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AN EMBEDDING OF SEMIPRIME P./.-RINGS

JOE W. FISHER AND LOUIS HALLE ROWEN

Let us say an extension Rr of a ring R is a quotient
ring of R if every regular element of R is invertible in R'.
In this note we construct a class of quotient rings of semi-
prime P.J.-rings and use this construction to find rapid proofs
of several facts about semiprime P.J.-rings.

1* Preliminaries* Throughout this paper R will denote a semi-
prime P.I.-ring with unity and center C, i.e., R has no nonzero
nilpotent ideals and the standard polynomial

S2»(-2Γif , X2») = Σπ(sgn π)Xπ{ί) Xπ(2n) ,

the sum taken over all permutations π of (1, •••, 2ri), is an identity
of R for suitable n (the minimal such n is the degree of R). Pormanek
[5] has constructed a polynomial gn(Xl9 •• ,XW+1) which is central
for all semiprime P.J.-rings of degree n, and Rowen [11] has used
these central polynomials to prove

THEOREM A. Any nonzero ideal of R intersects C nontrivially.

Let S — {ce C: cr Φ 0 for all nonzero r in R}. Define an equi-
valence relation on R x S by saying (rl9 §0 ~ (r2, s2) if rxsz = r2sly

and let rs"1 denote the equivalence class of (r, s). Then Rs = {rs'1:
(r, s) e R x S} is a ring when endowed with the (well-defined) operations
r^Γ1 + ^sΓ1 = (ns2 + 2̂Si)(SiS2)~\ called the ring of central quotients
of J2. The following theorem is a direct consequence of Theorem
A (cf., Rowen [11, §2]):

THEOREM B. If R is a prime P.I.-ring of degree n, then Rs is
simple Artinian of dimension n2 over its center Cs, Cs is the quotient
field of C, and Rs satisfies the identities of R.

Theorem B often enables us to study R by examining Rs. If
R is a semiprime P./.-ring of degree n and satisfies the ascending
chain condition on annihilators of two-sided ideals, then Rs is the
classical semisimple Artinian ring of left and right quotients of R
(cf., [12]). Unfortunately, this situation fails for semiprime P.I.-
rings in general, so one is led to study other extensions of R. The
purpose of this paper is to introduce a straightforward type of
extension of R and to deduce from it properties of semiprime P.J.-
rings and their classical quotient rings (if these exist). This paper
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subsumes Fisher [4]. First we shall derive some easy known pro-
perties of R.

For a subset A of R, let Ann^A) denote {reR\Ar = 0}. Also
we say an ideal A of R is essential if for every nonzero ideal B of
R, A Π B Φ 0. Since R is semiprime, A Π B = 0 if and only if AB =
0. The following lemma is known by Martindale [9].

LEMMA 1. (i) // E is an essential ideal of C, then ER is an
essential ideal of R.

(ii) If J is a left ideal of R with Ann^J) = 0, then J Γ) C is
essential in C, so / contains an essential ideal of R.

Proof, (i) Suppose that A n E = 0 for some ideal A of R. Then
(A f) C) f) E = A n (C Γ\ E) = A Γι E = 0, implying Af)C =0. Hence
A = 0 by Theorem A and thus ER is essential.

(ii) Viewed as a ring (without 1), / is clearly a P.I.-ring and
can easily be shown to be semiprime. We claim that J n C = cent/.
Indeed J f l C g cent / and if a e cent J, then for all r in R and for
all x in /, (ra — aτ)x = rax — a(rx) = rα# — r(#α) = rax — rax = 0.
Hence (rα — αr) e Ann^ (J) == 0 and so aeC.

Now let B be an ideal of C such that (Jn C) Π J? = 0. Then

cn W s (/n C)BR = B(JΓ\ C)RS (ΰn(/n C))# = o and so
Cfl 5i2)2 = 0. Since JΠ C has no nonzero nilpotent elements,

we have J Π C Π BR = 0, i.e., (/ Π C) Π (/ Π #B) = 0. But by Theorem
A applied to the semiprime ring / (with center J(]C)9 Jf] BR — 0.
This implies RJB = 5i?/ £ J Π 5i2 = 0, so B £ Ann* (JR/) = Ann / =
0. Hence J n C is essential in C. The rest of the lemma follows
from (i).

2* Definition and elementary properties of T(R). For the
remainder of this paper, we assume that the semiprime P.Z.-ring R
has degree n. This implies that every prime factor ring of R has
degree equal to or less than n. The degree of a prime ideal P of
R is defined as the degree of R/P.

