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THE NON-MINIMALITY OF INDUCED
CENTRAL REPRESENTATIONS

D. WRIGHT

Let G be a finite p-group and ® a minimal faithful per-
mutation representation of G possessing the minimal number
of generators of the centre of G transitive constituents. One
surmises that the induced representation, ©&’, of the centire
of G, is minimal. The conjecture is validated subject to either
of the hypotheses |G| < p® except G=Qs X Z, or Z(G) =n
copies of the cyclic group of order p™ and is trivial when G
is abelian. However, a group of order p° shows the conjec-
ture to be false for p odd, also. The converse problem of
extending minimal representations of Z(G) to minimal rep-
resentations of G is also, in general, not possible.

NOTATION. G a finite group, Z(G) is the centre of G, d(Z(G))
is the minimal number of generators of Z(G). When G is a p-group
2(G) =<{9eG|g® =e). Zp™ is the cyclic group of order »™. u(@)
is the least natural number » such that G can be embedded in the
symmetric group of degree n.

Let & ={G, ---, G,} be a collection of subgroups of a finite
group G and X, be the set of distinet cosets of G; in G. The tran-
sitive action of G on X, defines a permutation representation of G
on the set X = U, X; with kernel core (N, G;). A faithful rep-
resentation is called minimal in case |X| = 3r,|G: G| is minimal
over all faithful ®. Suppose now that G is a p-group and d =
d(Z(G)). Then by [1] Theorem 3 % = d for p + 2 whilst when p =
21/2d < n = d, the upper bound being attained. It is assumed
throughout that » = d thereby imposing a restriction on & only
when p = 2.

The problem is approached by first classifying minimal representa-
tions ©, say, of finite abelian p-groups (with a restriction on ® if
p = 2) and then observing two elementary properties regarding the
structure of G, N Z(G).

1. Minimal representations of abelian groups.

THEOREM 1. Let G be a finite abelian p-group with n = 2.
Suppose & = {G,, ---, G,} s a minimal faithful permutation rep-
resentation of G and K, = (i-, G;, then

Ji#e

G=XK and G =I11K;.
=1 =1
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NoOTE. Any & of this form is a minimal representation of G,
so this theorem characterizes minimal representations of abelian p-
groups, p % 2.

Proof. If G =2, x --- X Z, with Z, cyclic then we know that

the G; can be reordered so that G; N Z, = E (see [2], Lemma 2).
Hence |G: G,| = |Z;|. Suppose for some k, |G:G,| > |Z,|, then

HE) = 316: G| > 311 2] = 1(6)
so that |G:G,| =|Z,|, for all 1 <7 < n. Now

IG:K,.1=|G:r"_1G,.

i

= 15[1 |G: G;|, Pointcaré’s theorem
i

It follows that |K,|=|Z;| and | X~ K| = 1. 1Z;| = |G| so that
G = XL K, and | K,| =|Z,| (see [3], Lemma 0). Also, G, 2 II}-, K.

i#E

but |G: H;{:,. K;|=|K,|=1Z;| =|G: G,| and the lemma is now clear.

From athe proof of [1], Proposition 2 we conclude that whenever
G and H have coprime orders any stabilizer in a minimal representa-
tion of G x H has the form G, x Hor G x H, G, £G,H < H. By
decomposing an abelian group A into the direct product of its Sylow
p-subgroups we easily generalize Theorem 1 to classify minimal rep-
resentations of abelian groups (of odd order).

2. Induced central representation. Throughout this section
whenever © = {G,, ---, G.}, n = d(Z(G)).

LEMMA 2. No generator of G, N Z(G) is a p-power of any ele-
ment in Z(G) provided & is minimal.

Proof. Let H, = (N, G:) N Z(@). Since G, 2 H, x -+ x Hy, X

H,, x --- x H,, see [3] lemma, it follows that d(G; N Z(G)) = n — 1.
Suppose G; N Z(G) = <x, |keI) and «; = y®, for some j. Then |[I| =
n — 1. Define Y = <&, y|lkeI\{7}>) 2 G, N Z(G). Clearly, 2(Y) =
2(G; N Z(@)) and YG, N Z(G) = Y. Thus, the representation {G,, ---,
G._, YG, Gy, -+, G,} is faithful. The minimality of ® yields YG, =
G, so that Y = G,N Z(G). It follows that ;e (x.|keI\{j}), con-
tradicting that x, is a generator of G.

The next lemma is easy to verify.
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LEMMA 3. Let A = X7,<a,> be an abelian p-group with d(A) =
n. If B A with d(B) =n — 1 such that mo generator of B is a
p-power of any element of A then

(i) B=<a;j|je N\{s}, some s, where N ={k|1 <k < n}
or

(i) B=<aalna,|red, ke K,JU K = N\{s}, somes, JN K = @).

COROLLARY. If Z(G) = Z, X -+ X Z, with Z; = {z;) cyclic then
G N Z(G) = {z;]5€ N\{s}

or
G, NZ(G) =<z, 2lr, 2z, |[reJ, ke K,JUK = N\{s}, JO K = ®) .

