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COMPLETELY DECOMPOSABLE GROUPS WHICH
ADMIT ONLY NILPOTENT MULTIPLICATIONS

C. VlNSONHALER AND W. J. WlCKLESS

A triangle of size n is a collection {Au} of n(n + l)/2 (not
necessarily distinct) rank one torsion-free abelian groups
indexed by all integer sequences of the form u = i, i + 1, ,
i + j with l£i£i + j£n, satisfying T{AU) + T(AS) ̂  T(AUS)
for all consecutive sequences u, s. Here T(Aυ) denotes the
type of the rank one torsion-free abelian group Av. If A —
φierAι is a direct sum of rank one torsion-free abelian groups
Aif let Δ(A) — sup {n | 3 a triangle of size n of groups chosen,
possibly with repetitions, from {At \ is I}}, Δ'{A) — sup{%| 3
a triangle of size n of groups chosen without repetition from
{Ai I iel}}. An abelian group (G, +) is radical iff whenever
(R, + , ) is a ring with (R, +) ̂  (G, +) there exists a positive
integer n with Rn — (0).

THEOREM. Let A = φieJAi be such that {T(At) \iel} is
an ordered set and Δ(A) < oo. Then A is radical.

THEOREM. Let A = ®ιei Ai be such that d'(A) = oo. Then
A is not radical.

THEOREM. Let A = φ ΐ e 7 Au B = ©, e j ^ δe

< oo, J(£) < oo. T/̂ βπ if {T{At) I i e / } U {T(£,) l i e / } ŝ
α% ordered set A® B is radical. A bound is given for the
index of nilpotency of any multiplication on A® B.

1* Preliminaries* Several authors ([2], [3], [4], [5]) have studied
the class of abelian groups (A, +) which admit only a trivial ring
structure; i.e., if (R, +, •) is a ring with {R, +) ~ (A, +), then
R2 — (0). These are called nil groups.

In [6] a larger class was introduced—abelian groups which admit
only nilpotent multiplications. More precisely:

DEFINITION 1.1. An abelian group (A, +) is a radical group iff
whenever (R, +, •) is a ring with (iϋ, +) = (A, +), we have Rn = 0
for some positive integer w.

In [6], using the techniques of [1], the class of finite rank torsion
free radical groups was studied, and it was shown that this class is
closed under finite direct sums.

In this paper we study completely decomposable radical groups.
We work toward the goals of characterizing such groups and of
obtaining information on finite direct sums of such groups.

Throughout, the word "group" means torsion-free abelian group.
We let A — φ i e Z Aif B = ®; e j B5 be arbitrary completely decompo-
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sable groups; i.e., /, Jare arbitrary index sets, rank At = rank Bj = 1
for all iel,jej.

The standard notions of height and type for torsion-free groups
([2], § 42) are used. If g e G, then hG(g), TG(g) denote the height vector
and type respectively of g in G. The subscript is deleted when no
confusion will result. Sums of height vectors and sums of types are
defined in the obvious way. If rank G = 1, the type of G, T(G), is
T(g) where 0 Φ g e G. A type is called nil iff it is of the form [< mk >],
where 0 < mk < oo for infinitely many k. ([(m 4)] denotes the equiva-
lence class of the height vector

2* Triangles of rank one groups*

DEFINITION 2.1. A triangle of size n is a collection of groups
of rank 1 indexed by all sequences of the form (i, i + 1, i + 2, ,
i + j) where l<>i<^n, 0<^j<*n~-i, such that T[Aliti+ι,...,i+ί)] +
T[Ali+i+lti+j+it...tt+j+k)] S T[Au,i+ι,...,i+i+k)] for all i,j as above and k
with i + j + k ^ n.

It is easiest to consider these triangles in terms of diagrams as
in the following.

EXAMPLE, n = 3.

A triangle of size 3 looks like At A2 A3

with T(AX) + T(A2) ^ T(A12)

T(A2) + Γ(A.) ^ Γ(A23)

T(Ad + T(A23) <ί T(A12B)

T(A12) + T(A3) ^ T(A123) .

Now let A = ΦieiAi. Clearly, if T(AJ is non-nil for some i,
then A is not radical ([2]). Since we are interested in completely
decomposable radical groups, we assume in what follows that T{A^)
is nil for all i.

