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A TWO-POINT BOUNDARY PROBLEM FOR
NONHOMOGENEOUS SECOND ORDER

DIFFERENTIAL EQUATIONS

S. C. TEFTELLER

This paper is concerned with second order nonhomogeneous
differential equations, together with boundary conditions spe-
cified at two points. The existence of eigenvalues is established
and the oscillatory behavior of the associated eigenf unctions
is studied. The results of this paper are obtained by con-
sidering the nonhomogeneous problem without regard for
existence of solutions of the associated homogeneous boundary
problem.

Consider the linear differential equation

(1) (Φ, X)y')' + q(x, X)y = f(x, λ) ,

and the associated homogeneous equation

(2 ) (r(x, X)uJ + q(x, X)u = 0 ,

where φ, λ), q(x, X), and f(x, X) are real-valued functions o n l : α ^
x<:b, L: λ# - <? < λ < λ# + <5, 0 < δ ^ o o , - o o < α < δ < o o . We shall
consider (1) together with two-point boundary conditions of the form

(a) a(X)y(a, X) - β(X)(ry')(a, X) = 0 ,

(b) Ί(X)y(b, X) - δ(λ)(r/)(6, λ) - 0 .

It is well known that for those values of X for which the asso-
ciated homogeneous boundary problem (2, 3) has no solution, the
nonhomogeneous problem (1.3) yields a unique solution. Further, for
those values of λ for which (2, 3) has a solution, the problem (1, 3)
either has no solution or an infinite number of solutions.

In either case the homogeneous problem must be solved or shown
to have only the trivial solution. This paper establishes the existence
of characteristic values for (1, 3) independent of the corresponding
reduced problem. The methods used will be analogous to those of
W. M. Whyburn [6, 7, 8], and G. J. Etgen [2, 3].

The following hypotheses on the coefficients involved in the
boundary problem will be assumed throughout:

(HO For each x e X, each of φ, λ), q(x, λ), and f(x, X) is con-
tinuous on L.

(H2) For each λ e L, each of φ, λ), q(x, λ), and f(x, λ) is meas-
urable on X.
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(H3) There exists a Lebesgue integrable function M(x) on X such
that \l/φ, λ)| ^ M(x), \q(x, λ)| £ M(x), and \f(x, λ)| ^ Λf(a;) on XL.

(H4) r(α, λ) > 0 on XL.
(H5) Each of the functions a(X), /3(λ), 7(λ), and δ(λ) is continuous

on L.

(H6) α2(λ) + /32(λ) > 0 and 72(λ) + 32(X) > 0 on L. In particular,
without loss of generality, we assume a\X) + β\X) = 1 on L.

(H7) δ(λ) > 0 on L. Also, without loss of generality, we assume
0 < arcsin (δ(λ#)/[72(λ#) + S2(λ#)P) < π.

2* Preliminary definitions and results* Hypotheses H : — H3

allow the application of fundamental existence and uniqueness theorems
[1, Ch. 2] for differential equations to obtain the existence of a pair
of solutions {u(x, λ), v(x, X)} of (2) such that W{x, X) = 1 on XL, where
W(x, X) = r(x, X)[v'(x, X)u(x, X) — u'(x, X)v(x, λ)]. Such a pair of solu-
tions will be called a normalized solution basis of (2). It is now
easily verified that given a normalized solution basis {u(x, λ), v(xf X)}
of (2), every solution of (1) is of the form

y(x, X) = ϊc^X) - \"f(t, X)v(t, X)dt]u(x, X)
(4) β

Moreover, there exists a solution y(x, X) of (1) satisfying

( 5 ) y(a, X) = /S(λ), (rτ/')(«, λ) = a(X)

on L. In fact, if {u(x9 λ), v(cc, λ)} is the normalized solution basisj
(2) satisfying the initial conditions

u(α, λ) = 1, v(a, λ) Ξ 0 ,
1 (rw')(α, λ ) Ξ 0,

on L, then

y(x, X) - Γ/S(λ) - [ V(t, λ)v(ί, λ)dt"L(a;, λ)
( 7 ) .

