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SOME ASPECTS OF Γ-NILPOTENCE

B. J. GARDNER

A number of questions involving T-nilpotence are studied.
§ 1 contains characterizations of left and two-sided T-nilpotent
rings in terms of (transfinite) annihilator series and a list of
ring constructions which preserve T-nilpotence. In §2 the
radical theory of T-nilpotence is investigated. It is shown
that a left T-niϊpotent ring belongs to a radical (resp. semi-
simple) class precisely when the zeroring on its additive group
does so, and that there are no interesting radical classes which
consist entirely of left T-nilpotent rings. § 3 is devoted to
an examination of the effect which chain conditions on the
type set of a suitably restricted torsion-free abelian group
G have on the kinds of ring multiplication which G admits.
Some conditions are given which are sufficient to ensure that
every multiplication on G is (two-sided) T-nilpotent. A result
from § 2 is used to show that certain homogeneous groups do
not admit nontrivial nilpotent multiplications. In the final
brief section an example is used to show that whereas two-
sided T-nilpotent rings satisfy the idealizer condition, the
same need not be true of a left T-nilpotent ring.

!• Generalities* A ring (all rings considered are associative) is
left T-nilpotent if for every sequence x19 x29 of its elements, there
exists an index n for which x1 xn = 0. Right T-nilpotence is
similarly defined. The terms are due to Bass [2] though the con-
cepts were introduced by Levitzki [13]. The class of left T-nilpotent
rings lies strictly between the class of nilpotent rings and the Baer
lower (= prime) radical class .ζ%. Our first result lists some closure
properties of the class of left T-nilpotent rings. Here, and elsewhere
throughout the paper, the symbol <j is used to denote ideals.

THEOREM 1.1. The class of left T-nilpotent rings is closed under
formation of subrings, homomovphic images, extensions and direct
sums. A ring is left T-nilpotent if and only if every countable
subring is.

Proof. Subrings and homomorphic images present no difficulties.

Suppose I <\ R where I and Rjl are left T-nilpotent. For any
sequence x19 x2, of elements of R, we have yx = xγ x%1 e I for
some nλ. Similarly there exists n2 > nt for which y2 = xni+1 xΛ2 e I.
Proceeding thus, we construct a sequence yl9 y2, of elements of I
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and consequently for some nk we have xλ x%k = yγ yk — 0, so
that R is left T-nilpotent.

Let {Rλ I λ 6 A] be a set of left T-nilpotent rings and let (xx)
denote a typical element of 0 Λ Rλ (ring direct sum). Suppose there
exists a sequence (χλΛ), (χXιZ), - - - with (xλtl) - (xλ>n) = (Π?=i Xi.d ̂  °
for each n. There is no loss of generality in assuming that the
same set of indices λ is nontrivially involved with each term. But
then Π?=i χλΛ ^ 0 for e a c k >̂ contradicting the assumed left T-
nilpotence of Rλ for each relevant value of λ. Hence there is no
such sequence and φ i Rλ is left Γ-nilpotent.

The last assertion of the theorem is clear.

We are going to obtain another characterization of T-nilpotence,
but before proceeding to this we need to introduce some notation
and definitions.

If S is a subset of a ring R, we denote the left (resp. right,
resp. two-sided) annihilator of S in R by (0: S) (resp. (S:0), resp.
(0 : S)*). A left annihilator series of a ring R is a (transfinite) series

0 = .β0 £ R, s . . . s i ^ s .. s jβ, = R

of subrings of R such that i?α <] Ra+1 and i2Λ+1i2 g J2α for each a9

and ^ = \Ja<β Ra if ^ is a limit ordinal. For an arbitrary ring R,
we define the ideals R{a) inductively as follows: Ri0) = 0, R{a+1)/R{a) -
(0: R/R{a]) and R{β) = U«<̂  ̂ ( α ) if ^ is a limit ordinal. If R = R{μ)

for some ordinal μ, the series

0 = Rw g .B(1) g g i2(a) g g -β(/i) = i?

is called the upper left annihilator series of R.

THEOREM 1.2. The following conditions are equivalent for a
ring R.

