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HYPERSPACES OF GRAPHS ARE HILBERT CUBES

R. M. SCHORI AND J. E. W E S T

The authors prove that 2Γ is a Hubert cube where Γ is
any nondegenerate, finite, connected graph and 2 Γ is the space
of nonvoid closed subsets of Γ metrized with the Hausdorff
metric. This extends their result that 2J is a Hubert cube.
They also prove corresponding theorems for local dendrons D
as well as for the space of subcontinua C(D) of D.

1* Introduction* In [9] the authors outlined their proof that
27, the space of nonvoid, closed subsets of / = [0, 1] metrized with
the Hausdorff metric, is a Hubert cube Q and announced the main
results concerning graphs in this paper. Here we give the complete
proof, assuming that 21 is a Hubert cube, that 2Γ is a Hubert cube
for any finite, connected graph Γ. We also prove that if D is any-
local dendron, then 2D is a Hubert cube and prove some results
about the space of subcontinua C(D) of a local dendron D that ex-
tend the results of [13].

In [10] the authors give a complete proof that 2ι is a Hubert
cube. This settled a conjecture raised by Wojdyslawski [16] in 1938
where he also asked if 2X is a Hubert cube for any nondegenerate
Peano space X. The first author and D. W. Curtis have announced
the proof of this latter conjecture in [5] as well as the theorem
that says that C(X) is always a Q-factor for any Peano space X,
and C(X) is a Hubert cube iff X is a nondegenerate Peano space
that contains no free arcs. These results are strongly dependent
upon the results of this paper. The complete proofs of the 2X and
C(X) results appear in [6].

This paper assumes the 21 result and not the techniques of the
proof. The proofs given here use some of the fundamental results
of infinite-dimensional topology, but if the reader takes these results,
listed in § 2, as axioms, then no previous knowledge of infinite-dimen-
sional topology is necessary for understanding this paper.

The authors thank D. W. Curtis for some useful suggestions
concerning this paper.

2* Definitions and infinite'dimensional topology background*
If X is a compact metric space, then the Hausdorff metric D on 2X

can be defined by

D{A, B) = inf {ε > 0: A c U(B, ε) and Be U(A, ε)}

where U(C, ε) is the open ε-neighborhood o f C c I . If V is a subset
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of .X, then 2f is the subspace of 2X consisting of all members of 2X

that contain V, and likewise for CV(X).
Let Q denote the countable infinite product of / with itself and

define a Hubert cube as any space homeomorphic (^) to Q. A space
X is a Q-factor if X x Q & Q. A Q-manifold is a separable metric
space such that each point has an open neighborhood homeomorphic
to an open subset of Q.

A map is a continuous function. If X and Y are homeomorphic
compact metric spaces, then a map/: X—• Yis a near-homeomorphism
if for each ε > 0 there exists a homeomorphism h: X—» F such that
d(/, fe) < ε. We say that /: X—* Y" stabilizes to a near-homeomor-
phism if / x id: X x Q —> Y x Q is a near-homeomorphism. By a graph
we will mean a 1-dimensional polyhedron with a specific triangulation.

R. D. Anderson's notion of Z-set [1] is extensively used in this
paper and is one of the fundamental concepts in infinite-dimensional
topology. There have been various definitions of Z-sets in the
literature [1], [2], [4], and [7]. The following is the most convenient
formulation for this paper.

DEFINITION 2.1. A closed subset A of a Q-factor X is a Z-set
in X if for each ε > 0 there exists a map f'.X—> X\A such that
d(f, id) < ε.

We list below two well-known properties of Z-sets, the proofs
of which are very easy. All spaces below are Q-factors.

2.2. Z-set Properties.
(a) If A is a Z-set in X, then Ax Y is a Z-set in X x Y.
(b) Any finite union of Z-sets is a Z-set.

One of the important theorems in infinite-dimensional topology
is the following theorem of Anderson. See [11] and [14] for gener-
alizations.

