BIHOLOMORPHIC APPROXIMATION OF PLANAR DOMAINS

Bryan E. Cain and Richard J. Tondra

Abstract

This paper establishes the existence of a domain (open connected subset) B of the complex plane C such that for every domain $\Omega \subset C$ and every compact set $K \subset \Omega$, there is a biholomorphic embedding $e: B \rightarrow \Omega$, such that $K \subset e(B) \subset$ $\mathrm{cl}[e(B)] \subset \Omega$.

1. Introduction. Let Ω_{1} and Ω_{2} be domains (i.e., open connected sets) in the complex plane C such that $\mathrm{cl} \Omega_{1} \subset \Omega_{2}$ (cl = closure). A domain Ω is a biholomorphic approximation of Ω_{1} with respect to Ω_{2} provided that there exists an invertible holomorphic function e defined on Ω such that

$$
\operatorname{cl} \Omega_{1} \subset e(\Omega) \subset \operatorname{cl}[e(\Omega)] \subset \Omega_{2}
$$

The mapping e is a biholomorphic embedding (bh-embedding) of Ω into Ω_{2}. (Ω may also be considered a biholomorphic approximation of Ω_{2} with respect to Ω_{1}.)

Homeomorphic domains may, of course, be biholomorphically inequivalent, and, moreover, may not even be close biholomorphic approximations of each other. For example, let $A(r, s)=\{z \in C: r<$ $|z|<s\}$ when $0<r<s<\infty$. Suppose that $0<\varepsilon<1<t<\infty$ and that e is a bh-embedding of $A=A(r, s)$ such that

$$
\operatorname{cl} A(1, t) \subset e(A) \subset \operatorname{cl}[e(A)] \subset A(1-\varepsilon, t+\varepsilon)
$$

By taking the modules of these ring domains (cf. [1]) we obtain the inequality $t<s / r<(t+\varepsilon) /(1-\varepsilon)$ which is precisely the condition r and s must satisfy for such an embedding e to exist.

Our main result establishes the existence of a domain $B \subset C$ which is a biholomorphic approximation of every bounded domain Ω_{1} with respect to every domain Ω_{2} containing $\operatorname{cl} \Omega_{1}$.
2. The main theorem. Let \hat{C} denote the Riemann sphere.

THEOREM 2.1. There exists a domain $B \subset C$ such that for every domain $\Omega \subset \widehat{\boldsymbol{C}}$ and for every compact set $K \subset \Omega$ other than $\hat{\boldsymbol{C}}$ there exists a biholomorphic embedding $e: B \rightarrow \Omega$ such that $K \subset e(B) \subset$ $\operatorname{cl}[e(B)] \subset \Omega$.

Remark. Actually such an embedding will exist if Ω is any connected Riemann surface (without boundary) and $K \subset \Omega$ is any planar compact surface other than $\hat{\boldsymbol{C}}$. ("Planar" means homeomorphic
to a subset of $\hat{\boldsymbol{C}}$.) Indeed, by the trianguability of Ω there must exist a planar domain Ω_{0} such that $K \subset \Omega_{0} \subset \Omega$, and so it suffices to consider the planar case.

The following theorems are corollaries of Theorem 2.1.
Corollary 2.2. Let $K \neq \widehat{\boldsymbol{C}}$ be a compact connected subset of a domain $\Omega \subset \hat{\boldsymbol{C}}$. Then $K=\bigcap_{i=1}^{\infty} B_{i}$ where each B_{i} is bh-equivalent to B and $\operatorname{cl} B_{i+1} \subset B_{i}$ for $i=1,2, \cdots$.

Corollary 2.3. Let $\Omega \neq \phi$ be a domain in C. Then $\Omega=\bigcup_{i=1}^{\infty} B_{i}$ where each B_{i} is bh-equivalent to B and $\mathrm{cl} B_{i} \subset B_{i+1}$ for $i=1,2, \cdots$.
3. Proofs. For each $a \in C$ and $r>0$ set $D(a, r)=\{z:|z-a|<r\}$ and let $\bar{D}(a, r)$ denote $\operatorname{cl} D(a, r)$. Set $D=D(0,1)$. A circle $\{z:|z-a|=r\}$ will be called "rational" provided that $\operatorname{Re} a, \operatorname{Im} a$, and $r>0$ are rational numbers. The topological boundary of a domain Ω will be denoted $\partial \Omega$.

