THE NON-MINIMALITY OF INDUCED CENTRAL REPRESENTATIONS

D. WRIGHT

Let G be a finite p-group and G a minimal faithful permutation representation of G possessing the minimal number of generators of the centre of G transitive constituents. One surmises that the induced representation, G', of the centre of G, is minimal. The conjecture is validated subject to either of the hypotheses $|G| \leq p^5$ except $G = Q_8 \times Z_4$ or $Z(G) \cong n$ copies of the cyclic group of order p^m and is trivial when G is abelian. However, a group of order p^6 shows the conjecture to be false for p odd, also. The converse problem of extending minimal representations of Z(G) to minimal representations of G is also, in general, not possible.

NOTATION. G a finite group, Z(G) is the centre of G, d(Z(G)) is the minimal number of generators of Z(G). When G is a p-group $\Omega_1(G) = \langle g \in G \mid g^p = e \rangle$. Zp^m is the cyclic group of order p^m . $\mu(G)$ is the least natural number n such that G can be embedded in the symmetric group of degree n.

Let $\mathfrak{G} = \{G_1, \dots, G_n\}$ be a collection of subgroups of a finite group G and X_i be the set of distinct cosets of G_i in G. The transitive action of G on X_i defines a permutation representation of G on the set $X = \bigcup_{i=1}^n X_i$ with kernel core $(\bigcap_{i=1}^n G_i)$. A faithful representation is called minimal in case $|X| = \sum_{i=1}^n |G:G_i|$ is minimal over all faithful \mathfrak{G} . Suppose now that G is a p-group and d = d(Z(G)). Then by [1] Theorem 3 n = d for $p \neq 2$ whilst when $p = 21/2d \leq n \leq d$, the upper bound being attained. It is assumed throughout that n = d thereby imposing a restriction on \mathfrak{G} only when p = 2.

The problem is approached by first classifying minimal representations \mathfrak{G} , say, of finite abelian p-groups (with a restriction on \mathfrak{G} if p=2) and then observing two elementary properties regarding the structure of $G_i \cap Z(G)$.

1. Minimal representations of abelian groups.

THEOREM 1. Let G be a finite abelian p-group with $n \geq 2$. Suppose $\mathfrak{G} = \{G_1, \dots, G_n\}$ is a minimal faithful permutation representation of G and $K_i = \bigcap_{i=1}^n G_i$, then

$$G = igotimes_{i=1}^n K_i$$
 and $G_i = \prod_{\substack{j=1 \ j \neq i}}^n K_j$.

302 D. WRIGHT

NOTE. Any \mathfrak{G} of this form is a minimal representation of G, so this theorem characterizes minimal representations of abelian p-groups, $p \neq 2$.

Proof. If $G=Z_1\times\cdots\times Z_n$ with Z_i cyclic then we know that the G_i can be reordered so that $G_i\cap Z_i=E$ (see [2], Lemma 2). Hence $|G\colon G_i|\geq |Z_i|$. Suppose for some k, $|G\colon G_k|>|Z_k|$, then

$$\mu(G) = \sum_{i=1}^{n} |G: G_i| > \sum_{i=1}^{n} |Z_i| = \mu(G)$$

so that $|G:G_i|=|Z_i|$, for all $1 \le i \le n$. Now

$$|G:K_i| = \left|G:\bigcap_{\substack{j=1\j \neq i}}^n G_j
ight| \leqq \prod_{\substack{j=1\j \neq i}}^n |G:G_j|$$
, Pointcaré's theorem $= \prod_{\substack{j=1\j \neq i}}^n |Z_j| = |G:Z_i|$.

It follows that $|K_i| \ge |Z_i|$ and $|\mathbf{X}_{i=1}^n K_i| \ge \prod_{i=1}^n |Z_i| = |G|$ so that $G = \mathbf{X}_{i=1}^n K_i$ and $|K_i| = |Z_i|$ (see [3], Lemma 0). Also, $G_i \supseteq \prod_{\substack{j=1 \ j \neq i}}^n K_j$ but $|G: \prod_{\substack{j=1 \ j \neq i}}^n K_j| = |K_i| = |Z_i| = |G: G_i|$ and the lemma is now clear.

From the proof of [1], Proposition 2 we conclude that whenever G and H have coprime orders any stabilizer in a minimal representation of $G \times H$ has the form $G_1 \times H$ or $G \times H_1$, $G_1 \subseteq G$, $H_1 \subseteq H$. By decomposing an abelian group A into the direct product of its Sylow p-subgroups we easily generalize Theorem 1 to classify minimal representations of abelian groups (of odd order).