Let & be a collection (indexed by Λ) of prime ideals Pλ of R
such that Γl {^ λ G Λ} = 0. For each λ in Λ, set JB; = Λ/Pj, let
Qλ equal the simple Artinian ring of central quotients of RλJ and
let Q be the complete direct product Π{Qλ:XeΛ). There is a
natural embedding R~>ΠRλ~»Q and we shall often view R as a
subring of Q under this embedding. Hence R satisfies the identities
of Q. On the other hand, any identity / of R is an identity of
each Rλ, and is an identity of each Qλ by Theorem B; hence / is an
identity of Q = ΠQλ. Consequently, R and Q satisfy the same
identities.
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Clearly Q is von Neumann regular, i.e., for any xeQ, there is
some y in Q such that xyx — x.

As remarked above, each Qx has degree ^ n. Let Λ5 = {λ e A: Qλ

has degree j} and let Qj = Π{Qλ: XeAj}. Then Qd is a semiprimitive
ring of degree j with the property that every nonzero homomorphic
image of Qj has degree j . This is equivalent to saying, by the
Artin [2]-Procesi [10] theorem, that Q3- is an Azumaya algebra of
rank j . Hence Q is a finite direct sum of the Azumaya algebras
Qj of finite rank j .

LEMMA 2. Any nonzero homomorphic image ψ(Q) of Q is von
Neumann regular. Moreover, ψ(Q) is the finite direct sum of the
Azumaya algebras ψ(Qj) of finite rank j , and each identity of R is
an identity of ψ(Q).

Proof. Every homomorphic image of a von Neumann ring is
von Neumann regular. Also, every homomorphic image of f(Qj) is
a homomorphic image of Qjf thereby having rank j ; hence f(Qj) is
Azumaya of rank j , and clearly ψ(Q) is the direct sum of f(Qj) for
j = 1, , n. The last assertion is immediate.

For any x in Q, let xx denote the component of x in Qλ and let
Wx = {λ e A: xλ Φ 0}. Set V = {x e Q: f| {Px- λ e Wx) is an essential
ideal of R}. Now V is an ideal of Q because, taking x9 y in V and
q in Q, Wx±y £ W. U W,; TFg, £ TΓ.; TΓαg £ Wx. Let us define Γ(i2, ̂ ) =
Q/F. From Lemma 2 we have that T(JS, &>) is a finite direct sum
of Azumaya algebras of finite rank and is von Neumann regular.

THEOREM 1. (i) There is a canonical imbedding R —> T(R,
given by R—>Q-+Q/V.

(ii) Half regular elements of R are both left and right invertible
in T(R, &).

(iii) T(R, &*) satisfies precisely the same identities as R.

Proof, (i) We need show only that R Π V = 0. If r e R Π V,
then Π {Px- λ β Wr) is essential in R and so Π ί-P̂  r € PJ = 0. Hence
r = 0.

(ii) Let r in i? have right annihilator zero. Then AnnB (Rr) =
0 and Rr contains an essential ideal E of C by Lemma l(ii). Let
Wr

r = {λ: Pχ^E}. Clearly "FΓr' £ TΓr. Moreover, for any λ in TFr'
there is an xλ in Q̂  such that 0 Φ xλrλ e cent <&. Since cent Qλ is a
field, there is dλ in cent Q̂  such that dλxλrλ = 1 ;. Furthermore,
TVte = 1̂  because Qλ is simple Artinian. Define y in Q as follows:
yλ = 0 for λ g T ;̂ and 7/̂  = d ^ for λ e W'τ. Then (τ/r - 1); = 0 and
(ry - l)a = 0 for all λ in W'r. Thus f| {P/ λ e W ^ J 3 Γl {P;: λ ί Ψ ; } 3
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E. It follows from Lemma l(i) that yr — leV; likewise ry — 1 e V.
Hence, for y the image of y in T(R, ^ ) , we have yr = 1 and ry =
1 in T(R, &).

(iii) T(R, &) satisfies each identity of R by Lemma 2; con-
versely, by (i), each identity of T(R, &*) is an identity of R.

The following theorem of Herstein-Small [8] is a consequence
of Theorem 1.

COROLLARY 1. Half regular elements of R are regular.

Proof. If r in R is, say, right regular, then for some y e T(R,
&) we have ry — 1. Hence r is left regular.

COROLLARY 2. // iϋ has a classical left ring of quotients R\
then Rf satisfies the same polynomial identities as R.