Proof. By Lemma 2 G, N Z(G) and Z(G) satisfy the conditions
of Lemma 3.

Write &' = {G, N Z(G), ---, G, N Z(G)} then:
LEMMA 4. @& is minimal whenever Z(G) = n copies of Z;.

Proof. m =1 is trivial. For = % 1, by the corollary to Lemma
3 we deduce |Z: G, N Z(G)| = p™, 1 <1 = n, yielding deg ® = np™
and @ is minimal.

THEOREM 5. If |G| =< p° then & 1is minimal, except for the
case p =2, G = Qy X Z,, the direct product of the quaternionic group
of order 8 and the cyclic group of order 4.

Proof. We already have the result if G is abelian or Z(G) is
isomorphic to n copies of Zr. This leaves the case: |G| = p°%
Z(G) = {2,) X {2y = Zpo X Zp. If G = H x K and is non-abelian then
K=27, or K=2Z,. Let &={G,G,) be a minimal faithful rep-
resentation of G. By [3], #(G) = (H) + (K). When K= Z,,
|G:G,| = p, say, and G, N Z(H) # E. By the corollary to Lemma 3,
G, 2 Z(H), so that & is minimal. If K = Z,., then except for the
case p =2 and H=Q, ((H)= p*. Therefore, (G)= p*+ »* and
|G| =|G,| = p*. As above, & not minimal implies G, N Z(H) = E =
G, N Z(H). It follows that G = G.Z(H) = G,Z(H) and G,, G, are
normal subgroups of G. Hence, G, N G, is a nontrivial normal sub-
group of G, contradicting the faithfulness of & When G = Q; X Z,,
suppose Qs =<z, y|a* =9, a' =a), Z,=<z|2*=¢). Then G =
{@Qs, <wz)} is minimal but @ = {{a*), {(&*2*»} is not. Under the hy-
pothesis G 2 Q, X Z,, (a) any counterexample is not a nontrivial direct
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product. We also have, (b) ¢” is central for all ge G, since G/Z =
Zy X Zp. By Lemma 2, since |G, N Z(G)| = p = |G.N Z(G)|, we may
assume without loss of generality that G, N Z(G) = {2z, G.N Z(G) =
{#F"z,») where (r, p) =1 because G, 2 <{z?) implies G, 2 {z,y. Also,
if |G;|=9*then G, NZ,: = E yields G = G,Z,2:: Let g€ G,, h€ G then
h =gz, 9.€G, z¢€Zy, hence g* = ¢g* = ¢g2¢ G, so G, is normal in G
and G = G; X Z,, contradicting (a). We deduce, (¢c) |[G;| < 9% @ =
1,2 and #(G) = 2p°.

Let M be a maximal subgroup of G containing Z(G), then M is
abelian and has one of the forms:

(1) M=<ay x by X&) = Zpe X Zp X Zp,

(ii) M=<a) x {b) =Zp X Zyp,

(i) M= {a) x {b) = Zp: X Zp.
Case (). We can choose a, b, ¢ so that Z(G) = {a) x <b) and then
[Ka, ¢> N (B, )] N Z(G) = {c) N Z(G) = E giving p(G) < p* + »* < 2p%,
contradicting (c). Case (ii). Z(G) = {a®) x <{b). Suppose G/M = {cM}.
¢” = e implies case (i) holds. ¢” # ¢ then ¢” = a”d* by (b). If p|r,
let ¢, = ca "¢ M then c¢? = b* and {<a), {c, b)} is faithful of degree
less than 2p°. Hence for all ce G\M {¢) N {(a) +# E. Let & = {G,, G;}
be minimal then by Lemma 2, G, N {a) = E and it follows that |G,| =
p, contradicting the minimality of ®&. Case (iii). Without loss of
generality we may assume Z(G) = {a) x (b*>. Suppose G/M = {cM).
¢® = ¢ implies case (i) holds. If ¢ % e then (¢) N<a) = E or {c) N
by = E so that |¢| = p* and {{¢), (a)} or {{c), <b)} is faithful of
degree less than 2p°®. This leaves the case ¢” =e. ¢” is central,
¢® = a?b*, say, but (ca™")® = b* and ca "¢ M. As above, b =¢
reduces to case (i). We may now assume that

G =<a, b, cla” =b" =c" =¢e = [a, b] = [a, c], b = ¢, [b, c] = a™b") .

If o = ¢ then G is a nontrivial direct product. If 4" = e we can
choose a so that [b, ¢] = (a?d?)” then [ab, ac] = [b, ¢] = (ab)” but G =
{a, ab, ac) and we proceed as above. By suitable choice of a it
remains to eliminate the case [b, ¢c] = a®. Since (b7'¢)* = [b, ¢] PP+,
when p # 2 (b7'¢)” = ¢ and when p = 2 (ab™'c)’ = ¢. In either case
G/M can be generated by an element of order p. This completes the
argument.

