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SOME REMARKS ON HIGH ORDER DERIVATIONS

YASUNORI ISHIBASHI

Let k, A and B be commutative rings such that A and B
are ^-algebras. In this paper it is shown that Ω(

k

q\A(g)kB),
the module of high order differentials of A (x)A B can be ex-
pressed by making use of 42?}(A) and Ωk

J)(B). On the other
hand let K/k be a finite purely inseparable field extension.
Sandra Z. Keith has given a criterion for a /b-linear mapping
of K into itself to be a high order derivation of K\k. The
representation of Ω(

k

q)(A®kB) is used to show that Keith's
result is valid for larger class of algebras.

Let k, A and B be commutative rings with identities such that
A and B are ά-algebras. A ®fc B is an ^.-algebra (resp. a l?-algebra)
via the natural homomorphism fA (resp. fB) such that fA{a) = a (x) 1
(resp. /B(6) = 1 (x) b). In [5] Y. Nakai proved that there exists a
direct sum decomposition

Ωiq){A ®k B) = Ω

The submodule U$Blk has the universal mapping property with re-
spect to qth order derivations of A ®fc B which vanish on fΛ(A) and
fB(B). In this paper we shall investigate the structure of Ui%Bik-
In fact we can express U{

A%B]k by making use of Ω{

k

i}(A) and Ω13)(B)
when k is a field.

On the other hand Sandra Z. Keith proved

THEOREM ([4]). Let K/k be a finite purely inseparable field ex-
tension and let φ be a k-linear mapping of K into itself. Then
we have φ e D{

0^(K/k) if and only if dφ e D^{Klky^D[rl){Klk) +
D(

0

2)(Klk)^D{

0

q-2)(K/k) + + D?-1)(K/ky-'D?)(Kfk), where δ is the
Hochschild coboundary operator (cf. [2]) and ^ denotes the cup-
product.

This gives an alternative inductive definition of qth. order deriva-
tions which is meaningful for not-necessarily commutative rings but
which possibly differs from Nakai's for commutative rings in general.
In this paper we shall use our representation of U{

A%B]k to show that
Keith's result is generalized to larger class of algebras.

Any ring in this paper is assumed to be commutative and con-
tain 1. Let k and A be commutative rings. We say that A is a
fc-algebra if there exists a ring homomorphism / such that/(I) = 1.
The readers are expected to refer the paper [5] for notations and
terminologies.
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I* Representation of U{

A%Bίk. Let k, A and B be rings such
that A and B are ά-algebras.

LEMMA 1. Let D be an mth order derivation of A/k into an
A-module M and let Δ be an nth order derivation of B/k into a B-
module N. Then D (x) A is an (m + n)th order derivation of A ®k

B into M®kN.

Proof. We consider the idealizations A 0 M and B 0 N of M
and N respectively. Then D (resp. A) is regarded as an mth (resp.
nth) order derivation of A (resp. B) into A 0 M (resp. 5 0 N). The
mapping D (x) A of A®kB into (A 0 M) <&k (B 0 N) is decomposed
as follows:

By Corollary 6.1 in [5], D (x) A is an (m + n)th order derivation.
The following lemmas are immediate.

LEMMA 2. In A ®k A we have

(1 (x) ax - ax 0 1) (1 (x) aq - aq <g) 1)

= (1 (8) α, α g - α, - aq (g) 1)

+ Σ ( - i ) Σ<rf ^ α*.(i (8) «i K - - K - - *,

- a, - dH - dis - aq (x) 1) .

LEMMA 3. Lei D be a qth order derivation of A ®fc B into an
A ®fc B-module M vanishing on fA(A) and fB{B), where fA (resp. fB)
is the homomorphism of A (resp. B) into A (8)̂  B such that fA(a) =
α (8) 1 (resp. fB(b) = 1 ® 6). Γ/̂ etz

D(αx at (g) bL bq+1^)

i—ί

= ΈJ( — I ) 8 ' 1 Σ (αα αα
s = l or1< . <α:s

x D(a1 dai das αέ

x ^ ( α i ctj (x) 6χ b βι

+ 's'~ΣSt~'(-i)'+t~1 v

Σ

x -D(α! • dai • • • aas at 0 bλ • bβι bβt



SOME REMARKS ON HIGH ORDER DERIVATIONS 421

We denote by δι

A

q}k the canonical qth order derivation of A into
Ωk

q)(A). Unless any confusion arises, δA

9Jk is denoted by δA

q) or δ{g)

simply. If i ^ j , we have the canonical epimorphism ψi$ of Ωk

5){A)
onto Ωk

i](A) given by <Pij(δU)a) = διi)a. Let ψ^ be the homomorphism
of Ω{j\B) onto Ω{j\B) defined as above. We define the homomorphism
Φq of φ j
for x(g)yeΩk

i)(A)®kΩtf)(B),
into ?=? as follows:

{ - x <g> fq-2,q-i(v)

Obviously Φq is surjective.

if i = Q ~

if ΐ = 1, i = g - 1 .

