BIHOLOMORPHIC APPROXIMATION OF PLANAR DOMAINS

BRYAN E. CAIN AND RICHARD J. TONDRA

This paper establishes the existence of a domain (open connected subset) B of the complex plane C such that for every domain $\Omega \subset C$ and every compact set $K \subset \Omega$, there is a biholomorphic embedding $e: B \to \Omega$, such that $K \subset e(B) \subset$ cl $[e(B)] \subset \Omega$.

1. Introduction. Let Ω_1 and Ω_2 be domains (i.e., open connected sets) in the complex plane C such that $\operatorname{cl} \Omega_1 \subset \Omega_2$ (cl = closure). A domain Ω is a biholomorphic approximation of Ω_1 with respect to Ω_2 provided that there exists an invertible holomorphic function e defined on Ω such that

$$\operatorname{cl} \, \mathcal{Q}_{\scriptscriptstyle 1} \subset e(\mathcal{Q}) \subset \operatorname{cl} \, [e(\mathcal{Q})] \subset \mathcal{Q}_{\scriptscriptstyle 2}$$
.

The mapping e is a biholomorphic embedding (*bh*-embedding) of Ω into Ω_2 . (Ω may also be considered a biholomorphic approximation of Ω_2 with respect to Ω_1 .)

Homeomorphic domains may, of course, be biholomorphically inequivalent, and, moreover, may not even be close biholomorphic approximations of each other. For example, let $A(r, s) = \{z \in C: r < |z| < s\}$ when $0 < r < s < \infty$. Suppose that $0 < \varepsilon < 1 < t < \infty$ and that e is a *bh*-embedding of A = A(r, s) such that

$$\operatorname{cl} A(1, t) \subset e(A) \subset \operatorname{cl} [e(A)] \subset A(1 - \varepsilon, t + \varepsilon)$$
.

By taking the modules of these ring domains (cf. [1]) we obtain the inequality $t < s/r < (t + \varepsilon)/(1 - \varepsilon)$ which is precisely the condition r and s must satisfy for such an embedding e to exist.

Our main result establishes the existence of a domain $B \subset C$ which is a biholomorphic approximation of every bounded domain Ω_1 with respect to every domain Ω_2 containing cl Ω_1 .

2. The main theorem. Let \hat{C} denote the Riemann sphere.

THEOREM 2.1. There exists a domain $B \subset C$ such that for every domain $\Omega \subset \hat{C}$ and for every compact set $K \subset \Omega$ other than \hat{C} there exists a biholomorphic embedding $e: B \to \Omega$ such that $K \subset e(B) \subset$ cl $[e(B)] \subset \Omega$.

REMARK. Actually such an embedding will exist if Ω is any connected Riemann surface (without boundary) and $K \subset \Omega$ is any planar compact surface other than \hat{C} . ("Planar" means homeomorphic

to a subset of \widehat{C} .) Indeed, by the trianguability of Ω there must exist a planar domain Ω_0 such that $K \subset \Omega_0 \subset \Omega$, and so it suffices to consider the planar case.

The following theorems are corollaries of Theorem 2.1.

COROLLARY 2.2. Let $K \neq \hat{C}$ be a compact connected subset of a domain $\Omega \subset \hat{C}$. Then $K = \bigcap_{i=1}^{\infty} B_i$ where each B_i is bh-equivalent to B and cl $B_{i+1} \subset B_i$ for $i = 1, 2, \cdots$.

COROLLARY 2.3. Let $\Omega \neq \phi$ be a domain in C. Then $\Omega = \bigcup_{i=1}^{\infty} B_i$ where each B_i is bh-equivalent to B and cl $B_i \subset B_{i+1}$ for $i = 1, 2, \cdots$.

3. Proofs. For each $a \in C$ and r > 0 set $D(a, r) = \{z : |z - a| < r\}$ and let $\overline{D}(a, r)$ denote cl D(a, r). Set D = D(0, 1). A circle $\{z : |z - a| = r\}$ will be called "rational" provided that Re a, Im a, and r > 0 are rational numbers. The topological boundary of a domain Ω will be denoted $\partial \Omega$.