2.3. First Sum Theorem [1]. If A} B, and An B are Hubert
cubes {Q-factors) and A f] B is a Z-set in A and in B> then A{J B
is a Hilbert cube (Q-factor).

If X and Y are disjoint spaces, A a closed subset of X, and
f:A—>Y& map, then the adjunction space of /, denoted J | J / ^
is ( I U Y)/R, where R is the equivalence relation on I U Γ gener-
ated by aBf(a) for each ae A. We say X is attached to Y by /. If
g: X—> Y is a map, then the mapping cylinder of g, denoted Mg, is
the adjunction space (X x I) \Jg, Y where g'\ X x {0} —» Y is defined
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by g'(x, 0) = g(x). The following is one of the basic theorems in the
theory of Q-f actors.

2.4. Mapping Cylinder Theorem [11] and [14]. Let X and Y
be Q-factors and let g: X—*Y be a map of X into Y, then the mapp-
ing cylinder of g, Mg, is also a Q-f actor. Furthermore, if c: Mg —+
Y is the map defined by c([x, i\) = g(x), then c stabilizes to a near-
homeomorphism.

An important corollary of this is the following.

2.5. The Attaching Theorem [10]. Let X and Y be Q-factors
and let A be a closed subset of X that is a Z-set in X. If f: A—+
Y is any map, then the adjunction space X (J/ Y is a^so a Q-f actor.

A relative homeomorphism f: (X, A) —• (Y, E) is a map of the
pairs where f\ X\A: X\A —> Y\B is a homeomorphism. The next
remark is just a convenient alternative way of viewing adjunction
spaces and will not be proved. Let all spaces below be compact
metric.

REMARK 2.6. If /: (X, A)—*(Γ, B) is a relative homeomorphism,
then Y is homeomorphic to the adjunction space X\Jg B where g =

f\A.

The main tool of this paper is the following theorem.

2.7. Compactification Theorem [13]. Let A be a closed subset
of the space X where

(1) X is a Q-f actor,
( 2) A is a Q-f actor,
(3) 4 is a Z-set in X, and
(4) X\A is a Q-manifold.

Then X is a Hilbert cube.

The above theorem gives us conditions as to when the Q-mani-
fold X\A can be compactified to be a Hilbert cube. We list the
parts of the hypothesis because in practice the verification of each
part will often be a separate result. To prove that 2Γ is a Hilbert
cube we will use the Compactification Theorem where X = 2Γ and
A — CW(Γ) for some vertex we Γ. In §3 we will prove that 2Γ is
a Q-f actor and in §4 we will prove that 2Γ and CW(Γ) satisfy the
other three conditions.
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3* 2Γ is a Q-factor* All of our results will be for the more
general case % where V is any set of vertices (possibly empty) of
a finite, connected graph. Note that if V is empty, then 2£ = 2Γ.
We first prove two lemmas.

Let Γ be a finite, connected, acyclic graph and let V be any
subset (possibly empty) of the vertices of Γ. Let w be a vertex
of Γ which separates it and let Γlf , Γn be the closure of the
components of Γ\{w], denoting by Vt the set VΓiΓt, i = 1, τ ,w.
Suppose that wίV and let W = FU {w} and for each i, let Wt =
V, U M . Let X, = Ui-i (2% x ΠU*«i 2£j).

LEMMA 3.1. Xn is a Q-factor if the 2£J and 2ΓJ. are Q-factors.

Proof. For i < n, Xt+1 = 2£*+i x X, U 2 ^ x Πi=i 2 :̂, and 2?*+} x
Xi Π 2^+

+\ x Πi=i 2£j = 2#<+
1

1 x X,. Since Γ is acyclic, w is a free
vertex of each Γi and thus by a direct verification of the definition
of a Z-set, each 2^. is a Z-set in 2^ and by 2.2(b), Jf< is a Z-set in
Πj =i 2?j. Thus, by 2.2(a), 2Γ

W%\ x X, is a Z-set in 2f*+j x X, and in
^wtlx x Πi=i 2fj. Note that a finite product of Q-factors is a Q-factor.
Hence, by the First Sum Theorem, Xi+1 is a Q-factor if X̂  is one
and since Xx = 2^ is a Q-factor by hypothesis, then Xn is a Q-factor
by induction and the proof is complete.