It is well known [3] that such an A is a nil group iff, for all
i, j , kel, T(Ai) + T(Ad) ^ T(Ak) — in other words no triangle of size
2 can be formed using {Aύ \ i e I}. The following theorems generalize
this result by relating multiplications on A which yield nonzero
products of length n to triangles of size n.

THEOREM 2.1. Let {At | i e / } be a collection of rank one groups
such that {T(Ai)\ieI} is an ordered set. Let * be a multipli-
cation associative on A = φiei A{ with x^x^ * xn Φ 0 for some
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{#!, , xn} £ A. Then a triangle of size n can be formed by choosing
(possibly with repetitions) groups from {AJieJ} .

Proof. Let x^x^* *xn Φ 0 and choose, for each i, some 0 Φ
at G At. Write each x3- as a finite rational combination x3- = Σfinite^yΛ
It follows immediately that ah*ai2* *a i n Φ 0 for some (not neces-
sarily distinct) indices {i, , in} £ I* Reindex, setting A1 = Aί]L,
A2 = Jli2, , A, = ̂ 4ΐw. The groups Au , An form the top row of
the triangle.

For l^i<i+j^n write α** * α ί + i = Σ asas, and let i4,...i+J

by any A8 such that T(A8) — TA{a^ *α i + i ) . Such -4S always exists
since {T(A%) \ie 1} is an ordered set. It is easy to check that the
types of the rank one groups thus chosen satisfy the additive require-
ments of Definition 2.1.

The requirement that {T(Ai) \ie 1} be an ordered set cannot be
deleted in the above theorem. One can construct a completely decom-
posable group A — φiLi At such that no triangle of size 4 can be
formed by choosing groups from {At \ 1 ̂  i ^ 11} but such that A4 Φ (0)
under an appropriate multiplication. (The numbers 11 and 4 are the
minimum rank and index for such an example.)

THEOREM 2.2. Let {At\ie 1} be a set of rank one groups such
that a triangle of size n can be formed by choosing n(n + l)/2 distinct
groups from the set. Then there is a multiplication on A = © iez At

with a nonzero product of length n.

Proof. Reindex the groups chosen from {At | i e 1} as in Definition
2.1. For each index, u, choose 0 Φ aueAu such that for consecutive
ind ices r = i ί+jf8 = i+j + l i + j+k, i+j + kϊ£n, h(ar) +
h(as) g h(ai...i+j+k) = h(ar8). Such a choice is possible because of the
type relationships in the triangle. Now define ar- a$ = ars for all
consecutive indices r, s. If r and s are not of the above form, define
ar - as = 0. If A{ is not a group in the triangle, let AtA — AAt — (0).
These products define a unique associative ring structure on A.
Moreover, in this ring ax a2 an Φ 0.

Note that the above method (or simple variations of it) cannot
be used to obtain multiplication on ®At from triangles formed by
groups arbitrarily chosen from {At \ i e 1} If the same group is allowed
in repeated positions, it seems impossible to overcome the consistency
problems arising in the definitions of the products ar as. However,
we can obtain a nonassociative multiplication in this case.

The results of this section can be used to obtain information on
completely decomposable radical groups and on direct sums of such
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groups. First we prove theorem on the existence of sub triangles
of a given triangle.

3* Subtriangles*

DEFINITION 3.1. Let {Au} be a triangle of size n, indexed as in
Definition 2.1. For 1 ̂  m ^ n, a subtriangle of size m is an array
of m(m + l)/2 (not necessarily distinct) groups chosen from {Au} such
that the resulting array, after reindexing, satisfies the requirements
of Definition 2.1.

EXAMPLE. The array Aι Au A5 is a subtriangle of any

•^•1234 A 5 i 5

^ - 1 2 3 4 5 6

triangle of size n ^ 6.

THEOREM 3.1. Let A = {At}9 B = {JBJ and let n be any positive
integer. If m is any integer such that m ^ f(n) s max {3^ — 1,
n(n + l)/2}, then any triangle of size mm of groups from A\J B
contains a subtriangle of size n of groups from A alone or from B
alone.

