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SPECTRAL DISTRIBUTION OF THE SUM OF
SELF-ADJOINT OPERATORS

ARTHUR LIEBERMAN

Using the techniques of noncommutative integration
theory, classical results of Hermann Weyl concerning the
positive eigenvalues of the sum of two self-adjoint compact
operators are extended to self-adjoint operators which are
measurable with respect to a gage space. Let (H, A, m)
be a gage space and let K and L be self-adjoint operators
which are measurable with respect to (H, Ay m). Let Pκ[λ, °°)
be the spectral projection of K for the interval [λf oo) and
let Λκ(x) = sup {λ I m(Pκ[λ, oo)) ̂  x}. Then Aκ+L{x + r) ^ Λκ(x) +

ΛL(r). If K ^ L, then Λκ{x) ^ AL(x). If L is bounded, then

ΛLKL{x) ^ | | L | | 2 Λκ(x) for x ^ m(Pκ[0, oo)). If g = m(support

(L)) and <? < oo, then Aκ(x + q) ^ Λκ+L{x); if μ = ^ ^ ( g ) , then

^ A O I I , for 1 ^ p ^ oo.

1* Notation* We specifically work in the context of a gage
space. [See 5 for definitions and notation.] We will always require
that an operator be measurable [5, Definition 2.1]. This is a technical
consideration which is necessary to avoid the pathologies which can
occur with unbounded operators. Any one of the following conditions
implies that a self-adjoint operator T is measurable with respect to
the gage space (H, A, m):

1. TeA.
2. TηA and m is a finite gage. {TrjA means that UT = TU

for every unitary operator U in the commutant of A.)
3. TηA and m(support (T)) < oo, where support (T) is the

orthocomplement of the nullspace of T.
4. TηA and A is abelian.
If P is a projection operator, P will be identified with the range

of P. If T is an operator, R(T) denotes the range of T and R(T)
denotes the closure of R(T). If T is self-ad joint, note that support
(Γ) - R{T).

(H, A, m) is a gage space. If S and T are self-adjoint operators
which are measurable with respect to (H, A, m), then S + T(ST) will
denote the strong sum (product) of S with T; this is the closure of
the ordinary sum (product) and is self-ad joint and measurable [5,

S oo

XdPτ(X); the
—oo

function PΓ(λ) is chosen to be continuous from the right. If J^ is
an interval, Pτ{^) is the spectral projection of T for the interval
The function Λτ is defined, for x>0, by Λ1(x) = suip {λ | m(Pτ[X, oo))^
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Note that m(Pτ[Λτ(x), oo)) < x is possible if m(Pτ{Aτ(x) — ε, Λτ(x))) = oo
for every ε > 0. Λτ(x) is a nonincreasing function of x and is con-
tinuous from the left. If x > m(/), where I is the identity operator
on H, then Λτ(x) — sup (φ) = — oo we will not explicitly mention this
pathology in order to avoid excessive technicality and splitting into
cases.

The author wishes to thank the referee for finding an error in
one of the proofs and for suggestions which make the paper more
readable.

2* Statement of the results. Below we state the theorems and
corollaries and prove the corollaries. The theorems are proved in
the next section. For the remainder of this paper, K and L are
self-adjoint operators which are measurable with respect to the gage
space (if, A, m).

THEOREM 1. Let q = m(support (L)) and assume q < oo. Then
Λκ(x + q) ^ Λκ+L(x) for x > 0; equivalently, Λκ(x) <L Λκ+L(x — g) for
x > q.

THEOREM 2. Λκ+L(x + r) ^ Λκ{x) + ΛL(r), for x> 0, r > 0.