Let Yn be the set of all members of % which meet each Γi%

LEMMA 3.2. Yn is a Q-factor if 2Γ

W and the %*. and 2ΓJ5 are Q-
factors.

Proof. If F: Π?«i 2f< -> 2£ is defined by i? 7 ^, ~ ,An) = AιlJ
U i M , then F: (Π?=i2fj, JΓW)—»-(FΛ, 2{Jr) is a relative homeomorphism

and hence Y% is homeomorphic to the adjunction space Π?=i %\ U/ ^w
where / = -P|-X"». Since each of Π£=i2%, X%, and 2Γ

W is a Q-factor
and since Xn is a Z-set in Π?=i 2?*, then yw is a Q-factor by the
Attaching Theorem.

PROPOSITION 3.3. If Γ is a finite, connected, acyclic graph and
V is any subset (possibly empty) of the vertices of Γ, then 2Γ

V is a
Q-factor.

Proof. (By induction on the number of edges in Γ.) If Γ is
degenerate (no edges), this is clear, and if Γ has only one edge, this
is shown in [10]. Now suppose that Γ has more than one edge and
that the proposition is true for graphs with fewer edges than Γ.
Adopt the notation of this section but allow w to belong to V. If
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w 6 V, then the mapping Π?=i %\ —* 2? given by (Aί9 , AΛ) —•
Aj U U An is a homeomorphism and since each of the %\ is a Q-
factor by the inductive hypothesis, 2Γ

V is also a Q-factor.
If w ί 7 , then by the above we have that 2Γ

W is a Q-factor and
hence by Lemma 3.2, Yn is a Q-f actor. For k = 1, •••, u — 1, let
Y* be the subset of 2? composed of those members which meet at
least k of the Γ/s. If Yk+1 Φ %, let σu •• ,σ P be the subsets of
{1, , n} with exactly k members which contain {i:l <^ i ^ n, Vt Φ
0}, and let

Xσj = U (2% X Π 2? :) .
ίeσ^ mε<ij\ii)

Then exactly as in the proof of Lemma 3.1, each Xo. is a Q-factor
and a ϋΓ-set in ILeα,. 2%. For i = 1, ••-,#, let F Λ f t be the subset of
2?, composed of those members that are contained in Uie^ Γά and
which meet each Γt, jeσ,; let Y£ = (\JU Ytj) U Y*+1, and let Γ£
denote Γ4 + 1. Then Yk = Γf a n d / M : ( Π ; e σ ί 2fjf X σ ί ) - ( ^ , ΓΓ1) defined
by fkli(Au , Afc) = Aj U U Ak is a relative homeomorphism and
hence Yi p& HjeOi %) \}g Yί~\ where g = fkΛ \ Xσ.. Thus, by induction
we have that Yk — Yi is a Q-factor if Yk+1 = Yϊ is one. Thus, since
Yn is a Q-factor we have by induction that Yx = % is a Q-factor.

THEOREM 3.4. // .Γ is a finite, connected graph and V is any
subset {possibly empty) of the vertices of Γ, then 2£ is a Q-factor.

Proof. As this is a topological result, new vertices may be in-
troduced in Γ at will and therefore, one may assume without loss
of generality that for some connected, acyclic graph Γo and some
collection vl9 wl9 , vn, wn of free vertices of Γo, that Γ = Γo/R
where R is the equivalence relation on Γo generated by ViRWi for
i = 1, , n. For 1 ̂  k ̂  n, let Rk be the equivalence relation on
ΓΌ generated by viBwi for i = 1, ••-,&, and let JΓΛ = ΓJRk. Since
JKΛ_! c jBfc, we have a natural map ̂ i Γk_x —> /"fc induced by the
identity map on Γo.