( i ) The upper left annihilator series of R exists,
(ii) R has a left annihilator series.
(iii) Every nonzero homomorphic image of R has nonzero left

annihilator.

Proof, (i) ==> (ii): Obvious.
(ii)=*(iii): Let I(Φ R) be an ideal,

0 = Ro g R, g - g Ra.^ - g Rμ = R

a left annihilator series of R and let β = Min. {a \ Ra g I}. Then β
is not a limit ordinal, (Rβ + / ) / ! ̂  0 and

= (RβR + /)// S (22,., + I)!I = 0 .
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(iii) => (i): The chain

o = RW ε Ra) -

must terminate, at R{μ), say. But then (0: R/Riμ)) = R{μ+1)/R{μ) = 0,
whence R = Riμ).

The following characterization of left T-nilpotence resembles a
group-theoretic result of Chernikov ([3], Theorem 1; see also [11],
p. 219) which characterizes ZA groups. The ring-theoretic result
was obtained by Levitzki [13] but we include a proof for the sake
of completeness.

THEOREM 1.3. A ring R is left T-nilpotent if and only if it
satisfies the conditions of Theorem 1.2.

Proof. Suppose R has a left annihilator series

0 = RQ §Ξ Rι ε * =U Ra ε ' * * =5 Rμ ~ R

If R is not left T-nilpotent, it has elements xlf x2, such that
&k = %i - Xfc Φ 0 for all values of k. Let β be the least ordinal a
for which Ra contains some ak, and let am be in Rβ. Clearly β is
not a limit ordinal and β > 0. But then am+1 = amxm+1 e RβR ε Rβ-lf

contrary to our choice of β.
For the converse, it suffices, by Theorem 1.1, to prove that

every nonzero left T-nilpotent ring has nonzero left annihilator.
Let R be such a ring, xλ any nonzero element of R. Either xλe (0: R)
or xλx2 Φ 0 for some x2 e R. Either xxx2 e (0: R) or x^x^ Φ 0 for some
x3. This cannot go on, so there are elements xlf , xk with 0 Φ

Theorem 1.3 enables us to demonstrate some further closure
properties of the class of left T-nilpotent rings. In the sequel,
R(n x n) denotes the ring of n x n matrices, R[x] the polynomial
ring, R[G] the group ring corresponding to a group G, over a ring R.

PROPOSITION 1.4. If R is left T-nilpotent, then so are R(n x n),
R[x\ and R[G] for any group G.

Proof. We shall prove that R[x] is left T-nilpotent; the other
statements can be proved similarly. Let

o = R{0) ε R{1) ε ε Ria) ε £ R{μ) = R

be the upper left annihilator series of R. For any polynomial p{x) =
α0 + ••• + anx

neR[x] such that p(x)R[x] ε R{a)[x], we have, in par-
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ticular, aoa + . . + anaxn e R{a)[x]y and so aoa, , ana e R[a) for every
aeR, i.e., p(x) belongs to R{a+1)[x], Conversely, if p(x)e R{oc+1)[x],
then for any g(x) = b0 + + bmxm e R[x], we have p(x)g(x) = aQb0 +
{ajb1 + aj)o)x + ••• with each coefficient belonging to R{a\ i.e.,
p(x)9(x) e i2(α)[x]. If £ is a limit ordinal, then .R^fα] = ((J«<^ i2(α))W =
[Ja<β R{a)[x]. I t follows that

o = RW[X] s β ϊ̂jα?] s a R{a)[χ] a s Λ(/I)M = RM

is the upper left annihilator series of R[x].

One obtains similar results by considering two-sided annihilators,
a two-sided annihilator series

0 = Ro* s i2^ S C i2a* S *# S -R̂ j* = R

and an upper two-sided annihilator series

o - i c a Λ!ϊ} a a i2iβ> a a Λίί11 - Λ

being defined in the obvious way.
We need give no proof of

THEOREM 1.5. The following conditions are equivalent for a
ring R.

( i ) The upper two-sided annihilator series of R exists.
(ii) R has a two-sided annihilator series.
(iii) Every nonzero homomorphic image of R has a nonzero

two-sided annihilator.

THEOREM 1.6. A ring R is left and right T-nilpotent if and
only if it satisfies the conditions of Theorem 1.5.