[ j *f{t, X)u(t, λ)dί]φ, λ)

satisfies (5). Thus the solution #(#, λ) defined by (7) satisfies (3a).
We establish the existence of values of λ on L for which there

corresponds a solution of (1) satisfying (3a, b). Such values are called
eigenvalues of the respective boundary problem.

Let {u(x, λ), v(x, X)} be the normalized solution basis of (2) defined
by (6). Applying the polar coordinate transformation, we obtain
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u(x, λ) = px(x, X) sin θ^x, λ), v{x, X) = p2(x, X) sin Θ2(x, X) ,

(ru')(x, X) = px(x, X) cos θλ{x, X), (rv')(x, X) = /θa(α?, λ) cos Θ2(x, λ) ,

where pt(x, X) and #,(#, λ) are solutions of

ρ'i(x, X) = pt(x, X)\ ———- - q(χ, λ )Ί sin θt(x, X) cos 0,(a, λ)
(o x L r(#, λ) J

#(&, λ ) = —r—τ c o s 2 *«(*> λ ) + Q(χ> λ ) s i n 2 ^ί(^^ λ ) >r(x, λ)

i = 1, 2, satisfying ^ ( α , λ) = pz(a, λ) = 1, θ^a, λ) = π/2, Θ2(a, λ) = 0
on L.

L E M M A 1. The following inequality holds on XL: 0 < θx(xf λ) —
Θ2{x, λ) < π.

Proof. Using the polar form of u(xf λ) and v(x, λ), it follows t h a t

1 = W(x, λ) - Pl(χ, X)p2(χ, λ) sin [θx(x, λ) - θt(x, λ ) ] ,

where W(x, λ) = r(x, X)[v'u — vfv\. Hence sin [θ^x, λ) - Θ2(x, λ)] =
1/A(a?, λ)/02(α?, λ) > 0 on X L . Since 0x(α, λ) — Θ2(a, λ) = τr/2 on L, we
have 0 < θ^x, λ) - «2(a?, λ) < π on X L .

COROLLARY. F o r βαc& x e l , ίΛβ zeros of u(x, λ) α^ίZ v(x, λ)
separate each other on L.

We can wri te (7) as y(x, λ) = A(x, X)u(x, λ) + 5(α?, X)v(x, λ), where

i4(», λ) = β(X) - [*f(t, X)v(t, X)dt , and
( 9 ) J ;

B(x, X) = α(λ) + ! * / ( * , λ)w(ί, λ)dt .

I t then follows t h a t y(x, X) = y\x, X) — 0 for some x e X if and only
if Λ(ά, λ) = B(x, X) = 0, [Lemma 3.3, Theorem 3.12; 5].

If for some X = X, y(b, X) — yr(b, X) = 0, where t h e solution y(x, X)
is defined by (7), then t h e boundary condition (3b) is satisfied and λ is an
eigenvalue. We note this possibility could be ruled out if we assume

M(t)dt on L, where M(t) is defined in H 3 [Theorem
a

3.4, 5]. So in the following we assume y(b, X) h a s no double zeros
on L.

I n order t o establish t h e existence of eigenvalues for (1, 3a, b),
we introduce the functions

( V(x, X) = y(X)v(x, X) - δ(X)(rv')(x, X),
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and

s(x, λ) - A(b, \)U(x, λ) + B(b, X)V(x, λ) ,

t(x, λ) - A(b, λ) V(x, λ) - B(b, X) U(x, X) ,

where {u(x, λ), v(cc, λ)} is the solution basis of (2) defined by (6), and
where ^.(6, λ) and B(b, λ) are defined by (9).

It follows that

s\x, X) + t\x9 X) = [A2(δ, λ) + B2(b, X)][U2(x, X) + V\x, X)] .

Writing u(x, X) and v(x, X) in polar form, we have

s\x, X) + t\x, λ) = (A2(δ, λ) + 52(δ, λ))(τ2(λ) +
λ ) sin2 [β^a;, λ) - τ(λ)] + ρ\{x, λ) sin2 [Θ2(x9 λ) -

where

sin r(λ) = δ(λ)/[72(λ) + δ 2 (λ)P , and
1 ) cos r(λ) = 7(λ)/[72(λ) + δ 2 (λ)P .