To construct B consider the domains Ω satisfying: (1) $\partial \Omega$ has finitely many components, (2) each component of $\partial \Omega$ is a rational circle, (3) cl $\Omega \subset D$ and its outer boundary is centered at the origin. Let E_{1}, E_{2}, \cdots be an enumeration of these domains. Let s_{j} be the radius of the outer boundary of E_{j} and let ϕ_{j} be the linear fractional transformation of D onto $H=\{z: \operatorname{Re} z>0\}$ which carries -1 to $0,+1$ to ∞, and $-s_{j}$ to 1 if $j=1$ and to $\phi_{j-1}\left(s_{j-1}\right)$ if $j>1$. Let $B=$ $H \backslash \bigcup_{j=1}^{\infty} \phi_{j}\left[D\left(0, s_{j}\right) \backslash E_{j}\right]$.

To show that B has the desired properties, we prove the following lemma using the "small mesh grid" technique (often employed in texts on function theory), rather than the theory of trianguability. A bounded domain $\Omega \subset C$ will be called a Jordan domain if $\partial \Omega$ consists of finitely many disjoint Jordan curves.

Lemma 3.1. Let K be a compact subset of a domain $\Omega \subset \boldsymbol{C}$. Then there exists a Jordan domain Ω_{0} such that $K \subset \Omega_{0} \subset \operatorname{cl} \Omega_{0} \subset \Omega$.

Sketch of proof. Since Ω is connected, there exists a connected compact set K_{0} such that $K \subset K_{0} \subset \Omega$. Thus we may assume that K is connected. With r picked so small that $[K+\bar{D}(0, \sqrt{2} r)] \subset \Omega$ let L be the union of those squares of a grid of squares with edge length r which intersect K. If $a \in L$ is a vertex of precisely two squares of L select the positive number $s_{a}<r / 2$ to be so small that $\bar{D}\left(a, s_{a}\right) \subset \Omega$. Let L_{0} denote the union of all the $\bar{D}\left(a, s_{a}\right)$'s. Then straightforward arguments show that $\Omega_{0}=\operatorname{int}\left(L \cup L_{0}\right)$ is the desired Jordan domain.

Now let Ω and K be as described in Theorem 2.1. Lemma 3.1
provides a Jordan domain Ω_{0} such that $K \subset \Omega_{0} \subset \operatorname{cl} \Omega_{0} \subset \Omega$. According to Theorem 2 page 237 of [2] there is a $b h$-embedding h of Ω_{0} into D such that (1) the outer boundary of $h\left(\Omega_{0}\right)$ is ∂D and (2) $\partial\left[h\left(\Omega_{0}\right)\right]$ has finitely many components and each is a circle. Each of the circles bounding $h\left(\Omega_{0}\right)$ can be "approximated" arbitrarily closely by a rational circle which lies in $h\left(\Omega_{0}\right)$. We require that the approximation to the unit circle be centered at 0 . Since $h(K)$ is a compact subset of $h\left(\Omega_{0}\right)$, when the approximations are close enough, the approximating circles will bound a domain which contains $h(K)$. This region, by its definition, is one of the E_{j} 's, say E_{k}. Then

$$
h(K) \subset E_{k} \subset \phi_{k}^{-1}(B) \subset h\left(\Omega_{0}\right)
$$

and so applying h^{-1} will establish Theorem 2.1.
To prove Corollary 2.2 we let $B_{1}=e_{1}(B)$ where e_{1} is the $b h$ embedding of B such that $K \subset B_{1} \subset \operatorname{cl} B_{1} \subset \Omega$. For $i>1$ we let G_{i} be the component of $[K+D(0,1 /(i-1))] \cap B_{i-1}$ which contains K, and we set $B_{i}=e_{i}(B)$ where e_{i} is the $b h$-embedding of B, given by Theorem 2.1, such that $K \subset B_{i} \subset \operatorname{cl} B_{i} \subset G_{i}$.