2. Induced central representation. Throughout this section whenever $\mathfrak{G} = \{G_1, \dots, G_n\}, n = d(Z(G)).$

LEMMA 2. No generator of $G_i \cap Z(G)$ is a p-power of any element in Z(G) provided \mathfrak{G} is minimal.

Proof. Let $H_i = (\bigcap_{\substack{j=1 \ j \neq i}}^n G_j) \cap Z(G)$. Since $G_i \supseteq H_1 \times \cdots \times H_{i-1} \times H_{i+1} \times \cdots \times H_n$, see [3] lemma, it follows that $d(G_i \cap Z(G)) = n-1$. Suppose $G_i \cap Z(G) = \langle x_k \mid k \in I \rangle$ and $x_j = y^r$, for some j. Then $|I| \ge n-1$. Define $Y = \langle x_k, y \mid k \in I \setminus \{j\} \rangle \supseteq G_i \cap Z(G)$. Clearly, $\Omega_1(Y) = \Omega_1(G_i \cap Z(G))$ and $YG_i \cap Z(G) = Y$. Thus, the representation $\{G_1, \cdots, G_{i-1}, YG_i, G_{i+1}, \cdots, G_n\}$ is faithful. The minimality of G yields G is othat G is a generator of G.

The next lemma is easy to verify.

LEMMA 3. Let $A = \underset{i=1}{\times}_{i=1}^n \langle a_i \rangle$ be an abelian p-group with d(A) = n. If $B \leq A$ with d(B) = n - 1 such that no generator of B is a p-power of any element of A then

(i) $B = \langle a_j | j \in N \setminus \{s\}, \text{ some } s \rangle, \text{ where } N = \{k | 1 \leq k \leq n\}$ or

(ii)
$$B = \langle a_r a_s^{r_r}, a_k | r \in J, k \in K, J \cup K = N \setminus \{s\}, some s, J \cap K = \emptyset \rangle.$$

COROLLARY. If
$$Z(G)=Z_1 imes\cdots imes Z_n$$
 with $Z_i=\langle z_i\rangle$ cyclic then $G_i\cap Z(G)=\langle z_j\,|\,j\in N\backslash\{s\}\rangle$

or

$$G_i \cap Z(G) = \langle z_r z_s^{r_r}, z_k | r \in J, k \in K, J \cup K = N \setminus \{s\}, J \cap K = \emptyset \rangle$$
.

Proof. By Lemma 2 $G_i \cap Z(G)$ and Z(G) satisfy the conditions of Lemma 3.

Write
$$\mathfrak{G}' = \{G_1 \cap Z(G), \dots, G_n \cap Z(G)\}\$$
 then:

LEMMA 4. S' is minimal whenever $Z(G) \cong n$ copies of \mathbb{Z}_n^m .

Proof. n=1 is trivial. For $n \neq 1$, by the corollary to Lemma 3 we deduce $|Z:G_i \cap Z(G)| = p^m$, $1 \leq i \leq n$, yielding deg $\mathfrak{G}' = np^m$ and \mathfrak{G}' is minimal.

THEOREM 5. If $|G| \leq p^5$ then \mathfrak{G}' is minimal, except for the case p = 2, $G = Q_8 \times Z_4$, the direct product of the quaternionic group of order 8 and the cyclic group of order 4.

Proof. We already have the result if G is abelian or Z(G) is isomorphic to n copies of Z_n^m . This leaves the case: $|G| = p^5$, $Z(G)=\langle z_1
angle imes \langle z_2
angle \cong Z_{p^2} imes Z_p$. If G=H imes K and is non-abelian then $K\cong Z_p$ or $K\cong Z_{p^2}$. Let $\mathfrak{G}=\{G_1,\,G_2\}$ be a minimal faithful representation of G. By [3], $\mu(G) = \mu(H) + \mu(K)$. When $K \cong \mathbb{Z}_p$, $|G:G_1|=p$, say, and $G_1\cap Z(H)\neq E$. By the corollary to Lemma 3, $G_1 \supseteq Z(H)$, so that \mathfrak{G}' is minimal. If $K \cong Z_{p^2}$, then except for the case p=2 and $H\cong Q_8$, $\mu(H)=p^2$. Therefore, $\mu(G)=p^2+p^2$ and $|G_1| = |G_2| = p^3$. As above, S' not minimal implies $G_1 \cap Z(H) = E =$ $G_2 \cap Z(H)$. It follows that $G = G_1Z(H) = G_2Z(H)$ and G_1 , G_2 are normal subgroups of G. Hence, $G_1 \cap G_2$ is a nontrivial normal subgroup of G, contradicting the faithfulness of \mathfrak{G} . When $G = Q_8 \times Z_4$, suppose $Q_8 = \langle x, y | x^2 = y^2, x^y = x^{-1} \rangle$, $Z_4 = \langle z | z^4 = e \rangle$. Then $\mathfrak{G} =$ $\{Q_8,\langle xz\rangle\}$ is minimal but $\mathfrak{G}'=\{\langle x^2\rangle,\langle x^2z^2\rangle\}$ is not. Under the hypothesis $G \ncong Q_8 \times Z_4$, (a) any counterexample is not a nontrivial direct

