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STRONGLY UNIQUE BEST APPROXIMATES TO A
FUNCTION ON A SET, AND A FINITE

SUBSET THEREOF

M. W. BARTELT

Let X be a compact Hausdorff space and let C(X) denote
the space of continuous real valued functions defined on X,
normed by the supremum norm | |/ | | = m3Lxχeχ\f(x) |. Let M
be a finite dimensional subspace of C(X). This note examines
the problem of whether every best (unique best, strongly
unique best) approximate to / on X is also a best (respec-
tively: unique best, strongly unique best) approximate to /
on some finite subset of X. Appropriate converse results are
also considered.

The Kolmogorov criterion for best approximates shows that π e
M is a best approximate to / on X if and only if it is a best
approximate to / on a finite subset of

E π = { x e X: \f(x) - π(x)\ = \\f - π\\} .

Example 1 shows that the corresponding result does not hold for
unique best approximates. It can easily be shown that when π is a
strongly unique best approximate to / in C[a, b] from a Haar subspace
then there is a finite subset A of [α, 6] such that π is a strongly unique
best approximate to / on A. In Theorem 2 the latter result is
extended to an arbitrary finite dimensional subspace M of C(X) and
in Theorem 3 a converse is proven in this general setting.

The second algorithm of Remez [11] is an important method for
the computation of the best approximate to a function / in C[a9 b]
from a finite dimensional Haar subspace. This algorithm depends on
the fact that a best approximate to / on [a, b] is a best approximate
to / on some finite subset of [α, 6]. (One can think of the algorithm
as a search for this subset.) In fact, the proof of the convergence
of the algorithm given by E. W. Cheney [3] indicates that the
algorithm depends more precisely on the facts that the best approx-
imate π to / on [α, b] is strongly unique and that π is also a strongly
unique best approximate to / on some finite subset of [α, b].

It would also be natural to consider In Lp[a, b] for 1 :g p < co
the relationship between strongly unique best approximates on [a, b]
and on finite subsets of [α, 6]. However, D. E. Wulbert ([15], [16])
has shown that strong unicity does not occur (nontrivially) in any
smooth space and Lp[a, b] for 1 ^ p < co is smooth. In the last
section a different proof of Wulbert's result is given because the
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method of the proof enables one to study strong unicity in IΛ It
should be observed (see Example 3) that even though there are no
finite dimensional subspaces of &[a, 6] containing a unique best
approximate to every / in U[a, 6], a given / in &[a, b] may have
a strongly unique best approximate.

The result mentioned above on the relationship between the best
approximates to / on X and the best approximates to / on a finite
subset of X can be found in [8], [13], and [18].

The results of this note hold with obvious modifications for the
complex case.

2* DEFINITIONS. An element π in M is a best approximate to
/ in C(X) if | | / - m\\ ^ \\f - π\\ for all m in M; π is a unique best
approximate if the inequality is strict for all m in M, m Φ π; and π
is a strongly unique best approximate to / if there exists a real
number r > 0 such that \\f - m\\ ^ | | / — π\\ + r\\π — m\\ for all m
in M.

Let M have dimension n. The subspace M is called a Haar
(Chebyshev) subspace if no nonzero function in M has more than
n — 1 zeros in X. If X is the finite interval [α, 6], then Mis called
a weak Chebyshev subspace if no nonzero function in M has more
than n — 1 sign changes on [α, b]. (For properties of Haar and weak
Chebyshev systems, see e.g. [4], [5], [6], and [17].) In particular it
is known that if If is a Haar subspace of C[a, b] then π is a best
approximate to / on a closed set X in [a, b] (where X contains at
least n + 1 points) if and only if there exists an equioscillation set
for / — π, i.e., a subset A of X containing n + 1 points xί < x2 <
• < xn+ί such that f(xi+ι) - π(xi+1) = - [f(xτ) - π(xt)], i = 1, 2, , n
and 1/(0?,) - π(x<)\ = \\f - ττ||, i = 1, 2, .. , n + 1.

One of the principal tools of the investigation is the following
strong Kolmogorov criterion [2] characterizing strongly unique best
approximates.

THEOREM. Let M be finite dimensional. There exists a real
number r > 0 such that

11/ - m|| ^ | | / - π\\ + r\\π - m\\VmeM

if and only if

max [f(x) — π(x)]m(x) > 0 Vm e M, m ^ 0.