From Lemma 1, we have that 0 < [θ^x, λ) — τ(λ)] — [Θ2(x, λ) — τ(λ)] <
π on XL, implying sin [θ^x, λ) — r(λ)] and sin [Θ2(x, λ) — r(λ)] cannot
vanish simultaneously for any x e X, λ e L. Using H6, we conclude
that U2(x, λ) + F2(x, λ) > 0 on XL. By our assumption that y(b, λ)
has no double zeros on L, A\b, λ) + B2(bf λ) > 0 on L. Consequently,
s\x, λ) + tf(x, λ) > 0 on XL and the complex-valued function Δ(x, λ),
defined by

(13) Δ(x, λ) = (s(x, λ) + it(x, λ))/(s(x, λ) - ίt(x, λ))

exists on XL.

THEOREM 1. The complex-valued function Δ(x, λ) has the follow-
ing properties on X for each Xe L:

( i ) |4x,\)| = i.
(i i) Δ(x,X) satisfies the first order equation dΔ(x,X)/dx~

2iΔ(x, X)h(x, λ), where

(14) h(x, X) = (s(x, X)t'(x, X) - s\x, X)t(x, X))/(s2(x, λ) + tf(x, X)) .

(iii) Δ(x, X) = 1 if and only if t(x, X) = 0,
Δ(x, λ) = - 1 if and owZi/ i/ s(a?, λ) = 0.

(iv) Let σ(x, X) = arg z/(x, λ), where it is assumed that 0 <£
σ(α, λ#) < 2τr and ίfeat σ(x, λ) is continued as a continuous function
on XL. Then, for each fixed λ,

(15) 2 \ h(w, X)dw = (7(ί», λ) — σ(a, λ) .
Ja
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( v ) // Ί2{X)jr{x, X) + δ\X)q{x, X) > 0 on XL, then Δ(x, X) moves
monotonically and positively on the unit circle.

Proof. Properties (i)-(iii) are easily verified. Equation (15) is a
result of solving the first order equation in Δ(x, X) and applying the
definition of σ(x, λ). To prove (v), we note that h(x, X) = (VUr —
UV')/(U2 + V2) = (72(X)/r(x, X) + δ2(X)q(x, X)){urvf - vru')/(U2 + V2).
Since urvf — vrur = 1, h(x, X) > 0 on XL, and σ{x, X) is monotone
increasing if 72(X)/r(x, X) + δ2(X)q(x, X) is positive on XL.

Considering equation (13), we note that Δ(a, λ) — (B(b, X) — iA(b,
X))/(B(b, X) + iA(b, X)) Φ 1 on L. Thus 0 < σ(a, X) < 2π on L, and

(16) 2 [ h(w, X)dw < σ{b, X) < 2 Ϋh{w, X)dw + 2π
Ja Ja

on L.

3* Existence of eigenvalues* Using the results of the preceding
section, we can now state an existence theorem for eigenvalues of
(1, 3a, b).

THEOREM 2. Let y(x, X) be the solution of (1, 3a), where y(x, X)
is defined by (7). Define Q{X) by

Q(X) — 21 h(w, X)dw
J α

(h(w, X) defined by (14)). Suppose Ί\X)jr{x, X) + δ2(X)q(x, X) > 0 on
XL. Then Q(X) > 0 on L. Let m ^ 0 be the least integer such that
inf Q(X) < (2m + l)π on L, and let n be an integer such that sup
Q(X) > (2n + l)π on L. If n ^ m + 1, then there exist p, p = n — m,
eigenvalues λ0, Xu , Xp^ of (1, 3a, b).

Proof. Let ̂ /(x, λ) be the solution of (1) defined by (7). Let U(x, λ),
V{x, X), s(x, X), t(x, X), and Δ(x, X) be defined as above.

If 72(X)/r(x, X) + δ2(X)q(x, X) > 0 on XL, then from Theorem 1,
we know σ(b, X) — σ{a, X) > 0 on L, and Q(X) > 0 on L.