While attacking groups of order p° by identical methods to Theo-
rem 5, one obtains the following counterexample.

THEOREM 6. Let G =<{a, b, cla” =b"=c*=1=[a, b] = [a, c,
[c, B] = a®*) then

(i) |G| = 9® and Z(G) = {a) x {(b*) = Zps X Z,

(ii) G 1is not a nontrivial direct product,

(i) MG) =p* + ',
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@iv) O = {Kabd, ¢, <b)} 1s a minimal representation of G, but
Q' = {Kab, ¢) N Z(G), <b) N Z(G)} is not minimal.

Proof. (i) For 1 <1 < p* define «,, B;, 7: by
a:(r,t,8)—(@r1,s+1)
Bi(rye,8)—(r+s,1,8+ 2)
Yo (ry 1, 8)—(r + 1,14, 8)

1<7r s<p, mod p in the first and third components [i.e., a, =
((19 17 1)(1; 1: 2) M (1y 1; p))((zy 1! 1)(27 17 2) T (27 17 p)) et ((pr 17 1) e
(p, 1, »))]. @i B 7: each have order p and [a;, B:] = 7.. Define A,
t, v as follows

(ryi+1,8),l1=t=9p°

n(r, 1, 8)— .
(r, 3, 8) r+1,1,5),i=p

2

p=02- )16

N, i, vsatisfy A = p® = vr = 1 =\, ¢] = [\, V], [v, ¢] = A" Clearly
any element of G has the form a®bic*, 0 <1< 9% 07 < P4, 0=k <
p and the representation shows that these are distinct and (i) follows.

(ii) Suppose G = H x K, then Z(G) = Z(H) x Z(K). We may
assume Z(H)= Z, and Z(K) = {(ab*) = Z,». KN <y =FE implies
[K|<p'. If |K|=9p* K and H are abelian and consequently G is
abelian. It follows that |K|=|H| = p°. Therefore, there exist
he H and r,0 < r < p* such that ¢ = (ab”*)"h then [k, b] = [(ab™)"h, b]
(since (ab®)" is central) = [¢, b] = a¢”. But H is normal in G and so
a” = [h, ble HN K, a contradiction.

(iii) Let ® = {G,, G.} be a minimal faithful representation of G.
This always exists by [1], Theorem 3. If |G:G,| = p then G, is
normal in G and G is a nontrivial direct product. Therefore,
|G:G,|=p* i=1,2. For some %, G; N {a) = E, since & is faithful
suppose, say, G,N<{ay = E. If |G| =19, G =G, x {a) since a is
central. Hence ¢(G) = p* + p* but (i) exhibits a faithful representa-
tion of degree p* + p*. The final part of the theorem is now easy.

The converse problem: Given & = {(Z, ---, Z,}, n = d(Z(G)) a
minimal representation of Z(G), does there exist a minimal representa-
tion & = {G,, ---, G,} of G such that G, N Z(G) = Z,? The answer
to this question is quickly found to be negative.
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LEMMA 7. Let G = H x K where H = {a, b|a” = b” = [a, b]) and
K ={cl|c® =¢e) then & = {{a’c), {c)} is a minimal representation of
Z(G) which cannot be extended to a minimal representation of G.

Proof. When p +# 2 H is the non-abelian group of order »* con-
taining an element of order »* and when p = 2 H is the quaternionic
group of order 8. Z(H) = (a”’) and ®& is obviously minimal. Now

(a,":bj)” — b"”(b_jpa,ibjp)(bt"(p*)aib-"'""”) ve (b“jaibj) s 3 #= 0

— a(i+j)17+ij1’(1+-'-+?), since a = ap+1’ (ai)bm = giime+h) |

Case I. p = 2 then p|(L + --- + p) =1/2p(p + 1) and
(*) (a'bic?)’ = a'it9? for all 4, 7, k .

Every element of G has the form a’bick, 0 <1<, 057, k< op.
If G,2<{a"c) then a‘b’c* € G, implies that 7+ + J = 0 (mod p) i.e., j =
rp — 1 consequently for each choice of 7 there is only one choice for
j. It follows that |G,| < p*and |G: G,| = p* since G, N {c) = E. By
(), (@) =a” =¢, <(ab’*»NZH)=E and trivially pH) = p*
By [3], (G)=mH) + MUK)=p"+Dp. G,2{c) so ZH)NG,=E
and {H, G,} is faithful. Therefore, |G: H| + |G: G| = M(G) =p* + »
and |G: G,| = p°. Hence deg {G,, G} = |G: G, | + |G: G,| = 20" > u(G)
proving {G,, G,} is not minimal.

Case II. p =2, m(H) = 8 and #(G) = (H) + H(K) = 10, by [3].
(*) becomes

.o n
(aibjck)z = glitiztiz 6’2 v J bOtP eve
a?, otherwise .

One easily checks that G, = (a%), G, = {¢) and deg {G,, G;} = 16 >
1(G) which proves the lemma.,
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