In proofs we assume without loss of generality that the best
approximate to / is 0.
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3* Results* The relationship between a strongly unique best
approximate to a given / on [a, b] and on a finite subset A of [a, b]
is especially simple when M is a Haar subspace. Recall that when
M is a Haar subspace of C[a, b] every / in C{X), where X is a
compact subset of [α, 6], has a strongly unique best approximate
from M [9]. Hence by the strong Kolmogorov criterion we have
the following, result:

THEOREM 1. Let π be a best approximate from the Haar subspace
M of C[a, b] to a given f in C[α, 6]. Then for every equioscillation
set A S Eπ,

max [f(x) — π(x)]m(x) > 0 Vm e M, m =£ 0 .
xe A

If we only assume that π is a strongly unique best approximate
from a weak Chebyshev subspace, then the conclusion of the previous
theorem does not hold. For example, in C[0, Aπ] let f(x) = sin x and
let M be the linear span of

ίSπ/2 - α 0 g x g 3ττ/2

flr(α) - I 0 3ττ/2 ^ α? ^ 5τr/2

(5τr/2 - a; 5ττ/2 ^ a; ̂  4ττ .

Then 0 is strongly unique to / since md»xxeEQf(x)m(x) > 0, VnieM,
m Φ 0, but m&xxeA f(x)(- g(x)) = 0 where A = {5ττ/2, 7ττ/2} is an
equioscillation set for / — 0.

However, we now show that when π is a strongly unique best
approximate from an arbitrary subspace M in C(X), it follows that
there does exist some finite subset A of Eπ such that π is a strongly
unique best approximate to f on A.

THEOREM 2. Let π be a strongly unique best approximate from
a subspace M of C(X) to an element f in C(X). Then there exists
a finite subset A of Eπ with ^ 2n points such that

max [f(x) - π(x)]m(x) > 0 Vm e M, m/A =£ 0 .
xeA

Proof Let M be the span of {glf , gn}. Let Eo = {(f(x)gί(x)9

--, f(x)9n(oή):xeE0}. Then it follows ([2], Theorem 6) that 0 is in
the interior of the convex hull of Eo. Hence (see e.g. Theorem 3.13
in [14]) 0 is in the interior of the convex hull of A, where A is a
finite subset of EQ consisting of g 2n points. It follows ([2], Theorem
6) that 0 is a strongly unique best approximate to / on A. By the
strong Kolmogorov criterion max, e i f(x)m(x) > 0 for all m in M with
m/A =£ 0.
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It is not known in general whether it is possible to find a finite
set A satisfying the conditions of the previous theorem such that
if m is in M and m/A = 0, then m = 0. However, if Eπ is finite
then by setting A — Eπ one can add to the conclusion of Theorem
2 that m/Eπ == 0 implies m = 0. This follows from the strong Ko-
Imogorov criterion. Also if Eπ is not finite but it is known that
any nonzero function in M has at most N — 1 zeros for some integer
N (for example N = n when M is a Haar set), then one can just
add to the set A of the previous theorem enough points of Eπ so
that A has N or more points.

It would be of interest to determine whether the 2n of the
theorem is in general best possible.

If π is a unique best approximate to / on X> then it does not
follow that π is a unique best approximate to f on Ez. This can
be seen in the next example which will also be used later.

EXAMPLE 1. Let M be the subspace of C[0, 3π ] spanned by
g,(x) = 1 and

'π — x

0

βπ/2 - x

0

π

5τr/2

^ x g5τr/2

^ 3π .

Let f(x) = sin x. Then M is a weak Chebyshev system, but it is not
a Haar set on [0, 3τr], Because f(x) has a horizontal tangent at x =
5ττ/2, the function —g2(%) is not as good an approximate to f(x) as
0 is. Clearly then, 0 is a unique best approximate to / on [0, 3ττ],
Now EQ = {τr/2, 3τr/2, 5ττ/2}. Since M has dimension 2, 2?0 is an equi-
oscillation set for / — 0 on [0, 3ττ]. Now 0 is not a unique best
approximate on EQ = A since g2(x) is also a best approximate. Also
observe that 0 is not a strongly unique best approximate to / on
[0, 3ττ] since maxxe^0 /(«)[-flr2(»)] = 0.

In fact even more holds. Let

a? -

0

x -

-π/2

- π

2(7ττ/4 - α?)

,χ -- Ίπ/A

0 ^ a? ^ π/2

τr/2 ^ α; ̂  π

7Γ ^ a; ^ 3τr/2

3ττ/2 ^ a? ^ 7π/4

7τr/4 ^ a; ^ 3τr .