Proof. Use induction on n. The result is easy for n = 1. Now
consider a triangle of size mm of groups from A U B, when m ^ f(n),
(n an integer not less than 2). As in Diagram 1, divide the first
mm~ι rows into m disjoint subtriangles of size mw~\ Since mm~L ;>

B m m ~' GROUPS

( * ) 2 SEQUENCE

( * ) 3 SEQUENCE

( * ) 4 SEQUENCE
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(m - I)™-1 and m - U f(n - 1) = max {S(n - 1) - 1, (n - l)n/2}, by
the induction hypothesis, each of these disjoint triangle of size mm~ι

contains a subtriangle of size n — 1 of groups from A alone or from
B alone.

Case I. Both triangles of size n — 1 of groups from A and
triangles of size n — 1 of groups from B appear as subtriangles of
the triangles of size mm~\ In this case, there occurs a subtriangle
of size n — 1 of groups from one collection, say A, such that either
to the right or to the left of this subtringle there are n disjoint
triangles of size mm"\ each of which contains subtriangles of size
n — 1 of groups from B. This is due to the fact that in any arrange-
ment of Sn — 1 objects which are of two types, one of the types must
have n objects of the other type either to the right or to the left.

Without loss of generality, assume that the left-most triangle (1)
contains a subtriangle of size n — 1 of groups from A, and that there
are n triangles to the right which contain subtriangles of groups
from B. The technique is to expand one of these subtriangles to a
triangle of size n.

Let Gikrik+ly...>ik+jk be the rightmost group in the kth row of the
subtriangle of groups from A contained in triangle 1, l^kSn ~ 1
(see Diagram 1). If triangle rk9 l^k^n, contains the kth subtriangle
to the right of triangle 1 of groups from B, consider, for all 2 ^
k ^ n, the sequence of groups

V * )k ^J~ik>ik+1>'">(rk>— l ) w m ~ " 1 + l ) ^ r i ^ , i A . + l , ' - - , ( r A — l ) m ~ 1 + 2 ) , •• , ^ Γ i ^ , ^ + l, , r & w m ~ 1

(Each of these sequences is represented by a diagonal in Diagram 1.)
Claim: Either (* )k contains a group from A or the subtriangle of

groups from B in triangle rk can be expanded to a triangle of size n of
groups from B. Suppose (*)fc contains no group from A. Let B1 be
any group from B in triangle rk^. Now let B\ 2 ̂  I ̂  n, be the group
in the sequence (* )k whose index ends in the same number as the index
of the left-most group in the l — l row of the subtriangle of groups
from B in triangle rh. By adjoining each Bι as the left-most group
in the ith row of the triangle, the subtriangle of groups from B in
triangle rk is expanded to a triangle of size n of groups from B. In
this case we are done, so assume now that each sequence (*)k 2 ^
k ^ %, contains a group from A-call it Ak. Let A1 be any group
from A in triangle r1 (if none exists, we're done). Now by adjoining
Ak as the right-most group in the kth row of the A-subtriangle of
triangle 1 we obtain an A-subtriangle of size n.

Case II. There exist only A-subtriangles of size n — 1 in the
triangles 1, 2, •• ,m. If this is the case, then any subtriangle of
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size mm ι contained in the first mm 1 rows most contain only A-
subtriangles of size n — 1. If there were a 5-subtriangle of size
n — 1, the techniques of Case I could be applied to construct an A-
or 5-subtriangle of size n.

Now consider any diagonal sequence of the form (-/-): Gu...>i+j,
m-i_1 where 2 mm — mm — n — 1, n ^

^ <; m»» _ mm-i _ ^ These (-/-) sequences are illustrated in Diagram 2.
If all of the groups in (-/-) are in A then consider the A-subtriangle
of size n — 1 contained in the triangle of size mm~ι whose top row
is G^h Gi+j+1, •• ,G ί+i+w«-i_1. (Refer to Diagram 2.) Again using
the techniques of Case I, this A-subtringle can be expanded to a
triangle of size n using the sequence (-/-). Therefore, without loss
of generality, assume that every sequence (-/-) contains a group from
B. This assumption can be used to build a J3-subtriangle of size n.