Suppose that m and n are integers with the properties described
in the hypothesis. Then there exists a value of λ, say λ*, such that
Q(λ*) < (2m + ϊ)π and a value of λ, say λ, such that Q(X) > (2n +
l)ττ. Clearly, λ* Φ X, and so we may assume λ* < λ. From (16), we
have Q(X) < σ(b, X) < Q(X) + 2π on L. Therefore, σ(b, λ*) < (2m +
S)π and σ(b, X) > (2n + l)π. Since n = m + p, p ^ 1, there exist p
values of λ, λ0, Xu , λp_! on (λ*, λ) such that σ(b, Xό) — [2(m + j) +
3]ττ, for i = 0, 1, , p — 1. We assume that λ0 < λx < < λ p - 1

since σ(b, X) is continuous in λ. Now σ(b, X) = arg Δ(x, X) implies that
Δ(b, Xj) = — 1 for j = 0, 1, , p — 1, and consequently, s(b, Xj) = 0
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for j = 0, 1, •••, p - 1.
Considering (3b) we have

7(λ)y(δ, λ) - δ(\)(ry')(b, λ) - A(6, λ)tf(δ, λ) + 5(6, λ)F(δ, λ)

- β(δ, λ) .

Hence for λy, j = 0, 1, , p — 1, the condition (3b) is satisfied and
the Xj are the eigenvalues for (1, 3a, b).

COROLLARY. Under the hypotheses of Theorem 2, if the integer
n can be chosen arbitrary large, then there exist infinitely many
eigenvalues Xo, Xlf λ2, for (1, 3a, b).

The following theorem also gives a criterion for the existence of
eigenvalues for this nonhomogeneous boundary problem.

THEOREM 3. Let y(x, X) be the solution of (1, 3a) defined by (7).
Then Θ2(b, λ) — τ(X) > — π on L, where Θ2(x, X) and τ(X) are defined
by (8) and (12) respectively. Suppose A(b, X) Φ 0 on L, where A(x, X)
is defined by (9). Let m >̂ 0 be the least integer so that inf [Θ2{b, X) —
τ(λ)] < mπ on L, and let n be an integer such that sup [Θ2(b, λ) —
τ(λ)] > nπ on L. If n ^ m + 2, £Λew ί/^erβ ecmέ αί least p — 1, p =
n — m, nonempty sets of eigenvalues To, Tlf , Tp_2for the boundary
problem (1, 3a, b).

Proof. From (7), (9) and the polar representation for the normalized
solution basis {u(x, λ), v(x, λ)} of (2), defined by (6), we have y(x, λ) =
A{xy X)pi(xf λ) sin θλ(x, λ) + B(x, X)p2(x, λ) sin Θ2(x, λ). Further, we can
write the boundary condition (3b) in the form

(17) P ( λ ) [ 7 ( λ ) + δ ( λ ) ] { A ( 6 ' X)A{b> λ ) s i n [θl{b> λ ) ~ τ ( λ ) ]

+ ρ2(b, X)B(b, X) sin [θt(b, X) -

where ^(x, λ), ^^ίc, λ), i = 1, 2 are defined by (8), and r(λ) is defined
by (12).

Since θ'2(x, X) = l/r(x, X) > 0 when v(x, X) = 0, 02(&, λ) is increasing
at zeros of v{x, X), for each X e L. Moreover, Θ2(a, X) = 0 implies
β2(&, λ) > 0 on L. Using (12) and H7, we have 0 < τ(λ) < π on L,
and thus ί2(δ, λ) - r(λ) > - π on L.

Let m and n be integers with the properties described in the
hypotheses. Then there exist values of λ, say λ* and λ, such that
#2(δ, λ*) - τ(λ*) < mπ and Θ2(b, X) - r(λ) > nπ. Clearly, λ* Φ λ, so
assume λ* < λ. Since n — m + p, p ^ 2, there exist p values of λ,
λ0, Xi, , λp_x, on (λ*, λ) such that Θ2{b, X5) - τ(x3) = (m + j)π, j =
0, 1, , p - 1. From the continuity of Θ2(b, X) - τ(X) on L, we may
assume λ0 < λx < < λp_lβ
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By Lemma 1, 0 < θ^b, X) - Θ2{b, X) < π on L, and therefore
0 < [0$, λ) - τ(λ)] - [Θ2(b, λ) - τ(λ)] < π on L, and the zeros of
sin [^(6, λ) — r(λ)] and sin [Θ2(b, λ) — r(λ)] separate each other on L.
Thus sin [θ^b, λy) - τ(Xs)] > 0 and sin [^(6, λ i + 1) - r(λy+1))] < 0 for
j = 0, 1, , p — 2, or vice versa.