THEOREM 1. There exists a natural isomorphism
(1) Oft,,* S Ker Φ2 = Λί»(A) ®* W(B),
(2) /or (? ̂  3, C7igB/4 s Ker Φ, if k is a field.

Proof. We consider the mapping δ of A ® 4 JB into φfrj βf
ί?if-"(5) denned by

δ(α Σ

By Lemma 1 we see that δ is a gth order derivation. Since the
image of δ is contained in KerΦg, δ induces a qth order derivation
of A (g)* JB into Ker Φ9. The induced one is also denoted by δ.
Clearly δ vanishes on fA{A) and fB{B). We have only to prove that
the pair {Ker Φq, δ) satisfies the universal mapping property with
respect to qth. order derivations of A ® k B which vanish on fA(A)
and fB(B) ([5]). Let IA (resp. IB) be the kernel of the contraction
mapping: A(&kA-+ A (resp. B®* B —>B). We regard IA®kIB as
an A ®fc 5-module via

(a (g) b){(x (X) y) (x) (u = (ax ®y)(g) (bu (g) v) .

Under our assumption it will be shown that we have a natural
isomorphism of A ®k i?-modules

Ker Φq s IA ®k I * / Σ I A <g) Z2+1~* ,

where IA ® /J denotes the image of the canonical homomorphism of
I A ®k I3B into IA (g^ Is. For q = 2 our assertion is obvious. For g ;>
3 we assume that & is a field. We define the A ®fc jB-linear mapping
Ψ of IA ®k IB into φ?l} βf(A) ®fc Ω^iB) by
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Ψ((l <g) a - a ® 1) <g) (1 <g> 6 - b <g> 1)) = Σ δ«'α <g> S<Γ«δ .

Obviously we have ImFcKerΦ q . We shall show that Ψ is an
epimorphism of IA ®fc /g onto Ker Φg with kernel χ?= 1 Ij (x) IJ+ 1-\ Let
fzlA®k IB and let 7Γέ(/) denote the canonical image of/in ^ ( A ) 0 *
Ωtf-^iB). We assume that Σ?=}πt(ft)e Ker Φg for fteIA®kIB(l ^
i ^ g - 1). From the definition of Φq we see that /, - /< + 1 e Jj+ 1 (x)
I* + ^ (x) /I"* (1 ^ i £ q - 2). Hence we have /< + « , = /< + 1 + £< + 1

for some α€ e ΓA

+1 (x) JB and /Sΐ+1 e IA ® /J"* (1 ^ i ^ g - 2), and so it
follows that /! + « ! + • • • + «:g_2 = / 2 + /32 + α2 + + αg_2 = =
/β_i + /52 + + /Sg_!. Let / be this equal element of IA ®k IB.
Then we have π^f) = π ^ / ) and therefore Ψ is surjective. Next we
prove Ker Ψ = Σ?-i -Π ® ^J+1~". Let us consider an element g of
I A ®k h- If ^ is in Ker Ψ, we have g e H + 1 (g) I* + I* ® IJ+1""ί (1 ^
i ^ 9 — 1) and so g = et + ζt for suitable et e IA

+1 (g) / 5 and ζέ e IA (x)
/S+1-\ On the other hand we get et - ei+1 = C<+i - C € (/1+1 (g) 75) Π
(1^ (g) J Γ θ = il + 1 (8) /I""* since fc is a field. This implies easily g e
ΣiUi I A ® iϊ+1""*. We wish to show that the pair {Ker Φqf δ} has the
universal mapping property. Let D be a gth order derivation of
A ® fc J5 into an A ® fe β-module l ί vanishing on fA(A) and fB(B).
Then it suffices to prove that there is an A ® fc β-homomorphism Θ
of I A ®fc IB/ΣU I A (8> Jl4"1"* into Af satisfying

IA

Θ(ττ{(l ® α - α ( g ) l ) < g ) ( l ( g ) δ - δ < g ) 1)}) = D(a (x) 6) ,

where π is the canonical homomorphism of IA ®Λ 1̂  onto IA

IB/ΣIUI I A ® H+1~*- We consider the mapping A of (A ® λ A) ®* (β ® Λ

J5) into M defined by

Λ((x <g) i/) <g) (M <g) v)) = (α? (g) ^)D(?/ (g) v) .