A GROUP FROM
B !S CHOSEN
FROM THE (t)
SEQUENCE

A TYPICAL
(t) SEQUENCE

Choose from triangle 1 any group Bι from B. Say B1 =

where 2 ^ i ^ mm~ι and 0 ^ j ^ mm~ι — ΐ. If such a β : does not
exist, we are done, for triangle 1 is then an A-subtriangle of size

mm-ι *> n^ S i m i i a r iy choose from triangle 2 a group B2 — Gi>t...ti,+i,
from B, where mm~ι <ϊ ^ 2mm'\ 0 ^ j ' <£ 2mm~x - i'. Now choose a
group i?12 from Bfrom the sequence G< > i + l f...,Γ + J /, , Gi)ί+1,...,i,+^+mm-i_1.
(See Diagram 2.) This is a (-7*-) sequence unless ir + j ' — i < w. In
this case replace if + j ' with i 4- π in the above sequence. Now let
Bz be any group from B found in triangle 4. The group B2Z is
obtained from the (-/-) sequence which begins where the diagonals
from B2 and j?3 intersect (see Diagram 2). The group U123 is obtained
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from the {-/-) sequence which begins where the diagonals from Bί2

and B2Z intersect. The group B4 is then chosen from triangle 7 and
the process continued. Since each new group requires a new (-/-)
sequence, it is not difficult to see that n(n + l)/2 (-/-) sequences are
needed in this process. Hence the requirement m ̂  n(n + l)/2. Thus
a B-triangle of size n can be constructed and the proof is complete.

REMARK. The number f(n) = max {Zn — 1, n(n + l)/2} is probably
much too large as is the triangle size mm used in the proof. These in
fact could be lowered slightly, but are retained in the interest of a
less complicated proof.

4* Applications* In this section, the results of the previous
sections are consolidated to give some information on when completely
decomposable groups are radical. We begin with

DEFINITION 4.1. Let A = 0 i e I At be any completely decomposable
group, and assume T{A%) is nil for all ie I. Let Δ{A) = sup {n \ 3 a
triangle of size n chosen, possibly with repetitions, from {AJίe/}}.
Let Δ\A) = sup {n | 3 a triangle of size n chosen without repetition
from {At \ieI}}.

THEOREM 4.1. Let A = φ i e / Λ be as above. If {T(AX) \ i e 1} is
an ordered set and Λ(A) is finite, then A is radical.

Proof. If A is not radical, then for any n ^ 0, there exists a
multiplication on A which yields a nonzero product of length greater
than n. By Theorem 2.1, Δ{A) > n. This contradicts Δ(A) finite.

A sort of converse to Theorem 4.1 is provided by

THEOREM 4.2. If A = $iBlAi is completely decomposable with
Δ\A) — oo then A is not radical.

Proof. If Δ\A) is infinite, we show there exists a multiplication
on A which produces nonzero products of arbitrary length. Let n
be any positive integer. Since Δ\A) is infinite, there exists a triangle
Ti of size m> n consisting of distinct groups from {AJ. Now let
k = f(m + 1) and form a triangle of size I ̂  kk consisting of distinct
groups from {AJ. By applying Theorem 3.1 to the disjoint collections
of groups ϊ\ and {AJ\2\, we obtain a sub triangle T2 of size m + 1
consisting of distinct groups from {AJ\Γ1. Continuing this process
we obtain a disjoint sequence of collections of groups, Tu T2, T9, ,
such that distinct groups in Tά may be used to form a triangle of
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size at least m + j — 1. Thus by Theorem 2.1 a ring may be defined
on the direct sum of the groups in T3 which contains a nonzero
product of length m + j — 1. The direct sum of these rings is then
non-nilpotent and is a group direct summand of A. Therefore A
cannot be radical.

The final result concerns the direct sum of two completely decom-
posable radical groups.

THEOREM 4.3. Let A = 0 i e j Aif B = φjeJBj be completely decom-
posable radical groups such that A(A) = n and Δ{B) = m are finite.
Then if {T{A%)\ie 1} U {T(Bj) \j eJ} is an ordered set, A@B is
radical. Moreover, for any multiplication on A 0 Bf (A φ B)kk = 0
for k = max {f(n + 1), f(m + 1)}.

Proof. If A@B is not radical, then A(A($B) is infinite by
Theorem 4.1. But Theorem 3.1 then implies that either A(A) or A{B)
is infinite, a contradiction. In fact, if (A 0 B)kk Φ (0) for some
multiplication on A 0 JB, then Δ(A 0 5 ) ^ kk. But by Theorem 3.1,
this implies that Δ{A) ^ n + 1 or A{B) ^ m + 1, a contradiction.
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