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ABSOLUTE CONTINUITY FOR ABSTRACT
WIENER SPACES

T. E. DUNCAN

Certain smooth homeomorphisms on an abstract Wiener
space are shown to induce a measure that is absolutely
continuous with respect to an abstract Wiener measure which
is the measure determined on a Banach space from the canoni-
cal normal distribution on a Hubert space by the completion
of the Hubert space with respect to a measurable seminorm.
The notion of an abstract Wiener space is an abstraction of
one technique to show the countable additivity for Wiener
measure, the measure for Brownian motion. The generali-
zations of absolute continuity obtained here reduce exactly
to the well known results for absolute continuity for Gaussian
measures.

Specifically, it is shown that if T is a C1 diffeomorphism of the
Banach space such that T = I + ψ where I is the identity and ψ
takes values in the Hubert space associated with the abstract Wiener
space and is differentiable, then the measure induced on the Banach
space by the transformation, T, is absolutely continuous with respect
to the abstract Wiener measure.

2 Preliminaries* Let (i, H, B) be an abstract Wiener space
where if is a separable Hubert space, B is a separable Banach space
obtained from H by completing H with respect to the measurable
seminorm, | |, and i:H-+B is the continuous canonical injection.
JF~ will denote the Borel σ-algebra on B. For fundamental notions
about these measures the reader is referred to [1, 3].

Let v be the canonical normal distribution on H with variance
parameter t = 1 and let μ be the measure induced on B as the pro-
jective limit of the family of cylinder set measures on B obtained
from v and the continuous canonical injection, i. Assuming the
variance parameter is 1 is inessential for the results for absolute
continuity; any variance parameter £e(0, °o) could be used with
trivial changes in the subsequent results for absolute continuity.
For some previous related results on absolute continuity, the reader
is referred to [5].

The following definition provides some notation that is used
subsequently.

DEFINITION. & — {P: P is a finite dimensional projection on H
with PHajB*} where B* is the topological dual of B and j = i*.
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In order to establish absolute continuity a few preliminary results
have to be obtained. The first result is contained in a result of Gross
(Cor. 3 [3]).

LEMMA 1. Let (i, H, B) be an abstract Wiener space and let
(Pn)neN be a sequence of finite dimensional projections on H such that
Pn—>I where I is the identity on H. If f: B-+R is continuous then
fZ —*f in probability where fZ is the random variable on B induced
by the cylinder set function fo%oP% on H.

For absolute continuity for Gaussian measures on a Banach space
and linear transformations on the Banach space, certain Hilbert-
Schmidt operators play a fundamental role, [6]. Likewise, for smooth
homeomorphisms on a Banach space and questions of absolute conti-
nuity Hilbert-Schmidt operators again arise naturally as one would
expect from a local analysis.

The proof of the following lemma which replaced a less succinct
proof by the author was supplied by the referee.

LEMMA 2. Let A: B—>H be a continuous linear operator. Then
A\H is a Hilbert-Schmidt operator.

Proof. If S: i? —> B* is a continuous linear operator then
S\ H: H—>H is a trace class operator. (This nice theorem is due to
V. Goodman.)

Now to prove the lemma consider {A \ H)* o A: B-+H—+H. Ob-
serve that if xe B then for all he H

I ((A I if)* o Ax, h}H I _ I (Ax, (A \ H)h}H |

h\ \h\

\h\

< κ\Ax\s\h\
\h\

= K I Ax \H

where K is the operator norm of A: B—*H. Therefore, {A\H)* ° Axe
i?* and (A \ H)* o A(B) c 5*. Now an application of the closed graph
theorem shows that (A \ H)* oA:B—>B* is a continuous linear opera-
tor. Hence (A | H)* o(A | H): H—>H is a trace class operator and
A I H: H—+H is a Hilbert-Schmidt operator.

Uniform integrability plays a fundamental role in questions of
absolute continuity, because of its equivalence to weak compactness
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in L\ The following result gives some sufficient conditions for
uniform integrability of a family of Radon-Nikodym derivatives.

LEMMA 3. Let T: B—*B be a C1 diffeomorphism where T— I +
ψ, I is the identity on B and ψ:B—+H. Assume that there is an
a > 1 such that (I + aψ) \H is a diffeomorphism on H. Assume
that \ψ\H and \ψ'\H\HS are uniformly bounded on B where | | f f is
the norm on H induced by the inner product and | \HS is the Hilbert-
Schmidt norm. Furthermore, let (λn)neN be the eigenvalues for ψ' | H
and assume that the Fredholm-Carleman determinants

Π (1 + λHy
and

Π (1 + aK)ea>*

are bounded above and away from 0 uniformly for x e B.

