ON AN INVERSION THEOREM FOR THE GENERAL MEHLER-FOCK TRANSFORM PAIR

P. ROSENTHAL

Let $P_m^k(y)$ be the Legendre function of the first kind and let $\Gamma(z)$ be the Gamma function. Then the general Mehler-Fock transform of complex order k of a function g(y) is defined by the equation

$$egin{aligned} f(x) &= L_2(g) = \pi^{-1}x \sin h(\pi x) arGamma(rac{1}{2} - k - ix) \ & imes arGamma(rac{1}{2} - k + ix) {\int_1^\infty} g(y) P^k_{i_{x-1/2}}(y) dy \;, \end{aligned}$$

the inversion theorem states

$$g(y) = L_1(f) = \int_0^\infty f(x) P_{i_{x-1/2}}^k(y) dx$$
.

It is stated on page 416 of I. N. Sneddon's book "The Use of Integral Transforms, (1972) that apparently a class of functions g(y) for which this result is valid is not yet clearly defined. The purpose of this paper is to define a class of functions g(y) as well as a class f(x) and give proofs that the above inversion formula hold for these classes.

Introduction. The theorem and proofs presented in the paper are basically a generalization of those in a paper of V. Fock [4] who treated the case k = 0, the Mehler-Fock transform. Some applications of the Mehler-Fock transform and general Mehler-Fock transform are given in [7], [8]. Tables of these transforms are given in [6].

All integrals are taken in the improper (complex) Riemann sense. $x \sim +\infty$ means x positive and sufficiently large, $x \sim +1 \equiv$ sufficiently close to 1, x > 1.

THEOREM 1. Let G be the class of complex valued functions such that $g \in G$ if and only if

1. $g(y) = (y - 1)^{-k/2}g_1(y), y > 1, g_1(y)$ is twice differentiable and continuous for $y \ge 1$, the real and imaginary parts of $g''_1(y)$ are of bounded variation on any closed and bounded interval contained in $\infty > y \ge 1$.

2. $d^ng_1/dy^n = O(y^{-(1/2)-n+(k/2)-\varepsilon}), y \ge 1, 1/4 > \varepsilon > 0, 0 \equiv large \ order$ relation, n = 0, 1, 2 (the case n = 0 means g_1). Then $L_1(L_2(g)) = g, y > 1$, $|\operatorname{Re} k| < 1/4$. Proof of Theorem 1.

LEMMA 1. Let

$$g \in G, \ h(t) = \int_{_0}^t p(t, q) dq, \ p = (\sinh q)^{_1-k} (\cosh t - \cosh q)^{_{-1/2+k}} g (\cosh q) \ ,$$
 $f(x) = \int_{_0}^\infty \cos (xt) h'(t) dt, \ |\operatorname{Re} k| < rac{1}{4} \ .$

Then

1.
$$f(x) = 0(x^{-2}), x \sim + \infty, \int_0^\infty |f(x)| dx < \infty$$
.
2a. $h'(t)$ is continuous for $t \ge 0$.

2b. h'(t) satisfies the conditions of a Fourier inversion theorem [9, p. 13], h', h'' are both absolutely integrable over the infinite interval $\infty \geq t \geq 0$, $\lim_{t\to +0,+\infty} h = 0$, $\lim_{t\to +\infty} h' = 0$.

$$3. \quad \int_{0}^{\infty} \Bigl(\int_{0}^{t} |p| \, dq \Bigr) dt < \infty.$$

Proof of Lemma 1. Let $s = \cosh t$, $r = \cosh q$, r = (s - 1)w + 1. Then

$$p = (s-1)^{(1+k)/2}((s-1)w+2)^{-k/2}g((s-1)w+1)c(w) , \ c(w) = (1-w)^{-(1/2+k)}w^{-k/2} .$$

Hence there exists $c_n(w)$ independent of t such that

$$igg|rac{\partial^n p}{\partial t^n}igg| \leq e^{-\varepsilon t} |c_n(w)|, \ t \sim + \infty, \ \int_0^1 |c_n| \, dw < \infty, \ rac{1}{4} > \varepsilon > 0, \ n$$

= 0, 1, 2, $|\operatorname{Re} k| < rac{1}{4}$.