Since Z) vanishes <mfA(A) and fB(B), A induces the mapping of IA ®fc IB

into M sending ( l ( g ) α - α ( g ) l ) ® ( l ® & - 6 ( g ) l ) to D(a 0 6). Now
it follows from Lemmas 2 and 3 that A vanishes on Σ?=i -ίi Θ β+1~%
and so A induces the desired mapping Θ. This completes our proof.

REMARK. If Qk

4)(A) - IJP/1 (resp. Ωf (B) - IB/PB

+1) is ft-flat for
every i, we have (Z^1 (g) 75) n Λ ® I f ) = U+1 <8) I f by [1] (§ 1, n°6,
Proposition 7). In this case our proof shows that we have U{

A%Blk =
Ker Φq for q ^ 3.

2* A generalization of the result due to Keith* Let k and A
be rings such that A is a fc-algebra. Let M and N be A-modules.
We consider the homomorphism ω of Hom^ (M, A) ®fc Hom^ (N, A) into

{M®k N, A) given by
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[ω(f (x) g)](m (x) n) = f(m)g(n)

for / e Hom4 (ikΓ, A), #e Hom4 (iV, A), meM and ^ e AT. Now A is
regarded as an A <$$k A-module via the contraction mapping: A ®fc

i t — 4 .

LEMMA 4. If M is a finite projective A-module, then ω is an
epimorphism.

Proof. When M is a finite free A-module, our assertion is ob-
vious. If M is finite A-projective, M is a direct summand of a finite
free A-module and hence we see easily that ω is an epimorphism.

Let φ and ψ be fc-linear mappings of A into itself. The
Hochschild coboundary δφ of φ is given by (δφ)(a, b) — φ{ab) —
aφ(b) - bφ(a) for a, be A (cf. [2]). On the other hand the cup-
product φwπ/r of φ and ψ is the Λ-bilinear mapping of A © A into
A such that (φ^ψ)(af b) — φ{a)ψ{b) for α, 5 e 4 . Let P and Q be
A-submodules of Homfc (A, A), the set of ^-linear mappings of A into
itself. Then the cup-product P^Q is the set of λ -bilinear mappings
of A φ A into A which are finite sums of mappings of form φ^ψ
for φe P and ψeQ.

THEOREM 2. Le£ A be an algebra over a field k such that Ωk]{A)
is a finite projective A-module for every i ^ 1. Let φ be a k-linear
mapping of A into iteslf. Then we have φ 6 D{

Q

q)(A/k) if and only if
δφeDPiA/k^DΓ^A/k) + D^(A!k)^Dr2)(A/k) + +
D^(AJk).

Proof. By Theorem 1 we have an exact sequence

0 Ωo —

—> 0 .

Our assumption implies that Ω£)(A)φkΩli)(A) is a projective AφkA-
module, and so the above sequence splits. Hence we have an
epimorphism of @lz\llommkA{Ωk

i){A)®kΩ
{

k

q~i){A\ A) onto Hom^fc^
{U{

A%Aϊk, A), where A is considered as an A ®k A-module via the con-
traction mapping: A(&kA-+ A. Since Ω{

k

i]{A) is finite A-projective,
Lemma 4 is applicable to see that Hom^ (βJ^A), A) (g^Hom^ (Ωι

k

j)(A), A)
is mapped onto Hom^^ {Ωk

i]{A) <&kΩk

j)(A), A). Thus we get an
epimorphism: ©frj Hom^ (β^(A), A) ®, Hom^ (Ωl'^iA), A) — H o m ^
(ί71®̂ /A, A). Let us consider an element φ of Ό\?\A\k). The con-
traction mapping of A®kA into A followed by <p is a gth order
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derivation of A (&k A/k into A. From the direct sum decomposition
of Ω{

k

q)(A ®Λ A) it follows that δφ gives an element of Hom^^
(UΛ%Alkf A). Now only if part is immediate. On the other hand if
part is obvious by Proposition 3 of [5].

REMARK. The assumption in Theorem 2 is satisfied in the fol-
lowing two cases, and so in these cases Theorem 2 holds.

(1) A/k is a finitely generated field extension.
(2) i i s a smooth algebra over a field k ([3] 16.10.1, 16.10.2).
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