If (if, A, m) is the algebra of all bounded operators on if, m is
the usual trace, and if is a compact operator and has (counting
multiplicity) at least j + 1 positive eigenvalues, then Λκ(j) is the
jth. positive eigenvalue of K and Λκ(j + 1/2) is the (j + l)st positive
eigenvalue of K. If in addition L is compact and has at least k + 1
positive eigenvalues, then ^Theorem 2 implies Λκ+L(j + & + 1) ^
Λ*0" + 1/2) + Λ*(fc + 1/2) - ^ ( i + 1) + ΛWfc + 1), which is WeyΓs re-
sult [6, Satz 1]. Similarly, Theorem 1 reduces to [6, Satz 2] if L
has finite rank.

By K ^ L is meant L - K ^ 0.

COROLLARY 1. If K ^ L, ί&ew ^(sc) g Λz(&) /or a > 0.

Proof of Corollary 1. K = L + (K - L). Note that if - L ^ 0.
Let α? > 0 and let ε be an arbitrary positive number with ε < x. Then
Λκ(x) <̂  ̂ (̂ίc — ε) + -4̂ _L(e) by Theorem 2. Since /ίπ_L(ε) <S 0 and the
function -4£ is continuous from the left, Λκ{x) g ^L(x).

COROLLARY 2. IfK^L and f is a nondecreasing real-valued
function with domain (--oo, oo), £/&ew m(f(K))^m(f(L)), provided
these quantities are both defined.

Proof of Corollary 2. m(f(K)) = Γ f{\)dm{Pκ{\)) and m(f(L)) =
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f(X)dm(PL(λ)). The conclusion is immediate since by Corollary 1,
m(Pκ[\ <*>)) ̂  m(PL[\f oo)) and m(PL(- oo, λ]) ^ m(Pκ(~ oo, λ]) for all
real numbers λ. Note that the hypotheses of Corollary 2 do not
imply f(K)<Lf(L) [1].

THEOREM 3. Λικ+Lι(x + r) ^ ^ I O ) + ΛlLι(r) for x > 0 αmZ r > 0,
where \K\ is the absolute value of the operator K.

COROLLARY 3. Let q = m(support (L)) and assume q < oo. Then
A\κ\{x + g) ^ Λ|/sΓ+i,(x) /or x > 0; equivalently, Λικι(x) ^ Λικ+L](x — q)
for x > q.

Proof of Corollary 3. Let x > 0, and let e be an arbitrary
positive number with ε < x. Since K — (K -\- L) — L, hy Theorem 3,
Λικι(x + q) ^ Λ ^ + L I O - ε) + /ί1L1(g + ε) - -4IX+L,(a; - ε) since ^ | z,(g + ε) = 0
or - c o . Now apply the left continuity of the function Λικ+Ll.

THEOREM 4. Assume L is bounded with norm \\L\\. Then
ALKLHF) = II £||2Λ*(Λ) for 0 < x ^ m(Pκ[Q, oo)). In particular, if P
is a projection in A, then ΛPKP{x) rg Λκ(x) for 0 < x ^ m(PK[0, oo)).

COROLLARY 4. J-ssumβ L is invertible and al ^ | L \ ̂  bl for
some positive numbers a and b. Then a2Λκ(x) <̂  ALKL{x) ^ b2Λκ(x) for
0 < x ^ m(P^[0, oo)), where I is the identity operator on H.

Proof of Corollary 4. Clearly 1 L | ^ 6 and 1 L'1 \ ̂  1/α. Apply
Theorem 4 to LKL and to L^LKL)^1 = If.

The p-norm of a self-adjoint measurable operator T is defined
[3, Definition 3.1] by | Γ | p = (m(| Γ^)) 1^ if 1 ^ p < oo and || Γ|U =
sup {λ I m{Pm[\ oo)) > 0}. Note that || Γ ] ^ equals the operator norm
of T if the gage space is regular, that is, if the gage of every non-
zero projection is positive.

THEOREM 5. Let q = m(support (L)) and assume q < oo. Let
μ = Λm(q). Then \\K + L\\9 ^ || KPκ(~μ, μ) \\p for 1 g p ύ - .

3* Proof of the theorems*

LEMMA 1. Let Pand Q be projections in A. Let Y— {veH\Pv — v
and Qv = 0}. Then Ye A and Y + R(PQ) = P.