Again by dominated convergence we conclude $d^n h/dt^n = \int_0^1 (\partial^n p/\partial t^n) dw$, $\infty > t \ge 0$, n = 1, 2, $|\operatorname{Re} k| < 1/4$. Hence parts 2, 3 of Lemma 1 hold. We are now permitted to integrate by parts with respect to t the right-hand side of the defining formula for f(x) in the hypothesis of Lemma 1 to conclude $f(x) = x^{-1}F(x)$, $F(x) = \int_0^\infty \sin(xt)h''(t)dt$. Since $h''(t) = O(e^{-st})$, $t \sim +\infty$, $1/4 > \varepsilon > 0$, we conclude the real and imaginary parts of h''(t) are of bounded variation in the infinite interval $\infty \ge t \ge 0$ (see I.P. Natanson "Theory of Functions of a Real Variable", p. 238, for definitions and theorem). This implies F(x) = $O(x^{-1})$, $x \sim +\infty$. This completes the proof of Lemma 1.

LEMMA 2. Let $g \in G$. Then

$$egin{aligned} &\lim_{A o+\infty}\int_{0}^{A o 0}&\left(\int_{0}^{t}\widehat{f}dq
ight)dt=\lim_{A o+\infty}\int_{0}^{A}&\left(\int_{q}^{A}\widehat{f}dt
ight)dq=\int_{0}^{\infty}&\left(\int_{q}^{\infty}\widehat{f}dt
ight)dq\;,\ &\widehat{f}=p\,\sin\left(xt
ight),\,x\geqq0,\,|\operatorname{Re}k|<rac{1}{4}\;. \end{aligned}$$

(See Lemma 1 for the definition of p.)

Proof of Lemma 2. Since $g \in G$, the iterated integrals in Lemma 2 are equal for finite A. Part 3 of Lemma 1 implies absolute integrability of the first iterated integral in Lemma 2. Hence we satisfy Fubini's theorem which implies Lemma 2.

LEMMA 3. Let

$$F(v) = \int_{1}^{v} (v-s)^{-1/2+k} r ds, \ r = (s^{2}-1)^{-k/2} g(s), \ g \in G$$

Then

$$rac{d}{dt} \int_{1}^{t} (t-v)^{-1/2-k} F(v) dv = \int_{1}^{t} (t-v)^{-1/2-k} rac{dF}{dv} dv, \, |\operatorname{Re} k| < rac{1}{4} \; .$$

Proof of Lemma 3. Part 2 of Lemma 1 implies F(v), F'(v) are both continuous for v > 1, $\lim_{v \to +1} F(v) = 0$. Hence we satisfy a theorem (relating to the Abel integral equation) [1, p. 5] (this theorem can be modified to include singularities of the type $(x - 1)^a$, $x \sim +1$, Re a > -1, our case, see [1, p. 6]), which implies the conclusion of Lemma 3.

The rest of the proof of Theorem 1 consists mainly in applying the above lemmas to show that all the operations we use to show that (2) is a solution to (1) are valid.

Using the integral representation for $P_{ix-1/2}^{k}$ from [5, p. 165], we obtain from (2), the iterated integral,

 $(3) \quad f(x) = a(k)x \int_0^{\infty} \left(\int_t^{\infty} p \sin(xs) ds \right) dt$

(see Lemma 1 for the definition of p)

$$a(k) = 2^{1/2} \pi^{-3/2} arGamma \Big(rac{1}{2} - k \Big) \sin \Big(\Big(rac{1}{2} + k \Big) \pi \Big), \, x \geqq 0, \, |\operatorname{Re} k| < rac{1}{4} + k \Big)$$

(We note (3) is valid by Lemma 2.)

We now apply to the right-hand side of (3) the following operations in this order,

- 1. integration over a triangular domain (see Lemma 2),
- 2. integration by parts with respect to s,
- 3. the Fourier cosine transform.