Proof. If R has a two-sided annihilator series, the latter is both
a left and a right annihilator series, so R is left and right Γ-nilpotent.

Conversely, if R is left and right T-nilpotent, then (0: R) Φ 0.
Let α?! be a nonzero element of (0: R). Either a^eCBrO) or X2XXΦ 0
for some x2. The right Γ-nilpotence of R requires that repetitions
of this process eventually produce a nonzero element xk x1 e (R: 0).
But (0: R) <\ R, so xk x1 e (0: ϋ!)*. Since the class of rings which
are left and right Γ-nilpotent is homomorphically closed, the result
follows.

We conclude this section by noting a connection between T-
nilpotence and another generalization of nilpotence first discussed by
Levitzki [13]. A topological variant has subsequently been studied
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by Leptin [12] and Wiegandt [19]. The left transfinite powers Ra

of a ring R are defined as follows: R1 = R, Ra+1 = RRa and & =
Γ\a<βRa if β is a limit ordinal. The result which follows is due to
Levitzki [13].

PROPOSITION 1.7. Let R be a left T-nilpotent ring with R{μ) =
R. Then Rμ+1 = 0.

Proof. It may be assumed that R Φ 0. A straightforward trans-
finite induction argument shows that R{a)Ra — 0 for every ordinal
a > 0. In particular, ^ + 1 = RRμ = Riμ)Rμ = 0.

The ultimate vanishing of transfinite left powers is a much
weaker condition than left Γ-nilpotence, as one can see by observing
that Eω = 0, where E is the ring of even integers and ω is the first
infinite ordinal.

2* Γ-nilρotence and radical theory• We turn now to an ex-
amination of the behavior of T-nilpotent rings as it affects radical
and semi-simple classes. We denote the lower radical class by L( ),
but in other respects largely conform to the conventions and usage
of Divinsky's book [4], where all undefined radical-theoretic terms
are explained.

The results of this section provide answers, as special cases, to
some questions involving nilpotent rings which were raised and partly
answered in an earlier paper of the author [7] As some of the
ideas of that paper are germane to the present discussion, we begin
by recalling the basic facts.

In what follows, R+ is the additive group of a ring R, G° the
zeroring on an abelian group G. Let S^ be a radical class of abelian
groups. Then ^ " * = {.R|.B+e^} is a radical class of rings. Such
classes are called A-radical classes and are characterized by their
property of containing, together with any member R, all rings S for
which S+ = R+.

PROPOSITION 2.1. Let R be a left T-nilpotent ring, Sf a semi-
simple class containing (R+)°. Then R e S^.

Proof. If R* = 0, then R = (R+)° e^. If R2 Φ 0, then Rl) Φ 0
and R{2) Φ R{1). For any s e R{2)\R{1) we have sR2 = (sR)R s R[1)R = 0.
Hence the correspondence r \-+ sr defines a ring homomorphism from
R onto sR. Also 0 Φ SR = ((sR)+)° < (R+)°, so sReSI i.e., R has a
nonzero homomorphic image in Sf. If 0 Φ I<\ R, then (Γ)° <\ (J?+)°,
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so (J+)° e Sf and as above, I has a nonzero homomorphic image in S<
Thus R e &>.

PROPOSITION 2.2. Let R be a left T-nilpotent ring and & a
radical class containing R. Then (R+)° e &.

Proof. By Proposition 2.1, <^((R+)°) Φ 0. Now JT~ = {G \ G° e
is a radical class of abelian groups ([7], Proposition 1.1) and

+ = jT~0K+) is a fully invariant subgroup of R+. Thus
= (J+)° for some I < JS. It follows that ((i?//)+)° =

°) is ^-semi-simple, whence by Proposition 2.1, so is
R/L But then R/I = 0, so (i2+)° = (J+)° e ̂ r.