Let Tj> = PI + P^rP be the diffeomorphism on PB where P is the
continuous finite dimensional projection on B induced from Pe^
and let f$ be the function on B induced by the Radon-Nikodym
derivative for the transformation of measures on PB detemined by

Then the family of Radon-Nikodym derivatives

is uniformly integrable.

Proof. Let TP be the restriction of Tp to PH. The canonical
normal distribution restricted to PH is a measure and is transformed
by absolute continuity of measures by the transformation, TP, because
PI + PfP is a C1 diffeomorphism on PH. The identity operator on
H or B will be denoted by the same symbol, 7, because the appro-
priate space will be clear from the context. Let dvTpjdvP be the
Radon-Nikodym derivative corresponding to this diffeomorphism on
PH. Writing dvτjdvp as a cylinder set function on H it follows
that

. (x) - det i 7 + PAPxP | exp \(PfPx, x) - — | PfPx | 2 J

where A — ff\H. Since this Radon-Nikodym derivative is continuous,
by Gross (Cor. 3 [3]), it follows that

Mx) - det 17 + PAPxP \ exp \ (PψPx, x) - — | PfPx \2

H
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where fp is the Radon-Nikodym derivative, dμτ?/dμpf considered as
a function on B.

To verify the uniform integrability of the family, (/p)P e^, it
suffices to show that there is a β > 1 such that

\\fϊ\βdμsup \\fp\βdμ<

Let β = Va > 1 where a is given in the statement of the lemma.
Fix P e ^ . Define

g{x) = [det 11 + β2PA-PxP\ β ' 2 t e * w p

exp lβ(PψPx, x) - β tr PAp.P - ^ | PfPx \2Λ

Clearly

\fp\β = gh.

Applying Holder's inequality to gh yields

Egh ^ [Egβ\ljβ[Ehβi{β-ιψ-1)lβ

Since

it follows that

Eg* = 1

By assumption, Λ is bounded independent of P e ^ so the family of
Radon-Nikodym derivatives, (fp)Pe&9 is uniformly integrable.

Using the uniform integrability results from Lemma 3, a meas-
ure can be obtained that corresponds to the transformation, T, as
the following result describes.

LEMMA 4. Let T: B~>Bbe a C1 diffeomorphism where T=I+ψf

I is the identity on B and ψ: B—*H. Assume that T satisfies the
hypotheses given in Lemma 3. Let (Pn)neχ be an increasing sequence
of elements of 3? such that Pn—»I in H.

Then there is a subsequence of the Radon-Nikodym derivatives,
(fpn)»6N> that converge to a geL1 in the topology σ(L\ L°°). Let μτ

be the measure induced on (B, J?~) by the identification dμτ = gdμ.
The transformation I — ψ: B—*B on (B, ^ 7 μτ) induces an abstract
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Wiener measure on B with Hubert space H, i.e.; for each leH*,
(I, I — ψ) is a Gaussian random variable on (B, J^ μτ) with zero
mean and variance \l\2

H.

Proof. Since the family, C/\)%e*> is uniformly integrable there
is a subsequence that converges to a function g eL1 in the topology
σ{Lι, L°°) by the weak compactness criterion of Dunf ord-Pettis (p.
294 [2]).

Let f:B—>R be a bounded continuous function and let K be a
constant that bounds /. By reducing the original sequence of Radon-
Nikodym derivatives to a suitable subsequence it can be assumed
that the whole sequence (fpn)neκ of Radon-Nikodym derivatives con-
verges in σ(L\ L°°).

Since PΛ—•/ and / is continuous f°Pn—*f in probability by
Lemma 1. By going to a subsequence if necessary, it can be assumed
that f°Pn~^f a.e. Again for notational convenience, it is assumed
that the whole sequence converges a.e.

By uniform integrability given ε > 0 there is a δ > 0 such that
if A is a measurable set with μA < δ then

fpβμ < ε VneN .

By Egorov's theorem, for δ > 0 given above there is a measurable
set A with μA < δ such that f°Pn—>f uniformly on A\ For ε > 0
there is an integer M such that if m ̂  M

sup I fPm{%) - f(x) | < ε .
x e Ac

Likewise for ε > 0 by (τ(L\ L°°) convergence there is an integer Λr

such that for n > N

Let % ί> NV M, then

= \L-f\fpndμ+ IΛ-.
JAC JA

and

\fnfrn- \fg ^2ε(l + K)

where fn = / ° P Λ .
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It suffices for the verification of an abstract Wiener space to
consider I e B* such that Pz c Pn for some n where Pt is the one
dimensional projection determined by I. Given ε > 0 by the above
results there is an N such that if n ^ N

< ε
j

where / = eίία>7-^} and t e R.
Furthermore, there is a compact set K czB such that P{K) >

1 — 8 where d > 0 is as above. For I e B* given above there is an
M such that for n^ M Pιa Pn and for x e K

Thus, for k^M\f N

; 4 ε .