Proof of Lemma 1. Let veY and weR(PQ),w = PQz. Then
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O, w) == <y, PQz) = (Pv, Qz) = (v, Qz} = (Qv, z) = <0, z) = 0, so that

Now let Py = y. Let z be the projection of y on the subspace
R(PQ). Then 2/ = (?/ — z) + 3. Clearly z e R(PQ) and consequently,
P{y — z) = y — z. In addition, (2/ — z) _L R(PQ). Let w be any vector.
Then (Q{y - 2;), w> - (QP(y - z), w} = (y - z, PQw) = 0, so that
Q(y - s) = 0.

LEMMA 2. Let P and Q be projections in A. Let Y= {v e H\ Pv = v
and Qv = 0}. Then m(Y) ^ m(P) — m(Q). In particular, if Pv = v
implies Qv Φ 0, then m{Q) ^ m(P).

Proof of Lemma 2. By additivity of the gage and Lemma 1,
m(Y) + m(R{PQ)) = m(P). To prove the lemma, it suffices to show
that m(R(PQ)) <; m(Q); this is well-known for factors but we know
of no reference for the general case. For later use, this is proved
under the assumption that P is self-adjoint but is not necessarily a
projection.

The operator PQ has polar decomposition [2, pp. 323-324] PQ =
M(QP2Q)ίβ, where M is a partial isometry with initial domain support
(QP2Q)112 = support (QP2Q) = R(QP2Q) and terminal_domain _support
(PQPfi2 = support (PQP) - R(PQP). Consequently, R{PQ) = R(PQP);
also m(R(PQP)) = m(R(QPQ)) since the initial domain and the terminal
domain of a partial isomerty have the same gage. Then m{R(PQ)) —
m(R(PQP)) = m(R(QPQ)) g m(Q) since R(QPQ) is a subspace of Q.

If i ί is finite dimensional, Lemma 2 states that the dimension of
the solution space of a system of m(Q) homogeneous linear equations
in m(P) unknowns is at least m(P) — m(Q).

Proof of Theorem 1. Let x > 0 and e > 0 and μ = Λκ{x + q).
Then m(Pκ[μ - ε, 00)) :> # + q. Apply Lemma 2 with P = P*[μ — ε, 00)
and Q = support (L) to obtain m{v e H \ Pκ[μ — ε, co)^ = v and Lv =
0} ^ (x + q) - q = x. If P^fμ - ε, co)^ = v and L^ = 0, then {{K +
1/)̂ , v> ^ (/ί — ε) II v ||2, so that Pκ+άμ — s, °°)v =£ 0. By Lemma 2,
m(Pκ+L[μ — ε, 00)) ̂  m{^ 6 i ϊ I P^t/^ — ε, 0x3)̂  = ^ and L'y = 0} >̂ α?. Since
ε is an arbitrary positive number, Λκ+L(x) ^ μ ~ Λκ(x + q).

Proof of Theorem 2. Let x > 0 and r > 0, and assume Λ^+^ίc +
r) > Λκ(x) + ^i(r). Let A3 = Λκ+L(x + r) - Λκ{x) - ΛL(r). Let P =
PK+L[Λ-K+L(% + r) — δ, co); then m(P) ̂  x + r. Let Q be projection on
the subspace of H spanned by Pκ[Λ.κ(x) + δ, co) and PL[ΛL(r) + δ, 00);
then m(Q) < αj + r.

Let Pv = v with || v \\ = 1. Then {{K + L)ι;, ̂ > ̂  Λκ+L(x + r) -
δ - Λ-0*0 + ^L(r) + 4o - δ > (Λ*(aO + δ) + (//L(r) + <?), so that either
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(Kv, v) > Λκ{x) + δ or (Lv, v) > ΛL(r) + δ. Therefore Qv Φ 0. By
Lemma 2, m(Q) ;> m(P), which is impossible since m(P) ;> x + r and
m(Q) < x + r.