PROPOSITION 2.3. Lei R be a left T-nilpotent ring, & a radical
class containing (R+)°. Then R e

Proof. If R2 = 0, then R = (R+)° e &. Otherwise, as in the
proof of Proposition 2.1, we can select s e R{2)\R{1) with 0 Φ SR S
Rw = (0: R). Since R{1) is a zeroring, we have sR <\ R{1) < i2 and
(si?)2 = 0. Moreover, sR is a homomorphic image of (R+)° via the
correspondence r H-> sr, and so si? € ̂ . Let V be a nonzero homo-
morphic image of i2. Then (F+)°, as a homomorphic image of (R+)°,
belongs to &. As above, either V2 = 0 or there is a chain 0 =£
v 7 < F(1) < F for some v e V, where vFe &. Thus ^ ( F ) ̂  0 [1],
i.e., R has no nonzero ^-semi-simple homomorphic images and there-
fore belongs to &.

PROPOSITION 2.4. Let R be a left T-nilpotent ring, Sf a semi-
simple class containing R. Then (R+)° € Sf.

Proof. Let & be the radical class whose semi-simple class is
Sf. As in the proof of Proposition 2.2, ^((R+f) = (I+)° for some
/<] R. By Proposition 2.3, Ie &, so / = 0 and ^((i2+)°) = 0.

Thus radical theory distinguishes between left Γ-nilpotent rings
solely on the basis of their additive groups. The following theorem
summarizes the situation.

THEOREM 2.5. Let & be a radical class, S^ the corresponding
semi-simple class. If R is a left T-nilpotent ring, then

(i)
(ii)

Furthermore, there is an A-radical class <^~* such that
for every left T-nilpotent ring R.
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Proof. The foregoing propositions take care of (i) and (ii).

Let jT" = L({V+ I Ve & and V is left Γ-nilpotent}). Then
L({V+\Ve^ and V2 = 0}). For any left Γ-nilpotent ring R,

belongs to _^7 so if G is a nonzero homomorphic image of
G has a nonzero subgroup S+, where S e ^ ? and S2 = 0.

This implies that every nonzero homomorphic image of [.̂ ~*(22)+]0

has a nonzero ^-ideal and hence that [jr~*(i2)+]° e &. But ^"*(22)
is left Γ-nilpotent, so by Proposition 2.3, ^~*(E)e& and thus

S ,5F(22). On the other hand, &{R) is left Γ-nilpotent, so
e J?~, whence &(E) e _^~* and ^( i2) S

COROLLARY 2.6. Lei ^ί" he a nonempty class of left T-nilpotent
rings, ^€* = {(J?+)° | R e

Corollary 2.6 answers, in particular, a question which we raised
in [7]: For which classes ^ of nilpotent rings is L(^J?) determined
by the zerorings it contains?

Using an argument similar to that in the proof of Proposition
2.3, one can show that if ^£ is a nonvoid homomorphically closed
class of left Γ-nilpotent rings, then L(^t) = L{{Re^ \R2 = 0}).
For nilpotent rings, this was proved by Sadiq Zia and Wiegandt [15].

Some further consequences of Theorem 2.5 are described in the
next few results.

PROPOSITION 2.7. For any radical class & and any left Γ-
nilpotent ring R we have

( i ) &(R(n x n)) = &(R)(n x n) for all n;
(ii) &(B[x]) = &(R)[x];
(iii) &(R\G\) = &(R)\G\ for any group G.

Proof Let & coincide with the A-radical class ^r~* on left
Γ-nilpotent rings. Then ^~*(R(n x n)) = ^*(R)(n x n) for any ring
R ([7], Proposition 1.5). In particular, if R is left Γ-nilpotent, so
is R(n x n) (Proposition 1.4) and we have

x n)) = ^~*(R(n x n)) = ^r*(R)(n x n) = &P(R)(n x n) .

The other statements can be proved similarly.

PROPOSITION 2.8. Let & he a radical class, &* the correspond-
ing semi-simple class. Then for a left T-nilpotent ring & we have

(i) 22e ^ <=» 12*e ̂ ? for all positive integers n;
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(ii) R e S^ <=> Rn e S^ for all positive integers n.

Proof. If Re&, then (R+)°e &. By Corollary 2.3 of [7],
((Rn)+)° e & and so R% e &, for each n. Since Sf is hereditary, (ii)
is clear.

PROPOSITION 2.9. For every radical class & and left T-nilpotent
ring R, &{R)+ is a pure subgroup of R+.