Therefore, by the transformation of measures results for finite
dimensional spaces and the convergence of the characteristic func-
tions, (£, / — ψ) is a zero mean Gaussian random variable with variance
\l\% on the probability space {B, J^7 μτ).

3. Main result* From the results for absolute continuity of
Gaussian measures on an abstract Wiener space the following result
for absolute continuity for a smooth homeomorphism on B is the
best that can be expected.

THEOREM. Let T:B—*B be a C1 diffeomorphism such that T —
I + ψ where I is the identity on B and ^\B—*H is differentiate.
Then the measure, μTy induced on B by the transformation, T, on
the abstract Wiener probability space, (B, J?~, μ), is absolutely con-
tinuous with respect to μ.

Proof. By examination of the proof of Lemma 3, there is also
a local version of the result that is applicable here. The local version
follows because if U is an open subset of B such that when T~ι is
restricted to U the hypotheses of the lemma are satisfied for T then
the Radon-Nikodym derivatives can be computed by the change of
variables formula for finite dimensional spaces and because the
integrations are on U the function h in the proof of Lemma 3 is still
uniformly bounded.

For each xe B there is an open sphere with center x, S(x), such
that when T'1 is restricted to S(x) the hypotheses of Lemma 3 are
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satisfied for T. This verification is made as follows. Recall that ψ
is continuously differentiate and φ'\ H is continuous as a map from
B into Hilbert-Schmidt operators. Furthermore, since ψ'\ H is a
Hilbert-Schmidt operator the Fredholm-Carleman determinant is well
defined by a simple comparison test for infinite series. For xoeB
fixed there is an a > 1 such that (J + aψ'(x0) \ H) is invertible and
such that there is a neighborhood of x0 where this is also true.

Let / be a bounded continuous function with support in S(x0).
For each meN fopmopno Topn-+fopmo T in probability on {B, J^7
μ) as n—>oo and f°Pm--*f in probability on (B, ^μ) as m—>oo
where (Pm) is an increasing sequence of elements of & such that
Pm—>I. By the bounded convergence theorem

( 2 )

in the Lΐ{μ) topology.
For n^m

where fm is the continuous function induced on PnB by f<>Pm9 Tn is
the homeomorphism on PnB induced from Pno Topn and μ?n is the
measure induced on PnB by restricting μ to PnB.

By the results for the transformations of measures on finite
dimensional spaces that have been noted in the proof of Lemma 3

j (tμp'

where μTn is the measure on PnB induced by the transformation
Tn on (PnB, μpn). Considering dμτjdμpn as a function on B, fp%9 as
noted in the proof of Lemma 3 and recalling how fm was obtained
the following equation is established

Assuming for notational convenience that the whole sequence of
Radon-Nikodym derivatives, (fpn)neN, converges in σ(L\ L°°), then

( 3 ) lim f /o Pmfpdμ = \ /o Pmgdμ .

By the dominated convergence theorem
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\im\fopmgdμ = [fgdμ.

Since T is a measurable mapping on (B, ̂ ) and using the bounded
convergence theorem it follows that

(4) lim ί/oPmo Tdμ = ί/o Tdμ = [fdμτ .
m-> oo J J J

By (2) and (3) and the dominated convergence theorem, we have

(5) \im\fopmoTdμ = \im\ fopmgdμ = [fgdμ.

Combining the results from (4) and (5)

\fdμτ =

Since / is an arbitrary bounded continuous function with support
in S(x0) by a straightforward approximation it follows that for any
measurable set Λ c S(x0)

\ dμτ = \ gdμ .
JΛ U

Therefore on S(xQ)

dμτ __ π

-dμ~

Now,

B = U S(x)
xeB

and by the separability of B there is a countable dense collection

(%n)neN such t h a t

B = U S(xn) .
n=l

For n = 1 using uniform integrability there is a subsequence
that converges in σ(L\ L°°) to a function with support in S(^).
Proceeding inductively for n apply this technique to the subsequence
obtained at the n — 1 step. The diagonal sequence is a subsequence
of the original sequence that converges in σ(L\ L°°) on each S(xn)n e N.
Since it is trivial to verify on overlapping neighborhoods S(Xi) and
S(Xj) that the σ(L\ L°°) limit is consistent, the Radon-Nikodym deriva-
tive, dμτ/dμ, can be constructed inductively on each S(xn).

For a measurable set Γ c B define Λx = S(aO ΓΊ Γ and inductively
Λn = (S(xn) n Γ)\(UΓί A). Thus
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dμτ = Σ I dμτ

dμ '

Therefore, μτ < μ.
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