304 D. WRIGHT

product. We also have, (b) g^p is central for all $g \in G$, since $G/Z \cong Z_p \times Z_p$. By Lemma 2, since $|G_1 \cap Z(G)| = p = |G_2 \cap Z(G)|$, we may assume without loss of generality that $G_1 \cap Z(G) = \langle z_2 \rangle$, $G_2 \cap Z(G) = \langle z_1^p \rangle z_2 \rangle$ where (r, p) = 1 because $G_i \supseteq \langle z_1^p \rangle$ implies $G_i \supseteq \langle z_1 \rangle$. Also, if $|G_i| = p^3$ then $G_i \cap Z_{p^2} = E$ yields $G = G_i Z_{p^2}$: Let $g \in G_i$, $h \in G$ then $h = g_1 z$, $g_1 \in G_i$, $z \in Z_{p^2}$ hence $g^h = g^{g_1 z} = g^{g_2} \in G_i$ so G_i is normal in G and $G = G_i \times Z_{p^2}$, contradicting (a). We deduce, (c) $|G_i| \le p^2$, i = 1, 2 and $\mu(G) \ge 2p^3$.

Let M be a maximal subgroup of G containing Z(G), then M is abelian and has one of the forms:

- (i) $M = \langle a \rangle imes \langle b \rangle imes \langle c \rangle \cong Z_{p^2} imes Z_p imes Z_p,$
- (ii) $M = \langle a \rangle \times \langle b \rangle \cong Z_{p^3} \times Z_p$,
- (iii) $M = \langle a \rangle \times \langle b \rangle \cong Z_{p^2} \times Z_{p^2}$.

Case (i). We can choose a, b, c so that $Z(G) = \langle a \rangle \times \langle b \rangle$ and then $[\langle a,c \rangle \cap \langle b,c \rangle] \cap Z(G) = \langle c \rangle \cap Z(G) = E$ giving $\mu(G) \leq p^2 + p^3 < 2p^3$, contradicting (c). Case (ii). $Z(G) = \langle a^p \rangle \times \langle b \rangle$. Suppose $G/M = \langle cM \rangle$. $c^p = e$ implies case (i) holds. $c^p \neq e$ then $c^p = a^{pr}b^s$ by (b). If $p \mid r$, let $c_1 = ca^{-r} \notin M$ then $c_1^p = b^s$ and $\{\langle a \rangle, \langle c_1, b \rangle\}$ is faithful of degree less than $2p^3$. Hence for all $c \in G\backslash M \langle c \rangle \cap \langle a \rangle \neq E$. Let $\mathfrak{G} = \{G_1, G_2\}$ be minimal then by Lemma 2, $G_i \cap \langle a \rangle = E$ and it follows that $|G_i| = p$, contradicting the minimality of \mathfrak{G} . Case (iii). Without loss of generality we may assume $Z(G) = \langle a \rangle \times \langle b^p \rangle$. Suppose $G/M = \langle cM \rangle$. $c^p = e$ implies case (i) holds. If $c^{p^2} \neq e$ then $\langle c \rangle \cap \langle a \rangle = E$ or $\langle c \rangle \cap \langle b \rangle = E$ so that $|c| = p^3$ and $\{\langle c \rangle, \langle a \rangle\}$ or $\{\langle c \rangle, \langle b \rangle\}$ is faithful of degree less than $2p^3$. This leaves the case $c^{p^2} = e$. c^p is central, $c^p = a^{pr}b^{ps}$, say, but $(ca^{-r})^p = b^{ps}$ and $ca^{-r} \notin M$. As above, $c^p = e$ reduces to case (i). We may now assume that

$$G = \langle a, b, c \, | \, a^{p^2} = b^{p^2} = c^{p^2} = e = [a, b] = [a, c], \, b^p = c^p, \, [b, c] = a^{pu}b^{pv} \rangle$$
.