Proof. <^?(R)+ = ̂ ~(R+) for a radical class ^ of abelian groups
and hence is pure by Proposition 1.1 of [6].

PROPOSITION 2.10. // R and S are left T-nilpotent rings with
R+ and S+ quasi-isomorphic, then R belongs to a given radical class
if and only if S does.

Proof. This follows from the closure of radical classes of abelian
groups under quasi-isomorphisms ([6], Theorem 1.3).

In [7] we observed that if j f is a radical class of abelian groups,
^ ° the class of zerorings on groups in ̂ ", then L(^°) g & Γ) c^~*,
where & is the Baer lower (= prime) radical class, and that no
examples of strict inequality are known, though equality has been
demonstrated only when ^ is pure-hereditary. Despite first appear-
ances, Theorem 2.5 provides no new examples of equality, because
of the following result, which generalizes the theorem in [8].

THEOREM 2.11. The following conditions are equivalent for a
radical class & Φ {0}:

( i ) £% consists of left T-nilpotent rings.
(ii) & consists of nilpotent rings.
(iii) £% consists of zerorings.
(iv) & is the class 2?P of zerorings on divisible P-groups for

some set P of primes.
(Here a P-group is a direct sum of ^-groups, p e P).

Proof. We need only show that (i) implies (iv). If every ring
in & has a torsion additive group, then either & = &P for some
P, or for some prime p, & contains all ^-rings with ^-primary
additive groups ([7], Theorem 3.3). If & contains a ring whose
additive group is not torsion, it contains a ring R for which R+ is
torsion-free. By Theorem 2.5, (R+f e & and so (see e.g. [6], Corollary
2.3) & contains the zeroring on the group of rational numbers. But
then Theorem 4.2 of [7] implies that & contains all ^-rings with
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divisible additive groups. To complete the proof, we need only ex-
hibit examples of non-left T-nilpotent ^-r ings with primary and
divisible additive groups. The algebra of Example 3, p. 19 of [4] is
commutative and nil, and hence belongs to &> but is not left Γ-
nilpotent. By considering algebras over fields of finite and zero
characteristics, we obtain our desired examples.

The last result is perhaps a bit surprising, as left Γ-nilpotence
is a rather "large" property (cf. Theorem 1.1).

3* Some abelian group properties and their effect on admissible
multiplications* Wickless [18] has considered abelian groups which
admit only nilpotent multiplications. In this section we shall obtain
some related results for Γ-nilpotence. Theorem 1.1 of [18] remains
valid if Γ-nilpotence replaces nilpotence, so that interest is centered
on torsion-free groups.

In this section, all groups are abelian. We denote the type of
an element x of a torsion-free group by T(x). A nil type is the
type of a height sequence (hu h2, ) for which 0 < hn < °o for in-
finitely many values of n. For unexplained terms see [5].

Consideration of opposite rings easily establishes the following
result.

PROPOSITION 3.1. If every ring on a group G is left T-nilpotent,
then every ring on G is right T-nilpotent.

Thus in the sequel we can refer unambiguously to rings which
admit only Γ-nilpotent multiplications.

We first consider chain conditions on the type set of a torsion-
free group G as they affect the ring multiplications which can be
defined on G. A couple of lemmas are required as preparation for
our main result.

LEMMA 3.2. Let a, b he elements with nil types in a torsion-free
ring.

( i ) Either T(ab) > T(a) or T(ab) > T(b).
(ii) If neither a nor b has infinite height at infinitely many

primes, then T(ab) > Γ(α) and T(ab) > Γ(6).
(iii) // T(ab) > Γ(α), then Γ(α) > Γ(δ).

Proof, (i) is just Lemma 3.1 of [18]. From the proof of the
latter it can be deduced that if T(ab) = T(a) and neither a nor b
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has infinite height at infinitely many primes, then 6 has zero height
at almost all primes, which is impossible, (iii) is clear.

LEMMA 3.3. Let R be a ring such that R+ is torsion-free, all of
its nonzero elements have nil types and its type set has ACC and
DCC. For any sequence au a2, of elements of R with aγ Φ 0, there
exists an index n such that T(αx) < T{ax an).