Proof of Theorem 3. Let λ > 0 and ψ̂  > 0. Apply Lemma 2
with P = PK+L[X + π/r, oo) and Q = projection on the subspace of i ϊ
spanned by PK[X, oo) and P J ^ , oo) to obtain m(Pκ+L[X + f, oo)) <g
m(Q) ^ ra(P*[λ, o o ) ) + m ( P L [ t , oo)). Similarly, m(P_(*+L)[λ + f, oo)) ^
w(P-*[\ °°)) + ^(P-il'f, °°)). Adding these inequalities yields
m(Pικ+L][X + ψ, oo)) ^ m(PIJC,[λ, oo)) + m(PlL][ψ, oo)).

Let ί be a small positive number. Then m(Pικ+u[Λικ[(X) + δ +
^ I L I W + δ, oo)) ^ m(P | j n M I J n (λ) + δ, oo)) + m ( P 1 L l μ u ι ( t ) + δ, oo)) <
λ + f, so that ^,^+χ,(λ + ψ)< Λικι(X) + /f1LI(f) + 28.

Proof of Theorem 4. Without loss of generality assume | | L | | = 1.
We will showτ that m{PLKL[X, oo)) ^ m(Pκ[X, oo)) for λ > 0. Let X > 0
and let P = PLZL[\ <*>)- Let veH, | | ^ | | = 1, and Pv = v. Then
(LKLv, v) ^ λ, so that (KLv, Lv) ^ λ. Since \\Lv\\^l, PK{X, OO)LVΦQ

and LPK[X, oo)Lv Φ 0. Let Q be projection on J?(LP^[λ, oo)L); then
Qv Φ 0. By Lemma 2, m(P) ^ m(Q). But m(Q) ^ m(5(LP z[λ, oo)) be-
cause of set inclusion, and m(R(LPκ[X, oo)) ^ m(P^[λ, oo)); this is
proved in the last paragraph of the proof of Lemma 2.

Proof of Theorem 5 . I f p = oo, \\K+ I / | U = l i m £ _ 0 + Λικ+Ll(ε) ^
lim£_0+ Λm{q + ε) by Corollary 3. If m{P[K\[μ, oo)) > g, then
lime^0+ ylIZI(g + e) = JK ^ || KPκ{-μ9 μ) |U. If m ί P ^ i ^ , oo)) = ? , then
^i^ito + e) = ^i^pX(-ii,fi)i(s) for all ε > 0 and the result is immediate.
If m(Pικι[μ, oo)) < q9 then m(Pικι(μ — ε, μ)) = oo for every ε > 0, so
that liπw,. Λm(q + ε) = μ = \\ KPκ{-μ, μ) |U.

Now let 1 ^ p < oo. Since the theorem is trivial for μ — 0,
assume μ>0. If m(P|^+ i | [λ, oo))=oo for some λ > 0 , then | | ίΓ+L| |p=oo
and the theorem holds trivially. Therefore, assume m{P\κ+L\[κt °°))< °°
for all X > 0. Fix λ, 0 < λ < μ. Let 7 = m(P ! i Γ + L |[λ, oo)) and let
ε > 0. Note that if X = Λικ+Lϊ(j + ε), then m(Pϊκ+Ll(X - είf λ)) = oo
for every εx > 0. Therefore, we can assume λ > Λικ+Ll(y + ε). By
Corollary 3, Λικ+Ll(y + ε) ^ Λm(i + q + ε). Therefore, m(Pm[Xf oo)) ^
7 + g + ε. Since ε is arbitrary, m(P[κ+L[[X, oo)) ^ m(P|^|[λ, oo)) — g ^

m(P\κ\[\ μ)) for λ < μ. Now || HΓ + L | | ; = Γ | λ \pdm{Pκ+L{X)) =

λ^m(P l r + z l (λ)) and
Jo

A-μ, μ)\\',= \ Iλ|"dm(P x(λ)) = ί λ'dm(P I J t l(λ)).

The conclusion follows immediately.
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