Since operations 1, 2, 3 are now permissible by Lemmas 1, 2 ($g \in G$),

we obtain from (3) the valid identity

$$\int_{0}^{\infty} \cos(tx) f(x) dx = a_1(k) \frac{dh}{dt} \quad (\text{see Lemma 1 for definition of } h)$$

$$(4) \qquad a_1(k) = (2\pi)^{-1/2} \Gamma\left(\frac{1}{2} - k\right) \sin\left(\left(\frac{1}{2} + k\right)\pi\right),$$

$$t > 0, |\operatorname{Re} k| < \frac{1}{4}.$$

Lemma 3 implies all the operations (those indicated in Lemma 3) to show the right-hand side of (4) is a solution to an Abel integral equation are now permissible [1, p. 9]. (Again we note only real kare treated on p. 9, but the theory can be extended to complex k, our case.) Hence applying these operations (those indicated in Lemma 3 to the right-hand side of (4), we obtain the valid identity

$$\begin{array}{l} g(\cosh t) = \int_0^t \Bigl(\int_0^\infty u dx \Bigr) ds, \ u = a_2(k) (\sinh t)^k (\cosh h \ t - \cosh s)^{-1/2-k} \\ \cos (sx) f(x) \ , \ a_2(k) = (2^{-1}\pi)^{-1/2} \Bigl(\Gamma\Bigl(\frac{1}{2}-k\Bigr) \Bigr)^{-1} , \ t > 0 , \ |\operatorname{Re} k| < \frac{1}{4} \ . \end{array}$$

Interchanging the order of integration of the iterated integral on the right-hand side of (5) (which is now permissible by part 1 of Lemma 1), then using the integral representation for $P_{ix-1/2}^{k}$ from [2, p. 156], we obtain the valid identity $L_1(L_2(g)) = g, t > 0$, $|\operatorname{Re} k| < 1/4$. This completes the proof of Theorem 1.

COROLLARY 1. Let $g_1, g_2 \in G$ such that $L_2(g_1) = L_2(g_2)$, then $g_1(t) = g_2(t), t > 0$, |Re k| < 1/4.

Proof. Let $u = g_1 - g_2$. Then $u \in G$. Hence $L_2(u) = 0$ by linearity of L_2 . Hence f(x) (of (3)) = 0, $x \ge 0$. We then obtain from (5) the conclusion of Corollary 1.

THEOREM 2. Let F be the class of real valued functions such that $f \in F$ if and only if

1. $f(x) = x^2 f_1(x)$, $f'_1(x)$ is continuous for $x \ge 0$, and of bounded variation on any closed and bounded interval contained in $\infty > x \ge 0$.

2. $f, f' = O(x^{-1-\varepsilon}), x \sim +\infty, \varepsilon > 0.$ Then $L_2(L_1(f)) = f, x \ge 0, |\operatorname{Re} k| < 1/2.$

Proof of Theorem 2.

LEMMA 4. Let $f \in F$, $g = L_1(f)$, then 1. $\int_1^A |g(x)| dy$ exists for any A > 1. 2. $g = 0((\cosh^{-1} y)^{-2}(y^2 - 1)^{-1/4}), y \sim + \infty,$ providing $|\operatorname{Re} k| < 1/2.$

Proof of Lemma 4. From formula 26 [2, p. 129], (a) $P_{ix-1/2}^k(\cosh t) = (2\pi \sinh t)^{-1/2}(e^{-itx}f_1 + e^{itx}f_2),$

$${f_{\,_1}} = rac{{\varGamma (- ix)}}{{\Gamma \!\left(rac{1}{2} - k - ix
ight)}} {f_{\,_3}}, \ {f_{\,_3}} = F\!\!\left(rac{1}{2} \! + \! k, \ rac{1}{2} \! - \! k, \ 1 \! + \! ix; -rac{1}{2} e^{-t} \cosh t
ight),$$

$${f}_{2}(x)={f}_{1}(-x),\,F(a,\,b,\,c;\,z)=M{\int_{0}^{1}}wds,\,w=s^{b-1}(1-s)^{c-b-1}(1-zs)^{-a}$$
 ,

Re b, Re (c - b) > 0, |z| < 1, M independent of z[2, p. 59].