The theorem is true for Γo by Proposition 3.3. Suppose the
theorem is true for Γk_19 let X be any subset of the vertices of Γk

and let Xf = φk\X). Let fk: 2Γ

x

kr1 - > 2 ^ be the map induced by <pk

and observe that fk carries 2Γ

x

k,^\VkiWk) homeomorphically onto 2Γ

x

k

ΌΨk[{Vk,Wk)].
Thus, if φk{{vk1 wk}) e X, then 2Γ

x

k is a Q-factor. If <pfc(K, w }̂) ί X,
let Yi = Xr U {̂ fc}, Γ2 - X' U {w*}, and Γ3 = X' U {v*, wfc}. Then
2Γ

x

kr\ 2Γ

γ

k~\ i = 1, 2, 3, and 2£*(F3) are Q-factors and 2f*-i = 2?*-1 Π 2f*-i.
Moreover, since v4 and wA are free vertices, 2^>-1 is a Z-set in each
of them and thus by the First Sum Theorem 2J*-i U 2?*-1 is a Q-
factor. Also, since each of 2£*-1, i = 1, 2, is a Z-set in 2x

kr\ their
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union is also a Z-set by 2.2(b). Moreover, fk: (2Γ/r\ 2£*-i U 2?*-*)

(2jfc, 2£*(F8)) is a relat ive homeomorphism and hence 2£* ̂  2 ^ - 1 { J g k z

where gk =fk\2?*-* U 2?*-s and t h u s by t h e Attaching Theorem 2 ?

is a Q-f actor and t h e theorem follows.

4* 2 Γ is a H u b e r t c u b e . In this section we verify t h e last

t h r e e conditions of t h e Compactification Theorem.

LEMMA 4.1. If Γ is a finite, connected graph and V is any
set of vertices (possibly empty) of Γ, then CV(Γ) is a Q-factor.

Proof. First we show that CV(Γ) is contractible. Let Γ be
endowed with a convex metric, i.e., one for which there always
exists a point half way between any two given points. Then the
function F: CV(Γ) x I-+CV(Γ) defined by F(A, t) is equal to the closed
ίδ-neighborhood of A in Γ, where δ is the diameter of Γ, is a con-
traction of CV(Γ) to the point ΓeCv(Γ).

Next, in [8], R. Duda proves that C(Γ) is a polyhedron and since
it is contractible we have by [11] that C(Γ) is a Q-factor. If V Φ
0 , then CV(Γ) is geometrically easier to classify than C(Γ) and
although it was not specifically dealt with in [8], it is a subpolyhe-
dron of C(Γ), and since it is contractible, it is a Q-factor. For a
considerably more general result see [6].

LEMMA 4.2. If Γ is a finite, connected, nondegenerate graph,
w is a vertex of Γ, and V is a collection (possibly empty) of vertices
of Γ, then CV[J{W](Γ) is a Z-set in 2£.

Proof, We will first prove the result for the case that w e V
by constructing for each ε > 0 a map /: 2£ —* %\CV(Γ) that is within
ε of the identity. Let wi9 i = 1, , n, be the vertices of Γ which
are joined to w by edges Et = [w, wt] and assume, for the metric
on Γ, that each Et is isometric with [0, 1] so that for each 0 < ε ^
1 the open ε-ball about w, U(w, ε), is precisely the set {(1 — t)w +
twt: 0 ̂  t < ε, i = 1, , n}. Let V(w, ε) be the closure in Γ of
U(w, ε) and let BdU(w, ε) = V(w, ε)\U(w, ε). For a fixed 0 < ε < 1,
and for A e 2£, let

f(A) = [A\U(w, e/2)] U {w} U Bd U(w, ε/2) .