Then let M be the subspace of C[0, 3π] spanned by &(&) and gz(x),
and let /(x) = sin x. Then by consideration of the values of any
me M at points τr/2, 3ττ/2, and 5π/2, it is easy to verify that zero is
a unique best approximate to / on [0, 3τr] and Eo = {π/2, 3π/2, 5ττ/2}.
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Moreover on each subset A of E09 there is a function g e M such that
g/A =£ 0 and g is a best approximate to / on A. Thus zero is not
a unique best approximate to / on any finite subset A of Eo.

The next proposition summarizes the results for an arbitrary
subspace M of C(X). For the result on best approximates see [8],
[13], and [18].

PROPOSITION. If π is a best (strongly unique best) approximate
to f on X, then there exists a finite subset A of X with less than or
equal to n + 1 (resp. 2ri) points such that π is a best (strongly unique
best) approximate on A.

REMARK. The Kolmogorov and strong Kolmogorov criteria and
Example 1 also yield the relationship between the best approximate
to / on X and on all of Eπ. As expected, π is a best (strongly
unique best) approximate to / on X if and only if it has the same
property on Eπ. This does not hold for a unique best approximate.

4* Converse results* The Kolmogorov criterion shows part (i)
of the next theorem.

THEOREM 3. (i) If π is a best approximate to f on a finite
subset of Eπ, then π is a best approximate to f on X.

(ii) If π is a unique (strongly unique) best approximate to f
on a finite subset A of Eπ, then π is a unique (strongly unique)
best approximate to f on X, except possibly for those m in M with
ml A = 0.

In fact more than this holds. The following result says that if
π is a unique best approximate to / on a finite subset A of X, then
π is also a strongly unique best approximate to / on A.

THEOREM 4. Let π be a unique best approximate to f on a finite
subset A of X. Assume f(x) — π(x) Ξ£ 0 on A. Then

max [f(x) — π(x)]m(x) > 0 Vm Ξ£ 0 on A.
xeΛ

Proof. (We show that if max ί 6 i f(x)q(x) ^ 0 for some qeM,
then there exists a real number λ > 0 such that — Xq is a best
approximate to / on A.) Let A' = {xeA: f(x)q(x) < 0}. Let λ > 0
be such that both the following hold:

(1) λmax. β ^|?(a?) |<| |/ | | ,
(2) Xq\x) + 2f(x)q(x) < 0 for all x in Af.

Notice that H(X) = maxxe4, Xq\x) + f(x)q(x) is a continuous function
of λ with H(ϋ) < 0. Since 4 ' g i is finite such a λ can be chosen.
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Now if xeA', then letting \\f\\A = ma.xxeA\f(x)\ we have

(f(x) + Xq(x)Y = (/(*))2 + X(Xq\x) + 2f(x)q(x)) < (f(x)f ^ \\f\\*Λ .

If xeA- A! and q(x) - 0, then \f{x) + λg(α?)| - \f{x)\ g \\f\\A;
whereas, if q(x) Φ 0, then f(x) = 0 and

Thus \f(x) + λg(α)| ^ | | / |U for any x in A.

COROLLARY. If π is a unique best approximate to f on a finite
subset A of E and m/A = 0 implies m = 0, then π is a strongly
unique best approximate to f on X.

It follows that if \\f - m\\A ^ | | / - π\\A + r\\π - m\\A and m\A =
0 implies m ~ 0, then | | / - m | | x ^ | | / - π\\x + r'\\π - m\\x. It
would be of interest to determine the relationship between r and rr

here and also in the situation under discussion in Theorem 2.

REMARK. When I is a weak Chebyshev set in C[a, b] one
expects to obtain better results than for a general subspace M, but
this does not occur here. Indeed, if π is a unique best approximate
to / on [a, b], A is a set of equioscillation points and m/A = 0
implies m = 0, then it need not follow that π is a strongly unique
best approximate to / on [α, b] as seen in Example 1. Of course if
one also assumes that π is a unique best approximate to / on Ar

then the above theorem guarantees that π is a strongly unique
best approximate to / on [a, b]. It should be observed that the
proof given in [4] of the de La Vallee Poussin theorem when M is
a Haar set also proves the result when M is only a weak Chebyshev
set.