(b) $z^{b-a}(\Gamma(z+a)/\Gamma(z+b)) \sim a_1 + a_2 z^{-1} + \cdots$ (an asymptotic series), $|z| \sim +\infty$ uniformly for $|\arg z| \leq \pi - \varepsilon, \pi/2 > \varepsilon > 0$ [2, p. 47], so differentiation of the right-hand side of (b) is permissible [3, p. From (a) we conclude $(1 + x)^{-1/2+k} f'_3(x)$, $(1 + x)^{-1/2+k} f''_3(x)$ are 21].uniformly bounded for $x \ge 0$ and $t \ge 1$, providing $|\operatorname{Re} k| < 1/2$. In (1) we now use the integral representation from (a), then integrate by parts with respect to x, which is permissible $(f \in F)$ to conclude $g^{(j)}(y) = (\cos h^{-1} y)^{-1} (y^2 - 1)^{-1/4} \int_{0}^{\infty} e^{\pm itx} c^{(j)}(y, x, k) dx, \ y \ge 2, \ |\operatorname{Re} k| < 1/2,$ further the real and imaginary parts $c^{(j)}$ are of bounded variation in x on the infinite interval $\infty \ge x \ge 0$, $y \ge 2$, $|\operatorname{Re} k| < 1/2$. Hence the real and imaginary parts of $c^{(j)}$ can each be written as the difference of two monotonically decreasing functions $c_{m}^{(j)}(x), x \ge 0$, $\lim_{x\to+\infty} c_n^{(j)}(x) = 0$ uniformly in $y \ge 2$, $c_n^{(j)}$ are uniformly bounded, $x \ge 1$ 0, $y \ge 2$, $|\operatorname{Re} k| < 1/2$, n = 1, 2, j = 1, 2, since $f(x) = O(x^{-1-\varepsilon})$, $x \sim +\infty$. Also $g(y) = O((y-1)^{-1/4}), 2 > y > 1$, |Re k| < 1/2, by (5) (in the proof of Theorem 1), $f \in F$. Hence Lemma 4 holds.

LEMMA 5. The g of Lemma 4 implies $\int_{0}^{\infty} \left(\int_{q}^{\infty} |\hat{f}| dt \right) dq < \infty$, $x \ge 0$, $|\operatorname{Re} k| < 1/2$ (see Lemma 2 of Theorem 1 for the definition of \hat{f}).

Proof. Using the change of variable $(\cosh t - \cosh q) = (\cosh q + 1)w$, we conclude $\int_{q}^{\infty} |\hat{f}| dt \leq M (\sinh q/2)^{-1} |(\sinh q)^{1-k} (\cosh q)^{k} g(\cosh q)|$, $q > 0, x \geq 0, M$ a constant, $|\operatorname{Re} k| < 1/2$. Hence the conclusion of Lemma 5 follows.

The rest of the proof of Theorem 2 consists mainly in justifying in reverse order all the formulas arising from the solution of the integral equation $L_1(f) = g$ in the proof of Theorem 1. Hence we will point only where the rest of the proof of Theorem 2 must be modified from that of Theorem 1.

P. ROSENTHAL

REMARK 1. The inversion theorem for the solution to the Abel integral equation [1, p. 9] appealed to in the proof of Theorem 1 has been modified to include functions which have singularities of the type $(x-1)^a$, $x \sim +1$, Re a > -1. Hence this modified form of the theorem applies again to our case (see (5) in the proof of Theorem 1) since we have a singularity of this type when we use the change of variable $s = \cosh q$.

REMARK 2. Lemma 5, $f \in F$ imply the sum $\hat{h}(+\infty) - \hat{h}(+0)$, $x \ge 0$, $|\operatorname{Re} k| < 1/2$, of the upper and lower limits (both are finite) (arising when one does an integration by parts, i.e., the reverse operation corresponding to the one of part 2 of (3) in the proof of Theorem 1) is zero.