It is clear that [A\U(w, ε/2)] U {w} e 2Γ

V\CV(Γ) but this assignment of
A would not be continuous basically for the reason that one may
have two points x e U(w, ε/2) and y $ U(w, ε/2) that are very close
together. Including the set Bd U(w, ε/2) in the image under / of A
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establishes the continuity of /, which is within ε of the identity map
because in 2£ the distance between {w} and Bd U(w, ε/2) is ε/2 < ε.
Thus, since / is continuous and the image of / misses CV(Γ), CV(Γ)
is a Z-set in 2£.

We will now modify these techniques to prove the theorem in
the case w$V: Let W = VU {w}. If the above map/were defined
on 2γ it would not be within ε of the identity, as is seen by com-
paring f(A) and A for sets A with no points close to w. Since our
main technique of mapping 2£ off CW(Γ) is to delete an open set
about w, we will phase out this process so that we will be deleting
open sets about w only from those members of 2£ that contain points
close to w.

For 0 ^ α ^ 1 we denote the point (1 — a)w + awt e [w, w<] simply
by [ά\i- For A e 2£, let αέ e [0, 1] be the number such that [«<]< is
the point of AπEt nearest to w, if A Π Et Φ 0 . If 0 <: α, ̂  ε, let
a'i = max {0, 2αέ — ε} observing that if 0 ^ at ^ ε/2, then α = 0; and
if at = ε, then αj = at. For A. e 2£, let

(A U {[αj],: 1 ^ i ^ u, 0 ^ α4 ^ ε} , if δ ^ ε/2
f(A) = \A\J {[(2<5/εK + (1 ~ ^/εjαj*: 1 ^ i ^ ^, 0 £ a, ύ e] ,

i if 0 ^ δ ^ ε/2

where δ = δ(A) = 2)(A, 2£), which in this case is the minimum dis-
tance between points of A and w. Then / is a well-defined function
since it is uniquely defined for elements A e 2£, where δ = ε/2. Also,
/ is phased back to the identity at δ = 0, that is, if δ(A) = 0, then
f(A) = A; and this establishes the continuity of /. Also observe
that if δ(A) = ε/2, then w ef(A) and if 8(A) ^ ε, then f(A) = A.
Let α(ii) = max {0, ε/2 - δ(A)} and define g on /(2f) by

ί[f(A)\U(w, a{A))] U Bd U(w, a{A)) if δ(A) < ε/2

If (A) if

The continuity of ^ follows since α is continuous and since for
A 6 2£ where δ(A) is less than ε/2 but close to ε/2, then Bd U(w, a(A))
is close to {w}f and hence gf(A) is close to f(A). Furthermore, the
composition gf: % —> 2£ is within ε of the identity and gf(2γ) Π C^(Γ) =
0 and thus, CW(Γ) is a Z-set in 2f.

The next lemma will be the inductive step for the main theo-
rem of this section. Let Ll9 , Lm be a finite collection of finite,
connected graphs, let W be a collection of vertices from U?=i A-
where W contains at least one vertex of each Lif and let K =
(U^i kί)/^ be the quotient space obtained by taking the disjoint
union of the Li and identifying all the vertices in W. Let p: (Jί^i Li-+
K be the quotient map and let w — p(W).
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LEMMA 4.3. If each 2γ\ is a Hilbert cube for each collection Vt

(possibly empty) of vertices of Lif then 2f is a Hilbert cube for each
set of vertices V (possibly empty) of K.

Proof. To apply the Compactiίication Theorem, we have that
2f is a Q-factor by 3.4, CW(K) is a Q-factor by 4.1 where W = V U
{w}, and CW(K) is a Z-set in 2f, by 4.2. It remains to be shown
that 2$\CW(K) is a Q-manifold.