Proof. In view of Theorem l(ii) the canonical embedding of R
into T(R, &*) extends to an embedding of R' into T(R, 3?). Hence
Rf satisfies the identities of T{R, &) which are precisely the iden-
tities of R.

Note that this construction of T(R, &*) is related to constructions
of Amitsur [1] and Goldie [7]. Also, those versed in logic may wish
to regard T(R, &*) as the "reduced product" (cf., [6]) of the simple
Artinian rings {Qλ: XeA} by the filter {A — Wx: x e V}.

3* Definition and structure of T(R). Now we consider an
interesting special case of T(R, &*). Index the set of all the prime
ideals of R by a set A with At = {X e A: Pλ has degree i] for i = 1,
• , n. Set Nt = Π {Pλ λ 6 J j (if Ai = φ then JV, = R), A, = {X e Λt:
P x £ Γ\7=*+iNih &*i = {Px- \ £ Λ t } , & = _ ^ i U ••• U Λ i = 4 U ••• U Λ n .
Clearly f] {P: Pe &>) = N, n Π Nn = 0. We define T(B) Jo be
T(R, &*). Note that An = Λn and that A = An iί and only if Nn =_0.

Let iV; = Γl {̂ : P e &} and let JB4 - B/Nt. Note that i\Γw - JV..
Clearly R is a subdirect product of the Rt and this subdirect decom-
position is unique with respect to the properties that each of the
nonzero subdirect factors has a degree different from each of the
other subdirect factors and that for any subdirect factor of degree
i, the intersection of its prime ideals of degree j is zero. Our aim
is to show how the structure of T(R) is linked to this decomposition.
As in Rowen [12], let a polynomial be called regular if it is linear
in some indeterminant, and let the central kernel of a ring be the
additive subgroup generated by the values taken (in the center) by
regular central polynomials of the ring. The central kernel is an
ideal of the center C. If the central kernel is essential in C, we
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say that R has essential central kernel. Let / be the central of R,
let B — Nj. Π Π Nn_lf and let R'n = R/B. It is shown in Rowen
[12] that for XeΛ, I£ Pλ if and only if λ e An.

LEMMA 3. (i) (RI + Nn)/Nn is an essential ideal of Rn.
(ii) (JVn + B)/B is an essential ideal of R'n.
(iii) A semiprime ring R of degree j has essential central kernel

if and only if the intersection of its prime ideals of degree j is zero.

Proof, (i) Suppose that [(A + Nn)/Nn] n [(RI + Nn)/Nn] = 0 for
some ideal A of R. Then ARI £ iVw £ Pλ for each λ e Λn. Since
J g P ^ f o r λG An, we have 4 g f | { ί A e ΛΛ} = -N». So

(A + JNΓn)/JNΓ. = 0 .

(ii) Suppose that [(A + 5)/5] Π [(Nn + B)/B] = 0 for some ideal
A of R. Then AΛΓ, £ JB = N, n Π i^-i £ Pi for each XeΛ- Λn.
By definition Pλ^Nn for λ e Λ - ^Λ, so i G f | {P/- λ e iί - Λ} = -B.
So (A + B)/B = 0.

(iii) Let N3- be the intersection of the prime ideals of degree
j . Since every prime ideal of degree < j contains J, we have
Jfϊ JV, = 0. Since / is essential in C, we have N3 Π C = 0, hence
JV} = 0 by Theorem A. The reverse implication is immediate from
(i) and Lemma 1.

Lemma 3(iii) gives us a neater characterization of Rlf " ,Rn.
Namely, the nonzero Rt are uniquely determined if we are to express
R as a subdirect product of minimal length of rings with essential
central kernel.

LEMMA 4. (i) Suppose that J is an ideal of R and Nn £ /.
Then J is essential in R if and only if J/Nn is essential in Rn.

(ii) Suppose 5 £ J . Then J is essential in R if and only if
J/B is essential in Rr

n.

Proof, (i) H ) Suppose that J/Nn n [(A + Nn)/Nn] = 0 for some
ideal A of R. Then JA £ Nn and so B Π JA = 0. Now since I £
Pi for each λ e A — Λn, we have RI £ Π {P/ λ e y4 - Λn} £ J5 and
JBIn JA = 0, or IJA - 0. Hence (Jn A/)2 £ {JAIf = 0 and JfΊ AJ =
0 since J? is semiprime. By hypothesis, we then see AI = 0, so
A £ A^ by Lemma 3(i). Consequently (A + Nn)/Nn = 0.

Conversely suppose that J f] A = 0 for some ideal A of fϋ. Then
JA - 0 £ Nnf so A £ Nn by hypothesis. Thus A2 £ NnA QJA = 0
and so A = 0.