If $a^{pu}=e$ then G is a nontrivial direct product. If $b^{pv}\neq e$ we can choose a so that $[b,c]=(a^pb^p)^v$ then $[ab,ac]=[b,c]=(ab)^{pv}$ but $G=\langle a,ab,ac\rangle$ and we proceed as above. By suitable choice of a it remains to eliminate the case $[b,c]=a^p$. Since $(b^{-1}c)^p=[b,c]^{-1/2\,p(p+1)}$, when $p\neq 2$ $(b^{-1}c)^p=e$ and when p=2 $(ab^{-1}c)^2=e$. In either case G/M can be generated by an element of order p. This completes the argument.

While attacking groups of order p^6 by identical methods to Theorem 5, one obtains the following counterexample.

THEOREM 6. Let $G=\langle a,b,c\,|\,a^{p^3}=b^{p^2}=c^p=1=[a,b]=[a,c],$ $[c,b]=a^{p^2}\rangle$ then

- (i) $|G| = p^{\mathfrak{g}} \text{ and } Z(G) = \langle a \rangle \times \langle b^{\mathfrak{p}} \rangle \cong Z_{\mathfrak{p}^3} \times Z_{\mathfrak{p}},$
- (ii) G is not a nontrivial direct product,
- (iii) $\mu(G) = p^2 + p^4,$

(iv) $\mathfrak{G} = \{\langle ab, c \rangle, \langle b \rangle\}$ is a minimal representation of G, but $\mathfrak{G}' = \{\langle ab, c \rangle \cap Z(G), \langle b \rangle \cap Z(G)\}$ is not minimal.

$$egin{aligned} Proof. & ext{ (i) For } 1 \leq i \leq p^2 ext{ define } lpha_i, \; eta_i, \; \gamma_i ext{ by} \\ & lpha_i
cdots (r,i,s) \mapsto (r,i,s+1) \\ & eta_i
cdots (r,i,s) \mapsto (r+s,i,s+2) \\ & \gamma_i
cdots (r,i,s) \mapsto (r+1,i,s) \end{aligned}$$

 $1 \le r$, $s \le p$, mod p in the first and third components [i.e., $\alpha_1 = ((1, 1, 1)(1, 1, 2) \cdots (1, 1, p))((2, 1, 1)(2, 1, 2) \cdots (2, 1, p)) \cdots ((p, 1, 1) \cdots (p, 1, p))]$. α_i , β_i , γ_i each have order p and $[\alpha_i, \beta_i] = \gamma_i$. Define λ , μ , ν as follows

$$egin{align} \lambda \colon (r,\,i,\,s) \mapsto egin{cases} (r,\,i+1,\,s),\,1 \leq i \leq p^2 \ (r+1,\,1,\,s),\,i=p^2 \end{cases} \ \mu &= (12 \cdots p^2) \prod_{i=1}^{p^2} eta_i \
onumber
onum$$

 λ , μ , ν satisfy $\lambda^{p^3} = \mu^{p^2} = \nu^p = 1 = [\lambda, \mu] = [\lambda, \nu]$, $[\nu, \mu] = \lambda^{p^2}$. Clearly any element of G has the form $a^i b^j c^k$, $0 \le i < p^3$, $0 \le j < p^2$, $0 \le k < p$ and the representation shows that these are distinct and (i) follows.

- (ii) Suppose $G = H \times K$, then $Z(G) = Z(H) \times Z(K)$. We may assume $Z(H) \cong Z_p$ and $Z(K) = \langle ab^{ps} \rangle \cong Z_{p^3}$. $K \cap \langle b \rangle = E$ implies $|K| \leq p^4$. If $|K| = p^4 K$ and H are abelian and consequently G is abelian. It follows that $|K| = |H| = p^3$. Therefore, there exist $h \in H$ and $r, 0 \leq r < p^3$ such that $c = (ab^{ps})^r h$ then $[h, b] = [(ab^{ps})^r h, b]$ (since $(ab^{ps})^r$ is central) $= [c, b] = a^{p^2}$. But H is normal in G and so $a^{p^2} = [h, b] \in H \cap K$, a contradiction.
- (iii) Let $\mathfrak{G} = \{G_1, G_2\}$ be a minimal faithful representation of G. This always exists by [1], Theorem 3. If $|G:G_i|=p$ then G_i is normal in G and G is a nontrivial direct product. Therefore, $|G:G_i| \geq p^2$, i=1,2. For some $i,G_i \cap \langle a \rangle = E$, since \mathfrak{G} is faithful suppose, say, $G_1 \cap \langle a \rangle = E$. If $|G_1| = p^3$, $G = G_1 \times \langle a \rangle$ since a is central. Hence $\mu(G) \geq p^2 + p^4$ but (i) exhibits a faithful representation of degree $p^2 + p^4$. The final part of the theorem is now easy.