REMARK 3. Lemma 5 implies the g of Lemma 4 satisfies the conclusion of Lemma 2 of Theorem 1. Hence the reverse operation of integrating over a triangular domain (see Lemma 2 of Theorem 1) is now permissible. Hence we conclude all the reverse formulas are valid. This completes the proof of Theorem 2.

COROLLARY 2. Let $f_1, f_2 \in F$ such that $L_1(f_1) = L_1(f_2)$. Then $f_1(x) = f_2(x), x \ge 0$, $|\operatorname{Re} k| < 1/2$.

Proof. Let $r = f_1 - f_2$. Then $r \in F$. Hence by linearity $L_1(r) = 0$. Then by (3) of Theorem 1 (see also Lemma 5 of Theorem 2) we obtain the conclusion of Corollary 2.

We note in closing, using the change of variable $(\cosh t - \cosh q) = (\cosh q + \cos a)s$, the integral representations for $P_{i_{x-1/2}}^{k}$ in Theorem 1 and [5], we obtain a pair of reciprocal transforms

1. $g(\cosh q) = \sin a(\cosh q + \cos a)^{-3/2+k}(\sinh q)^{-k}, |a| < \pi/2,$

2. $f(x) = 2^{1/2} \pi^{-1/2} (\Gamma(1/2 - k))^{-1} \beta(1/2 - k, 1) x \Gamma(1/2 - k + ix) \Gamma(1/2 - k - ix) \sin h \, ax$, $|\operatorname{Re} k| < 1/2$. (The case k = 0 specializes to the example in [4].) $\beta \equiv$ Beta function. Further, $g \in G$ of Theorem 1 and $f \in F$ of Theorem 2.

If in Theorem 1, part 1, we now assume g_1 is analytic for $y \ge 1$, Re k < 1/2, in 2 we assume $n \ge 0$ and arbitrary, then by the methods in the proofs of Theorems 1 and 2 (we use the integral representation for $P_{ix-1/2}^k$ from (5) in L_2), we conclude $c(k) = L_1(L_2(g))$ is an analytic function in k for Re k < 1/2, y > 1. Hence by analytic continuation, Theorem 1 and Corollary 1 are now valid for Re k < 1/2.

INVERSION THEOREM FOR THE GENERAL MEHLER-FOCK TRANSFORM PAIR 545

References

1. M. Bôcher, Integral Equations, Hafner Publishing Co., 1971.

2. A. Erdélyi et al., Higher Transcendental Functions, vol. 1, McGraw-Hill, 1953.

3. ____, Asymptotic Expansions, Dover Publications, 1956.

4. V. A. Fock, On the representation of an arbitrary function by an integral involving Legendre's function with a complex index, Dokl. Akad. Nauk SSSR, **39** (1943), 253-256.

5. F. Oberhettinger, Tabellen zur Fourier Transform, Springer-Verlag, 1957.

6. F. Oberhettinger and T. P. Higgins, Tables of Lebedev, Mehler and Generalized Mehler Transforms, Boeing Sci. Res. Lab., Math. Note, **246** (1961), Seattle.

7. P. Rosenthal, On a generalization of Mehler's inversion formula and some of its applications, Ph. D. thesis, Oregon State University, 1961.

8. I. N. Sneddon, The Use of Integral Transforms, McGraw-Hill, 1972.

9. E. C. Titchmarsh, Theory of Fourier Integrals, Claredon Press, 1948.

10. J. Wimp, A class of integral transforms, Proc. Edinburgh Math. Soc., 2, 14 (1964), 33-44.

11. B. L. J. Braaksma, B. Meulenbeld, Integral transforms with generalized Legendre functions as kernels, Compositio Mathematica, vol. 18, Fasc. 3 (1967), 235-287. (See p. 247 Theorem 7 also for conditions of validity for the general Mehler-Fock transform pair.)

Received July 2, 1973.