If A e 2y\Cw(K), then A has a component missing w. If A is
connected, then it has an open neighborhood U in 2f homeomorphic
to an open set of 2Ίγ\, for some i and some collection F* of vertices
of Lt. Since 2γ\ is by hypothesis a Hilbert cube, U is homeomorphic
to an open subset of the Hilbert cube. If A is not connected, then
it has a separation into two disjoint closed nonempty subsets At and
A2 such that A = Ax U A2. Assuming that w £ A2, let E7Ί and U2 be
disjoint open sets of K containing A1 and A2, respectively. Now,
for some iu , ikf 1 ̂  k ^ m, A2 has an open neighborhood W2 in
2f2πF consisting of sets lying entirely within U2, which is home-
omorphic to a product U21 x U22 x x t/^ of open sets of the
Hilbert cubes 2£j, j = ilf - —, ik where F, = L̂  Π P~ι(A2 Π F). On the
other hand, the'set Wt = {Be 2^: Ba Z7J, where F' = FΠ Λ, is an
open neighborhood of ^ in 2£ which is by 3.4 a Q-factor. Now
i7 = {B U C: Be TF̂  Ce TΓ2} is an open neighborhood of A in 2? which
is homeomorphic to Wι x W2 and hence, to an open subset of the
Hilbert cube 2$, x Π{2fyj = iu , ik}. Therefore, 2?\CW{K) is a Q-
manifold and the proof is complete.

THEOREM 4.4. If Γ is a nondegenerate, finite, connected graph
and V is any set (possibly empty) of vertices of Γ, then 2Γ

V is a
Hilbert cube.

Proof. Let 2^ be the class of all nondegenerate, finite, con-
nected graphs. For each Ke&, let V(K) be the number of vertices
of K, E(K) the number of edges of K, and R(K) = E(K) - V(K) +
1. (R(K) is the rank of the first homology group H^K); it is also
E(K) — E(L) for each maximal acyclic subgraph L of K.) Let ^
be the class of all members K of ST for which R(K) = i9 and let
&i3 be the subclass of ^ composed of all members K of g^ with
E(K) = j .

The theorem holds for ^ 0 1 , being the main results of [9] and
[10], Specifically, 2Z, 2r

Q, 2f, and 2r

01 are all Hilbert cubes. Now fix
(if j) Φ (0, 1) and suppose that the theorem holds for each &iΊ, with
V < i or V = i and j>' < i.
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Let iΓeg^i and let V be a set of vertices (possibly empty) of
K and let w be a vertex of K which is not a free vertex of K.
Construct a new complex K' by "splitting" K at w. That is, let
vίf , vn be the vertices of K which are joined to w by edges
[w, Vi] of K and let wl9 , wn be abstract vertices not in K. Then
Kf = (K\\Ji=1 [w, Vi)) U (J?=i lwif vi\ a n ( i K' ^ a s a s vertices all vertices
of K except w together with wlf , wn and has as edges all edges
of K which do not contain w together with the new edges [wi9 i J,
i = 1, , n. Now, if w separates K, each component L of Kf has
£/(!/) < # ( # ) and R(L) ^ i?(ίΓ), while if w does not separate K, then
If' e ί̂  and iZ(ίΓ') < R{K). Thus, by the induction hypothesis, each
component of K' satisfies the theorem and hence by Lemma 4.3,
2v is a Hubert cube and thus by induction the theorem is proved.

5* 2D and C(D) for local dendrons D. In this section we gen-
eralize the theorems to each dendron, that is, a Peano space which
contains no simple closed curve, and to each local dendron, that is,
a Peano space such that each point has a closed neighborhood which
is a dendron. In particular, each dendron is a local dendron. We
can express (see [13]) each dendron D as the limit of an inverse
sequence {Tn, rn), lim (Tn, rn), where T1 is an arc and for each n ^ 1,
Tn+1 is the union of Tn and an arc [an, bn] where Tn Π [an, bn] = {an},
and where rn: Tn+1 —> Tn is the retraction which collapses [an, bn] to
an. The inverse sequence (Tn, rn) induces the inverse sequence (27'», r*)
where r j : 2Γ-+1->2Γ- is defined by r*(A) = rn(A). Then 2D is home-
omorphic to lim (2Tn, rj).