(ϊi) (==>) Suppose that J/B Π [(A + £)/£] - 0. Then JA £ 5, or
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JANn <Ξ BΠ Nn = 0 which implies ANn = 0. Hence i S ΰ b y Lemma
3(ii) and so (A + J5)/J5 — 0. The proof of the converse is analogous
to that in (i).

THEOREM 2. T(R) ~ T(RX) 0 0 T(Rn).

Proof. We use induction on n = degree of R. The assertion
is true for n — 2. Since jβ^ has degree <Z n — 1, we have by our
induction hypothesis that T{Rn) ~ T(R,) 0 0 T(Rn^). Let Qn =
/7{Q,: λ 6 Λn], Q: = Π{Qλ: XeΛ- Λn), Vn =Jr\ ( L and_F^ = VnJ) Qf

n.
Clearly V=Vn@VL and T(R) = Q/V ~ Qn@Q'JV ~ Q'JVn 0 Q /F^.
But Lemma 4(i) shows QJVn = Γ(i2J and Lemma 4(ii) shows Q'JVl =
Γ(i2;). Thus r(i2) ^ r ( i? j 0 Γ(2Ϊ;) = T{R,) © . . . 0 r ^ . , ) 0 τ(i?w).

Theorem 2 enables us to reduce the study of T(R) to rings with
essential central kernel.

THEOREM 3. Let R be a semiprime P.I.-ring of degree n with es-
sential central kernel. Then T(R) is an Azumaya algebra of rank
n2 and T(C) ~ center (T(R)).

Proof. By Lemma 3(iii), Nn = 0. Hence T(R) is a homomorphic
image of Π{Qλ:Xe Λn}. Therefore, T(R) is Azumaya of rank n2.
Write Cλ = center Qλ for XeΛ. Since Π{Qλ:XeΛn} is an Azumaya
algebra of rank n2, we have the following fact which we will need
later, cent [(ΠλeAnQλ)/(VΠ ΠXeAjQx)] = (Πλe4nCλ + Vn ΠλeΛnQλ)/(Vf)
ΠieAnQλ).

We claim that the homomorphism φ: (ΠλeΛQλ)/V—^(ΠλeΛnQλ)/(VΓί
Πλe AJQX), induced by the projection, ΠλeΛQx—>ΠλeAnQx, is an isomorphism.
Indeed, suppose that 0 Φ X + V for x in ΠλeΛQλ. Then f| {Pχ λ e Wx)
is not essential. Since each prime of degree < n contains I and
J g Π {Px- λ 6 Wx n (Λ - Λn)} is essential, we conclude that Π {Pλ: X e
Wx n Λn} is not essential and 0 Φ x + (Vf] ΠλeΛβλ). Consequently φ
is an isomorphism.

Now by Rowen [12, Theorem 3] there exists a 1:1 correspon-
dence of {Pλ\ XeΛn} and the set of prime ideals of C, not containing
I, given by Pλ -> Pλ n C. We claim that T(C) ~ (ΠλeΛnCλ)/(Vf) ΠλeΛCλ).
The proof of this is similar to the one in the preceding paragraph
because every prime in C which is not in {Pλ flC λeΛ%} contains /
which is essential in C.

Finally we have all the requisite pieces to obtain
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= (ΠλeΛnCλ + VΠ ΠλeΛnQλ)/(Vf] Πλe4nQx)

s cent [(ΠZeΛnQM(Vn ΠλeAnQ,)]

s cent((/7,6,Q,)/F) - cent(Γ(JR)) .

REMARK 1. Given & as in §2, let φ: Q — Γ(JB, ^ ) be the
canonical homomorphism. Then there is a partial order on {ideals A of
Q: Ker ^ g i and i2 π A = 0}. So there exists a maximal such ideal
A. Then Q/A ~ T{R, &*)/(A/(Keτ φ) is an extension of R which has
all the aforementioned properties of T(R, &), and, moreover, any
ideal of Q/A intersects R (viewed as a subring) nontrivially.

REMARK 2. Suppose that R has an involution (*). Then, for
any prime P of degree j , there is a prime P* of degree j and an
isomorphism R/P-+R/P* given by r + P~>r* + P*. This isomor-
phism extends to the algebra of central quotients, and one can check
that in the definition of T(R), an involution is induced in Q. More-
over, V is stable under this involution, so T(R) inherits an involution
which coincides with (*) on R. Hence the embedding R —• T(R) is
actually an embedding in the category of rings with involution.
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