The converse problem: Given $\mathfrak{G}' = \{Z_1, \dots, Z_n\}, n = d(Z(G))$ a minimal representation of Z(G), does there exist a minimal representation $\mathfrak{G} = \{G_1, \dots, G_n\}$ of G such that $G_i \cap Z(G) = Z_i$? The answer to this question is quickly found to be negative.

306 D. WRIGHT

LEMMA 7. Let $G = H \times K$ where $H = \langle a, b | a^p = b^p = [a, b] \rangle$ and $K = \langle c | c^p = e \rangle$ then $\mathfrak{G}' = \{\langle a^p c \rangle, \langle c \rangle\}$ is a minimal representation of Z(G) which cannot be extended to a minimal representation of G.

Proof. When $p \neq 2H$ is the non-abelian group of order p^3 containing an element of order p^2 and when p = 2H is the quaternionic group of order 8. $Z(H) = \langle a^p \rangle$ and \mathfrak{G}' is obviously minimal. Now

$$(a^{i}b^{j})^{p} = b^{jp}(b^{-jp}a^{i}b^{jp})(b^{-j(p-1)}a^{i}b^{j(p-1)})\cdots(b^{-j}a^{i}b^{j}), \quad j \neq 0$$

= $a^{(i+j)^{p}+ij^{p}(1+\cdots+p)}$, since $a^{b} = a^{p+1}$, $(a^{i})^{b^{m}} = a^{i(mp+1)}$.

Case I.
$$p \neq 2$$
 then $p \mid (1+\cdots+p)=1/2 \, p(p+1)$ and $(*)$ $(a^i b^j c^k)^p=a^{(i+j)p}$ for all i,j,k .

Every element of G has the form $a^ib^jc^k$, $0 \le i < p^2$, $0 \le j$, k < p. If $G_1 \supseteq \langle a^pc \rangle$ then $a^ib^jc^k \in G_1$ implies that $i+j=0 \pmod p$ i.e., j=rp-i consequently for each choice of i there is only one choice for j. It follows that $|G_1| \le p^2$ and $|G:G_1| \ge p^2$ since $G_1 \cap \langle c \rangle = E$. By (*), $(ab^{p-1})^p = a^{p^2} = e$, $\langle ab^{p-1} \rangle \cap Z(H) = E$ and trivially $\mu(H) = p^2$. By [3], $\mu(G) = \mu(H) + \mu(K) = p^2 + p$. $G_2 \supseteq \langle c \rangle$ so $Z(H) \cap G_2 = E$ and $\{H, G_2\}$ is faithful. Therefore, $|G:H| + |G:G_2| \ge \mu(G) = p^2 + p$ and $|G:G_2| \ge p^2$. Hence deg $\{G_1, G_2\} = |G:G_1| + |G:G_2| \ge 2p^2 > \mu(G)$ proving $\{G_1, G_2\}$ is not minimal.

Case II. p = 2, $\mu(H) = 8$ and $\mu(G) = \mu(H) + \mu(K) = 10$, by [3]. (*) becomes

$$(a^ib^jc^k)^2=a^{(i+j)2+ij2}=egin{cases} e,\ i,\ j\ ext{both even}\ a^2,\ ext{otherwise}\ . \end{cases}$$

One easily checks that $G_1=\langle a^2c\rangle$, $G_2=\langle c\rangle$ and $\deg\{G_1,G_2\}=16>\mu(G)$ which proves the lemma.

REFERENCES

- 1. D. L. Johnson, Minimal permutation representations of finite groups, Amer. J. Math., 93 (1971), 857-866.
- 2. D. Wright, Degrees of minimal permutation representations of covering groups of abelian groups, Amer. J. Math., (to appear).
- 3. ——, Degrees of minimal embeddings for some direct products, Amer. J. Math., (to appear).

Received June 12, 1973. May I acknowledge the generous financial assistance of the Science Research Council and the first class advice of Dr. D. L. Johnson.

University of Nottingham

Present address: Australian National University