Proof. Suppose there is a sequence alf a2, which fails to
satisfy the stated condition. Then ax an Φ 0 and T(at an) =
T(a^ for all values of n. This implies, by Lemma 3.1, that T{a^) >
T(a2 an) for each n > 1. Because of ACC, there exists n2 such
that T(a2 αΛ2) is maximal in {T(a2 an) | n = 3, 4, •}. If there
exists m> n2 with T(an2+1 •••«„)< T(a2 a%2) then T(a2 a%2

an2+1 - am) > T(a2 a%2) by Lemma 3.1, contradicting the maxi-
mality of Γ(α2 α*2). Hence T(α2 • an) > T(a%2+1 α%) for all
^ > w2. By repetitions of this argument, we obtain an infinite chain

T(at) > T(a2 . an) > T(an2+1 . . . an) > Γ(α#8+1 α.4) > .

contradicting our assumption of DCC.

THEOREM 3.4. Let G be a torsion-free group, all of whose non-
zero elements have nil types and whose type set has ACC and DCC.
Then G admits only T-nilpotent multiplications.

Proof. Suppose a ring R with R+ = G has a sequence al9 a2,
of elements such that axa2 an Φ 0 for all n. Then by Lemma 3.3,
T{a^ < T{ax an) for some nγ. Let bγ = aγ αΛl, δ2 = αΛ l + 1, 68 =
ani+2> etc. Then

T(αO < T(aλ . αΛl) = TφJ < T{bx . 5%2)

= Γ(α x aniani+1 . anχ+n2^)

for some n2. Repetitions of this process lead to a violation of ACC,
so there is no such sequence.

Using Lemma 3.2 (ii) we can similarly prove

THEOREM 3.5. Let G be a torsion-free group, all of whose non-
zero elements have nil types, none of whose nonzero elements has
infinite height at infinitely many primes and whose type set has
ACC. Then G admits only T-nilpotent multiplications.

In [18], Theorem 3.2, it is shown that if a group G, in other
respects like that in Theorem 3.4, has merely ACC on its type set,
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then R e & for every ring R with R+ ~ G. An alternative proof
of this result can be obtained as follows (see [14] or [10], p. 196):
Let 6j, b2, be an m-sequence in R, i.e., a sequence such that there
is another sequence cl9 c2, with bn+1 ~ bncnbn for each n. Then
T(bn+1) ^ 2T(bn) > T{bn), so bm = 0 for some m.

To put Theorem 3.4 into perspective we need to establish whether
or not ACC (with the other conditions) implies T-nilpotence.

EXAMPLE 3.6. Let Hl9 H2, be height sequences with nil types
such that Hn + Hn+1 = Hn for each n and let τl9 τ29 be the cor-
responding types. Then τ1 > τ2 > • . Let Xn be that subgroup of
the rational numbers for which T(Xn) = τn9 1 e Xn and 1 has height
sequence Hn in Xn. Under the usual rational number multiplication,
we have XnXn+1 g Xn for each n. Let R be the ring of strictly
lower triangular ^ 0 x ^o matrices over the rationals for which
almost all entries are zero and all entries in the nth column belong
to Xn. In what follows, [x]ιd is the matrix whose (i, j)th entry is
x and whose others are zero.

If [a]ij9 [b]jk e R, then i> j > k and [ α ] ^ ] ^ = [ab]ιk9 and as
α e l j g Xk+ίi b e Xk1 v/e have ab e Xk+ιXk S Xk and so [ab]ik e R.
Thus B is a subring of the ring of all row-finite rational matrices.
It is not right T-nilpotent since {l]n+ιΛΆn^-ι - [ Ik = P-L+1,1 for
each n. (R is of course left T-nilpotent; see [2], Example (5), p. 476).
However, R+ = ©~=] Gn where each Gn is a direct sum of copies of
Xn and thus the type set of R+ is {T(0)} U {τn\n = 1, 29 ...}, which
has ACC but not DCC.

The height sequences listed below satisfy all the requirements of
Example 3.6:

( 0 0 , 1 , 00 f lf o o ? 1 , c o ? 1, o o ? lf o o ? 1 , 0 0 , 1 , . . . )

( 0 0 , 0 , 1 , 0 , 0 0 , 0 , 1 , 0 , - , 0 , 1 , 0 , 0 0 , o ? . . . )

(00, 0, 0, 0, 1, 0, 0, 0, oo? 0, 0, 0, 1, 0, . •)

It is perhaps worth noting that in Example 3.6 R+ is completely
decomposable.

