts c{j) are of bounded variation
in x on the infinite interval oo ;> % ^ 0, y ^ 2, | Re k \ < 1/2. Hence
the real and imaginary parts of c(i) can each be written as the
difference of two monotonically decreasing functions c^fx), x ^ 0,
lima._*+oβ c

{j\x) — 0 uniformly in y ^ 2, c^Ί are uniformly bounded, α; ̂
0, 2/ ̂  2, I Re k\ < 1/2, w = 1, 2, i = 1, 2, since /(a) = 0{x~l-s\ x - + oo.
Also arty) - 0(0/ - I)-1!4), 2 > 3/ > 1, I Re k\ < 1/2, by (5) (in the proof
of Theorem 1), f e F. Hence Lemma 4 holds.

\ I/I dt)dq < °o? x ^
0 \Jg /

0, I Re & I < 1/2 (see Lemma 2 of Theorem 1 for the definition of /) .

Proof. Using the change of variable (cosh t — cosΛ, q) — (cosh q +
ϊ)w, we conclude \ \f\dt ^ M(sinh q/2)'1 \(sinh qy~k(cosh q)kg(cosh q) |,
q > 0, x ^ 0, M a constant, [Re fc| < 1/2. Hence the conclusion of
Lemma 5 follows.

The rest of the proof of Theorem 2 consists mainly in justifying
in reverse order all the formulas arising from the solution of the
integral equation Lx(f) = g in the proof of Theorem 1. Hence we
will point only where the rest of the proof of Theorem 2 must be
modified from that of Theorem 1.
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REMARK 1. The inversion theorem for the solution to the Abel
integral equation [1, p. 9] appealed to in the proof of Theorem 1 has
been modified to include functions which have singularities of the
type (x — l)σ, α? ~ + 1, Re α > — 1. Hence this modified form of the
theorem applies again to our case (see (5) in the proof of Theorem
1) since we have a singularity of this type when we use the change
of variable s = cosh q.

REMARK 2. Lemma 5, / e F imply the sum h(+ oo) - fc( + 0), x ^
0, I Re k I < 1/2, of the upper and lower limits (both are finite) (arising
when one does an integration by parts, i.e., the reverse operation
corresponding to the one of part 2 of (3) in the proof of Theorem
1) is zero.

REMARK 3. Lemma 5 implies the g of Lemma 4 satisfies the
conclusion of Lemma 2 of Theorem 1. Hence the reverse operation
of integrating over a triangular domain (see Lemma 2 of Theorem
1) is now permissible. Hence we conclude all the reverse formulas
are valid. This completes the proof of Theorem 2.

COROLLARY 2. Let f19 f2eF such that L^f,) = L,{fz). Then f^x) =
ft(x)fx^09 IBeftl < 1/2.

Proof. Let r = f1 — f2. Then r e F. Hence by linearity L^r) =
0. Then by (3) of Theorem 1 (see also Lemma 5 of Theorem 2) we
obtain the conclusion of Corollary 2.

We note in closing, using the change of variable (cosh t — cosh q) =
{cosh q + cos a)s, the integral representations for Pt-m in Theorem
1 and [5], we obtain a pair of reciprocal transforms

1. g(cosh q) = sin a(cosh q + cos a)~*I2+k(smh q)~k, \ a | < ττ/2,
2. f{x) = 21/27Γ"1/2(Γ(l/2 - fc))-1/5(l/2 - Jc, l)xΓ(l/2 -k + ix)Γ(l/2 -

k — ix) smh ax, \ Re k \ < 1/2. (The case k = 0 specializes to the example
in [4].) β ΞΞ Beta function. Further, geG of Theorem 1 and fe
F of Theorem 2.

If in Theorem 1, part 1, we now assume gι is analytic for 2 / ^ 1 ,
Re k < 1/2, in 2 we assume n ^ 0 and arbitrary, then by the methods
in the proofs of Theorems 1 and 2 (we use the integral representation
for P&-1/2 from (5) in L2), we conclude c(k) = L^LJig)) is an analytic
function in k for Re k < 1/2, y > 1. Hence by analytic continuation,
Theorem 1 and Corollary 1 are now valid for Re k < 1/2.
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