5. Strong unicity in Lp, 1 ^ p < °o# Let Wbe a normed linear
space with dual space T7*. Let M denote a subspace (not necessarily
finite dimensional) of W. As shown in [2], the existence of a sub-
space M of W which gives strongly unique best approximates to
elements of W depends on the character of W*. To be more specific,
let <Λf, /> denote the subspace of W spanned by M and / and let
<M, />* be the dual space of (M, />. Also let

^ = ίLe<Jlf,/>*:L(/-7r) = | | / - ; r | | and

and

Kx = {z e (M, / > : L z ̂  \\f - π\\ V L €
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Then ([2]) π is a strongly unique best approximate to / if and only
if Kπ Π M is bounded. If π is a best approximate to /, then ([2])
Haar's result ([4]) in an abstract setting implies that there is at least
one element Lπ£^fπ defined by Lz(m + af) = a\\f — π\\. Any ele-
ment m in M is trivially its own strongly unique best approximate.

THEOREM 5. (Wulbert). Let W be a smooth normed linear space.
If M is a proper subspace of W and f e W — M, then the best
approximate to f from M is not strongly unique.

Proof. Since W is smooth, J?f0 contains a unique linear functional
which is LQ. Thus, M ^ KQ and M f] KQ is not bounded. Hence 0
is not a strongly unique best approximate.

Let μ be a σ-finite positive measure on a σ-algebra Σ of subsets
of a set T. As usual let LP(T, Σ, μ\ 1 ^ p < °o, (briefly Lv) denote
the space of functions f on T such that \\f\l = (\\f\pdμ)llP < °°.
Let 1/p + 1/q — 1. Then Lp is smooth for 1 < p < oo. Of course,
any finite dimensional subspace of Lp, 1 < p < oo does contain a
unique best approximate to every element in Lp. It follows that if
M is a subspace of Lp, 1 < p < co, then there is no / e Lp — M with
a strongly unique best approximate.

The concept of an interpolating subspace was introduced in [1],
where it was shown that if M is an interpolating subspace then M
always contains a strongly unique best approximate to every element
/ e W. Theorem β shows that [1] if W is a smooth normed linear
space, then W contains no interpolating subspace. However, there
are subspaces which are not interpolating, but from which every
element has a strongly unique best approximate.

EXAMPLE 2. In V let M be the subspace spanned by (1, 0, 0, •)
and (0, 1,0, •)• Then [1] Mis not an interpolating subspace. Given
/ G V, let π in M be given by (/(I), /(2), 0, -). Then for meM,

- m(2)| + Σ l/
i>2

^ Σ l/(i)l + r{\π(ί) - m(l)| + |τr(2) -

where one can choose r = 1 to be the strong unicity constant.
The space L1 contains a finite dimensional subspace M which

contains a strongly unique best approximate to every element fe
L1 - M if and only if (Γ, Σ, μ) contains an atom ([1], [10]). To obtain
further information about strong unicity in L\ let f e L\ \\f\\ = 1
and f £ M. Assume without loss of generality that 0 is a best
approximate to / and let £?Q - {L e <M, />*: Lf = 1 = ||L||}. For a
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given L e ^f0, there exists by the Riesz Representation Theorem a
function he L°° such that

Lg =[ hgdμVgeL1 and

Thus for a given L e ^ we have

(1) 1 = \hfdμ £ \\h\ \f\dμ £ L = 1 .

The condition for equality in Holders inequality implies that \h\ \f\ =
|| AIU I/I = | / | a . e . Also (1) shows that hf = \h\\f\ a.e. Thus jδ^
can be identified with

{heL00: \f\(\h\ - 1) = 0 a.e. and (Λ/)(l-sgnΛsgn/) - 0 a.e.} .

This characterization of ^ can be used to study strong unicity in
L1. For example if μ{x: f(x) = 0} = 0, then \h\ = 1 a.e., sgn A sgn / =
1 a.e. and therefore h is uniquely determined a.e. Since J*fo contains
a unique element it follows as before that 0 is not a strongly unique
best approximate to / . We have shown the following:

THEOREM 6. Let f in L\T, Σ, μ) have a strongly unique best
approximate π from a subspace M. Then μ{x: f(x) — π(x) = 0} > 0.

It should be pointed out that it is possible for an element f e L1

to have a strongly unique best approximate from a subspace M even
when (T, Σ, μ) does not have an atom. It is not known whether a
result like Theorem 2 exists for Lι[a, 6],

EXAMPLE 3. Let M be the constant functions, a subspace of
Z/[-2, 2]. Let

'x + 1

0

ί» — 1

-2g.tg -1

1 ^ x ^ 2 .

Then one can verify that

1 1 / — cjf α =
(\c+lY

4|c|

Thus 0 is a best approximate to / and also

11/ - c l l ^ 11/11, + 1/2Hell,.
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