To prove Corollary 2.3 we pick $a \in \Omega$ and for large n we can let G_{n} be the component of $\{z: \operatorname{dist}(z, C \backslash \Omega)>1 / n$ and $|z|<n\}$ which contains a. Since $\operatorname{cl} G_{n}$ is a compact subset of G_{n+1} there exists a bh-embedding $e_{n}: B \rightarrow G_{n+1}$ such that $B_{n}=e_{n}(B) \supset \operatorname{cl} G_{n}$. That $\Omega=$ $\cup G_{n}$ (and hence $\Omega=\bigcup B_{n}$) follows from the arc connectedness of Ω. These B_{n} 's are the required domains (except for re-indexing).
4. Some applications to holomorphic extension problems. Let $K \subset C$ be compact and let $f: K \rightarrow \boldsymbol{C}$. It is easy to extend f to a holomorphic function F defined on a domain containing K (caution: domains are connected) if there exist: (1) a domain Ω, (2) a biholomorphic function e on Ω such that $K \subset e(\Omega)$, and (3) a holomorphic extension G of $g=\left.f \circ e\right|_{e^{-1}(K)}$ to all of Ω. Indeed $F=G \circ e^{-1}$ is the required extension. Conversely if f has such an extension F the existence of Ω, e, and G is trivial. For let the domain Ω be the domain of F, set $e(z)=z$, and take $G=F$. Thus we have an equivalent formulation of the problem of holomorphically extending a function $f: K \rightarrow C$ to a domain containing K. Theorem 4.2 shows that another equivalent formulation is obtained when in the discussion above the variable domain Ω is replaced by the fixed domain B. We first show that for a more restricted class of sets K this extension question is very naturally formulated with D in the role of Ω.

Theorem 4.1. Let $K \subset C$ be compact and let $f: K \rightarrow C$. Suppose
that K and $C \backslash K$ are connected. Then there exists a holomorphic extension F of f to a domain containing K if and only if there exist (a) a bh-embedding e of D such that $K \subset e(D)$ and (b) a holomorphic extension G of $g=\left.f \circ e\right|_{e^{-1}(K)}$ to all of D.

Proof. Since the "if" part of this theorem is treated in the discussion above we confine our remarks to the "only if" part. Assume that the extension F exists, and let $\Omega \supset K$ be its domain. It suffices to find a bh-mapping e of D such that $K \subset e(D) \subset \Omega$. This is trivial if K is a singleton: so we assume K is not a singleton. Then the Riemann Mapping theorem shows that $\hat{C} \mid K$ is $b h$-equivalent to D (it is simply connected because K is connected). Let $h: \widehat{\boldsymbol{C}} \backslash K \rightarrow D$ be the Riemann mapping. Since $h^{-1}(\bar{D}(0, r))$ is simply connected for $0<r<1$ we know that $V_{r}=\hat{\boldsymbol{C}} \backslash h^{-1}(\bar{D}(0, r))$ is nonempty, open, and simply connected for $0<r<1$. Thus each V_{r} with $0<r<1$ is $b h$-equivalent to D. Since $h(\hat{\boldsymbol{C}} \backslash \Omega)$ is a compact subset of D it lies in $D(0, s)$ for some $s<1$, and the Riemann mapping e of D onto V_{s} is the required map.

If in Theorem $4.1 D$ is replaced by B the assumption that K and $C \backslash K$ are connected may be dropped.

TheOrem 4.2. Let $K \subset C$ be compact and let $f: K \rightarrow C$. There exists a holomorphic extension F of f to a domain containing K if and only if there exist (a) a bh-mapping e of B such that $K \subset e(B)$ and (b) a holomorphic extension G of $g=\left.f \circ e\right|_{e^{-1}(K)}$ to all of B.

Proof. As in the proof of Theorem 4.1 the "if" part has already been settled and we begin the "only if" part by letting $\Omega \supset K$ be the domain of F. An application of Theorem 2.1 gives a bh-embedding e of B such that $K \subset e(B) \subset \Omega$. This is the required mapping.

Remark. Comparing Theorems 4.1 and 4.2 tempts one to conjecture the existence of a sequence of domains $D=\Omega_{1}, \Omega_{2}, \cdots, \Omega_{\infty}=B$ such that $\hat{C} \backslash \Omega_{n}$ has n components and for which Theorem 4.1 will remain true when it is modified by: (1) Replacing its second sentence with "Suppose K is connected and $C \backslash K$ has n components", and (2) Replacing D with Ω_{n}. The discussion in the introduction shows that this conjecture fails, since for $n=2, \Omega_{2}$ must be $b h$-equivalent to $A(r, s)$ for some r, s with $0 \leqq r<s \leqq \infty$ and so Ω_{2} cannot be embedded between $A(1, t)$ (the domain of f) and $A(1-\varepsilon, t+\varepsilon)$ (the domain of the extension F) unless $t<s / r<(t+\varepsilon) /(1+\varepsilon)$.

References

1. W.H.J. Fuchs, Topics in the Theory of Functions of One Complex Variable, Van Nostrand Mathematical Studies \#12, D. Van Nostrand, Princeton, N. J., 1967.
2. G. M. Goluzin, Geometric Theory of Function of a Complex Variable, Translations of Math. Mono., vol. 26, Providence, Rhode Island, 1969.

Received July 19, 1973.
Iowa State University