The corresponding inverse limit representation for local dendrons
is the same except that ϊ\ is allowed to be a finite, connected graph.
We argue this as follows. For a local dendron D there exists an
ε > 0 such that each closed connected subset of D with diameter less
than ε is a dendron. Cover D with a finite collection of closed con-
nected neighborhoods {D%) with diameter less than ε/2. The pairwise
intersections of the Df are connected. In each nonempty intersec-
tion of elements of the {.DJ pick a point and then in each Dt con-
struct a tree connecting each of the selected points contained in
that Dτ. Then the union of these trees will be a finite connected
graph, a candidate for 2\ in the above inverse limit presentation.
Now we can add the remaining stickers to the trees in the prescribed
manner to obtain the local dendron D as the \im(Tn, rn). Such an
inverse limit for a local dendron D will be called a standard inverse
limit representation for D. Also, for a given finite subset V of D
we can easily construct Tx to contain V by including it in the set
of points picked in the intersections of the Dt. We will need the
next result.
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THEOREM 5.1. Morton Brown [3]. Let S = \im(Xn,fn), where
the Xn are all homeomorphic to a given compact metric space X
and each fn is a near-homeomorphism. Then S is homeomorphic
to X.

LEMMA 5.2. If f: Q —*Q is a map that stabilizes to a near-
homeomorphism, then f is a near-homeomorphism.

Proof. Define an:Q x Q-+Q by an((xu x2, •), (yt, y2, •)) =
(a?i, •••,»•, Vi, Xn+u V2, »»+2, 2/B, )• Then each an is a homeomorphism
and hence each an ° (/ x iώ) o aΰ1 is a near-homeomorphism since fx id
is one by assumption. Furthermore, d(f, an©(/ x id)oα" 1 )->0as^~*
oo and hence / is a uniform limit of near-homeomorphisms and thus
is a near-homeomorphism.

THEOREM 5.3. If D is a nondegenerate local dendron and V is
any finite subset (possibly empty) of D, then 2£ is a Hilbert cube.

Proof. We follow the proof of [Theorem 2, 13] which states a
corresponding result for C(D). Choose a standard inverse limit rep-
resentation for D where 7 c Γ l t Let r»: 2**}^ —• 2£ be the restric-
tion of the map r*, let Mr>n be the mapping cylinder of r'nf and let
cw: ikfr̂  —* 2?> be the natural projection defined by cn([A, t]) — r'n(A).
Since 2&*ϊϊn) and 2̂ » are Q-factors by 3.4, it follows by the Mapping
Cylinder Theorem that cn stabilizes to a near-homeomorphism. We
will show below that ikfrς is homeomorphic to 2γn+1 in such a way
that the projection map cn is topologically equivalent to r*. Thus,
since each of 2£» and 2£»+1 is a Hilbert cube, we have by 5.2 that
cn is a near-homeomorphism and hence so is r*. The proof that
2v ?& Q will then be complete by 5.1 since 2? is homeomorphic to an
inverse limit of Hilbert cubes 2£» where the bonding maps are near-
homeomorphisms. We now verify the above stated fact about Mr>n.
Define gn: 2γn+ι —> Mr^ as follows where we parametrize [an, bn] to be
order isomorphic with [0, 1] and let sup (A Π [an, bn]) = d if it exists.
Let

Ί (A) =
uκ } ([(An τn)u(Vd(An K , 6j), d)], if An(α. , K) Φ 0

Then r̂% is a homeomorphism so that the following diagram is

Qn

\ / "

21*



HYPERSPACES OF GRAPHS ARE HILBERT CUBES 249

commutative and this completes the proof.
In [13], it is proved that the subcontinua C(D) of a dendron D

form a Q-factor which is a Hubert cube if and only if the branch
points of D are dense. We will extend this result to local dendrons
D and to spaces CV(D) where V is a finite subset of D.