To construct B consider the domains Ω satisfying: (1) $\partial \Omega$ has finitely many components, (2) each component of $\partial \Omega$ is a rational circle, (3) cl $\Omega \subset D$ and its outer boundary is centered at the origin. Let E_1, E_2, \cdots be an enumeration of these domains. Let s_j be the radius of the outer boundary of E_j and let ϕ_j be the linear fractional transformation of D onto $H = \{z: \text{Re } z > 0\}$ which carries -1 to 0, +1to ∞ , and $-s_j$ to 1 if j = 1 and to $\phi_{j-1}(s_{j-1})$ if j > 1. Let B = $H \setminus \bigcup_{j=1}^{\infty} \phi_j [D(0, s_j) \setminus E_j]$.

To show that B has the desired properties, we prove the following lemma using the "small mesh grid" technique (often employed in texts on function theory), rather than the theory of trianguability. A bounded domain $\Omega \subset C$ will be called a Jordan domain if $\partial \Omega$ consists of finitely many disjoint Jordan curves.

LEMMA 3.1. Let K be a compact subset of a domain $\Omega \subset C$. Then there exists a Jordan domain Ω_0 such that $K \subset \Omega_0 \subset \operatorname{cl} \Omega_0 \subset \Omega$.

Sketch of proof. Since Ω is connected, there exists a connected compact set K_0 such that $K \subset K_0 \subset \Omega$. Thus we may assume that K is connected. With r picked so small that $[K + \overline{D}(0, \sqrt{2}r)] \subset \Omega$ let L be the union of those squares of a grid of squares with edge length r which intersect K. If $a \in L$ is a vertex of precisely two squares of L select the positive number $s_a < r/2$ to be so small that $\overline{D}(a, s_a) \subset \Omega$. Let L_0 denote the union of all the $\overline{D}(a, s_a)$'s. Then straightforward arguments show that $\Omega_0 = \operatorname{int} (L \cup L_0)$ is the desired Jordan domain.

Now let Ω and K be as described in Theorem 2.1. Lemma 3.1

provides a Jordan domain Ω_0 such that $K \subset \Omega_0 \subset \operatorname{cl} \Omega_0 \subset \Omega$. According to Theorem 2 page 237 of [2] there is a *bh*-embedding *h* of Ω_0 into D such that (1) the outer boundary of $h(\Omega_0)$ is ∂D and (2) $\partial[h(\Omega_0)]$ has finitely many components and each is a circle. Each of the circles bounding $h(\Omega_0)$ can be "approximated" arbitrarily closely by a rational circle which lies in $h(\Omega_0)$. We require that the approximation to the unit circle be centered at 0. Since h(K) is a compact subset of $h(\Omega_0)$, when the approximations are close enough, the approximating circles will bound a domain which contains h(K). This region, by its definition, is one of the E_j 's, say E_k . Then

$$h(K) \subset E_k \subset \phi_k^{-1}(B) \subset h(\Omega_0)$$

and so applying h^{-1} will establish Theorem 2.1.

To prove Corollary 2.2 we let $B_1 = e_1(B)$ where e_1 is the *bh*embedding of *B* such that $K \subset B_1 \subset \operatorname{cl} B_1 \subset \Omega$. For i > 1 we let G_i be the component of $[K + D(0, 1/(i - 1))] \cap B_{i-1}$ which contains *K*, and we set $B_i = e_i(B)$ where e_i is the *bh*-embedding of *B*, given by Theorem 2.1, such that $K \subset B_i \subset \operatorname{cl} B_i \subset G_i$.

To prove Corollary 2.3 we pick $a \in \Omega$ and for large n we can let G_n be the component of $\{z: \operatorname{dist}(z, C \setminus \Omega) > 1/n \text{ and } |z| < n\}$ which contains a. Since $\operatorname{cl} G_n$ is a compact subset of G_{n+1} there exists a *bh*-embedding $e_n: B \to G_{n+1}$ such that $B_n = e_n(B) \supset \operatorname{cl} G_n$. That $\Omega = \bigcup G_n$ (and hence $\Omega = \bigcup B_n$) follows from the arc connectedness of Ω . These B_n 's are the required domains (except for re-indexing).