The following example shows that a group satisfying the con-
ditions of Theorem 3.4 can admit a nonnilpotent multiplication.

EXAMPLE 3.7. Let {Nl9 N29 •••} be a partition of the natural
numbers such that | Nt\ — Ko for each i, and for each ΐ, n9 let τin

be the type of the height sequence (hl9 h29 •••)> where
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n, if keNt

0, if k$Nt ,

X%n that group of rational numbers in which 1 exists and has the
height sequence (hl9 h2, •••) corresponding to r ί Λ. For each i, we
define the ring Rt as follows:

{(ab)ίJ+k, if j + k <,i

0, if i + k > i ,

where (a)tk is the element of Rt whose nth component is dkna.
Clearly Rt+1 = 0 Φ R\. Let R = @Γ=i ^ (ring direct sum). Since any
two types zin9 τjm9 with i Φ j , are incomparable, the type set of R+ is

m θ ) } U {rtn. I i = 1, 2, - •; ̂  = 1, , ΐ} U {r0}

where r0 is the type of the height sequence (0,0, •••)• This has
both chain conditions, but R is not nilpotent.

Note that DCC on its own does not imply anything in particular.
(See the example on pp. 253-254 of [18].)

We conclude this section with a result of a somewhat different
character, derived from the material in §2.

THEOREM 3.8. Let G(Φ 0) be an indecomposable torsion-free group
which is homogeneous of type z and in which every proper pure
subgroup is completely decomposable. If R is a nilpotent ring with
R+ = G, then R2 = 0.

Proof. As shown in the proof of [8], Theorem or [9], Proposi-
tion 2.2, (R/R2)+ is not a torsion group, so if R2 Φ 0, then (R2)$, the
smallest pure subgroup of R+ containing (R2)+, is completely decom-
posable. By Proposition 2.8, R2eL({R}), and since (R2)ϊ/(R2)+ is a
torsion group and (R2)$ is the additive group of an ideal (which we
denote by (R%) of R9 Corollary 1.2 of [6] and Theorem 2.5 jointly
imply that (R%e L({R}). Thus (R2), has a nonzero subring isomorphic
to a homomorphic image of R. But then Horn (R+, {R2)t) Φ 0, so R^
has a homomorphic image which is rational of type z\ But this is
impossible ([5], Proposition 86.5), so R2 = 0.

Of course, in the last result only nonnil types are relevant, as
any homogeneous group of nil type admits only the trivial multipli-
cation. This observation appears to have first been made (in a slightly
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more general form) by Szele ([17], Hilfssatz 3).
Any homogeneous indecomposable group of rank 2 satisfies the

conditions of Theorem 3.8. Fuchs ([5], pp. 125-128) gives a con-
struction which yields groups of every type except that of the ra-
tionals, and every finite rank, which satisfy the conditions.

4* Idealizer conditions* The idealizer of a subring S of a ring
R is the largest subring of R in which S is an ideal. Left and
right idealizers are defined analogously. A ring is said to satisfy
the idealizer condition (etc.) if ever subring is properly contained
in its idealizer (etc.).

Szasz ([16], Theorem 6) has shown that a ring which is left and
right T-nilpotent satisfies the idealizer condition and the same ar-
gument shows that left Γ-nilpotent rings satisfy the left idealizer
condition. We give here an example to show that left T-nilpotent
rings can fail to satisfy the right idealizer condition and hence the
idealizer condition.

EXAMPLE 4.1. We make use of Bass' Example (5), p. 476 of [2].
Let R be the ring of strictly lower triangular ^ 0 x Ko matrices
over a field which have almost all entries zero, S = {{aiό)eR\anl —
OVn}. Then S is a left ideal of R. If (xtj) e B\S9 let xkl Φ 0. Then
[l]ιke S for each I > k (notation as in Example 3.6) and flj^fe) has
(I, l)th entry xkl Φ 0 and so does not belong to S. Hence S is its
own right idealizer.
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