LEMMA 5.4. For each local dendron D and each finite subset V
(possibly empty) of D, CV(D) is a Q-factor.

Proof. Choose a standard inverse limit representation, lim (Tn, rn),
for D where Vd Tx. Then CV{D) ** lim (Cv(Tn), rj). As in the proof
of Theorem 5.3 the space Cv(Tn+1) is naturally homeomorphic to the
mapping cylinder Mr<n where r»: Cvu{bn](Tn+1)~>Cv(Tn) is the restric-
tion of r*. Furthermore, the map r* is topologically equivalent to
the natural projection cn: Mr,n~*Cv(Tn) which stabilizes to a near-
homeomorphism. Since each space Cv(Tn) is a Q-factor by Lemma
4.1 and since each bounding map r* stabilizes to a near-homeomorphism,
then Cr(D) ^ lim (Cv(Tn), rj) is a Q-factor and the proof is complete.

To prove that CV(D) is a Hubert cube if the branch points of D
are dense, we will need Lemmas 4.1 and 5.4 together with the next
two lemmas to satisfy the hypothesis of the Compactification Theorem
where X= CV(D) and A = CV(TX).

LEMMA 5.5. Let D be a local dendron with a dense set of branch
points, let V be a finite subset (possibly empty) of D, and let
\im(Tn, rn) be a standard inverse limit representation for D where
F c T,. Then CV(T^ is a Z-set in CV(D).

Proof. A local dendron admits a convex metric. Using a convex
metric on D, for sufficiently small e > 0, the map / on CV(D) defined
by setting f(A) equal to the closed ε-neighborhood of A in D is a
map from CV(D) into itself where d(f, id) < ε. Since the branch
points of D are dense, we also have that /: CV(D) —»CV(D)\CV( Tt) and
hence C^TO is a Z-set in CV(D).

LEMMA 5.6. IfD, V, and lim (Tn, rn) are as above, then CV(D)\CV( Tx)
is a Q-manifold.

Proof. Let AeCv{D)\Cv{T^. It is sufficient, since
is open in CV(D), to show that A has an open neighborhood in CV(D)
that is homeomorphic to an open subset of the Hubert cube. If
A Π Γi is either empty or a single point, then V is either empty or
is a single point and there exists an open set U in D containing A
and a dendron D, such that AczUczD.czD. If W is the set of all
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elements of CV(D) contained in U, then W is an open neighborhood
of A in CV(D) and is an open subset of CF(A) which is a Hubert
cube by an obvious modification of West's proof [13] that C(A) is
a Hubert cube.

If A Π Tγ is nondegenerate, let E be the closure of some com-
ponent of D\TX that contains some points of A and let F be the
closure of D\E. Then E is a dendron and F is a local dendron con-
taining Tί and each has a dense set of branch points and E Π F is
one point, say q. Then Cq(E) is a Hubert cube by modifying West's
argument and CW(F), where W = FU{g}, is a Q-factor by Lemma
5.4 and hence Cff(#) x C^(F) is a Hubert cube. The map a: Cq(E) x
CWF) -> CV(JD) defined by α(A, B) = A U 5 is an embedding into CF(D)
where the image of α is a closed neighborhood (not a small one) of
A and thus CF(Z>)\CV( T,) is a Q-manifold.

THEOREM 5.7. If D is a local dendron and V is a finite subset
(possibly empty) of D, then CV(D) is a Q-factor, and furthermore if
the branch points of D are dense, then CV(D) is a Hilbert cube.

Proof. The first part of the theorem is Lemma 5.4 and the
second part follows from applying Lemmas 4.1 and 5.4-5.6 to the
Compactification Theorem and observing that D admits a standard
inverse limit representation \im(Tny rn) where Vd Tlt
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