4. Some applications to holomorphic extension problems. Let $K \subset C$ be compact and let $f: K \rightarrow C$. It is easy to extend f to a holomorphic function F defined on a domain containing K (caution: domains are connected) if there exist: (1) a domain Ω , (2) a biholomorphic function e on Ω such that $K \subset e(\Omega)$, and (3) a holomorphic extension G of $g = f \circ e |_{e^{-1}(K)}$ to all of Ω . Indeed $F = G \circ e^{-1}$ is the required extension. Conversely if f has such an extension F the existence of Ω , e, and G is trivial. For let the domain Ω be the domain of F, set e(z) = z, and take G = F. Thus we have an equivalent formulation of the problem of holomorphically extending a function $f: K \to C$ to a domain containing K. Theorem 4.2 shows that another equivalent formulation is obtained when in the discussion above the variable domain Ω is replaced by the fixed domain B. We first show that for a more restricted class of sets K this extension question is very naturally formulated with D in the role of Ω .

THEOREM 4.1. Let $K \subset C$ be compact and let $f: K \to C$. Suppose

that K and C K are connected. Then there exists a holomorphic extension F of f to a domain containing K if and only if there exist (a) a bh-embedding e of D such that $K \subseteq e(D)$ and (b) a holomorphic extension G of $g = f \circ e \mid_{e^{-1}(K)}$ to all of D.

Proof. Since the "if" part of this theorem is treated in the discussion above we confine our remarks to the "only if" part. Assume that the extension F exists, and let $\Omega \supset K$ be its domain. It suffices to find a *bh*-mapping e of D such that $K \subset e(D) \subset \Omega$. This is trivial if K is a singleton: so we assume K is not a singleton. Then the Riemann Mapping theorem shows that $\hat{C}\setminus K$ is *bh*-equivalent to D (it is simply connected because K is connected). Let $h: \hat{C}\setminus K \to D$ be the Riemann mapping. Since $h^{-1}(\bar{D}(0, r))$ is simply connected for 0 < r < 1 we know that $V_r = \hat{C}\setminus h^{-1}(\bar{D}(0, r))$ is nonempty, open, and simply connected for 0 < r < 1. Thus each V_r with 0 < r < 1 is *bh*-equivalent to D. Since $h(\hat{C}\setminus\Omega)$ is a compact subset of D it lies in D(0, s) for some s < 1, and the Riemann mapping e of D onto V_s is the required map.

If in Theorem 4.1 D is replaced by B the assumption that K and $C \setminus K$ are connected may be dropped.

THEOREM 4.2. Let $K \subset C$ be compact and let $f: K \to C$. There exists a holomorphic extension F of f to a domain containing K if and only if there exist (a) a bh-mapping e of B such that $K \subset e(B)$ and (b) a holomorphic extension G of $g = f \circ e |_{e^{-1}(K)}$ to all of B.

Proof. As in the proof of Theorem 4.1 the "if" part has already been settled and we begin the "only if" part by letting $\Omega \supset K$ be the domain of F. An application of Theorem 2.1 gives a *bh*-embedding e of B such that $K \subset e(B) \subset \Omega$. This is the required mapping.

REMARK. Comparing Theorems 4.1 and 4.2 tempts one to conjecture the existence of a sequence of domains $D = \Omega_1, \Omega_2, \dots, \Omega_{\infty} = B$ such that $\hat{C} \backslash \Omega_n$ has *n* components and for which Theorem 4.1 will remain true when it is modified by: (1) Replacing its second sentence with "Suppose K is connected and $C \backslash K$ has *n* components", and (2) Replacing D with Ω_n . The discussion in the introduction shows that this conjecture fails, since for n = 2, Ω_2 must be *bh*-equivalent to A(r, s) for some r, s with $0 \leq r < s \leq \infty$ and so Ω_2 cannot be embedded between A(1, t) (the domain of f) and $A(1 - \varepsilon, t + \varepsilon)$ (the domain of the extension F) unless $t < s/r < (t + \varepsilon)/(1 + \varepsilon)$.

References

 W. H. J. Fuchs, Topics in the Theory of Functions of One Complex Variable, Van Nostrand Mathematical Studies #12, D. Van Nostrand, Princeton, N. J., 1967.
G. M. Goluzin, Geometric Theory of Function of a Complex Variable, Translations of Math. Mono., vol. 26, Providence, Rhode Island, 1969.

Received July 19, 1973.

IOWA STATE UNIVERSITY