Without loss of generality, assume that A(b, λ) > 0 on L. Then
from (17), P(Xj) > 0 and P(λ i + 1) < 0 for each j , or vice versa. In either
case, since P(λ) is continuous on L, there is a λ, e (λ^ , λ i+1) such that
P(λ, ) = 0, and λ, is an eigenvalue for (1, 3a, b), j = 0, 1, 2, p — 2.
Letting Γy be the set of all eigenvalues on (λy, λJ+1), j — 0, 1, , p —
2 the theorem is proved.

COROLLARY 1. Under the, hypotheses of Theorem 3, if the integer
n can be chosen arbitrarily large, then there exist infinitely many
sets of eigenvalues To, Tly for (1, 3a, b).

COROLLARY 2. Suppose, in addition to the hypotheses of Theorem
3, that A(x, X) Φ 0 on X for each Xe L. Then there exist p — 1
nonempty sets of eigenvalues Jo, Ju , Jv^z for (1, 3a, b) such that
if pj e Jj, j = 0, 1, , p - 2, ίλew 02(δ, ft ) - τ(pό) ^ (m + i)τr. Afore-
over, if j ^ 1, ίfeew the corresponding solution y(x, pj) has at least
j — 1 zeros on X.

Proof. We know that Θ2(b, X) — r(λ) is continuous on L and
increases from less than mπ to more than nπ. Choose Xά such
that Θ2(b, X) — τ(λ) ̂  (m + i)τr for λ > XjΊ and let J y be the set of
eigenvalues on (Xj9 λ i + 1). From Theorem 3, each Jj is nonempty.

If for fixed λ, Θ2(b, X) — 02(α, λ) ^ qπ, then v(x, λ) = 0 (mod π) at
least q times on X. Further, if A(x, X) Φ 0 on X for each Xe L,
then by a generalization of a theorem by Leighton [Thm. 2.1, 4], we
know that the zeros of τ/(x, λ) and υ(x, X) separate on X. Suppose
pj e Jjf j ^ 1. Then Θ2(b, ρά) - r(λ, ) ^ (m + j)π. Since θz(a, X) = 0 on
L and r(λ) > 0 on L, this implies that #2(δ, λ, ) — Θ2(a, Xά) ̂  (m + i)τr +
τ(pj) ^> (m + i ) ^ S i ^ We conclude that v(x, p^) has at least j zeros
on Xy and consequently, y(xf p3) has at least j ~ 1 zeros on X

COROLLARY 3. Suppose, in the hypotheses of Theorem 3, we assume
that A(b, X) does not change sign on L, rather than be nonzero.
Then the number of distinct eigenvalues for (1, 3a, b) is at least
(p — l)/2 if p is odd and at least p/2 if p is even.

Proof. Paraphrasing Theorem 3, choose λ0, Xu , λ ^ such
that Θ2(b, Xj) - T{XJ) = (m + j)π. Then sin [θ^b, λy) - τ(λy)] > 0 and
sin [θγ{b, λ<+1) — τ(λ i+1)] < 0 for j = 0, 1, , p — 2, or vice versa.

Assuming, without loss of generality, that A(b, λ) ^ 0 on L, we
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have P(Xj) ̂  0 and P(λ i+1) <; 0, j = 0, 1, , p — 2, or vice versa. In
either case, there is a λ̂  e [λy, λi+1] such that P(Xj) = 0, and λ̂  is an
eigenvalue for (1, 3a, b). Let T3 be the set of eigenvalues on [Xj9 λ i + 1],
j = 0, 1, , p — 2. Now it may happen that two sets Tά and Tj+ί

each contain only one eigenvalue, and moreover, that eigenvalue is
a common eigenvalue, namely λi+1. We find, therefore, that the
number of distinct eigenvalues for (1, 3a, b) is at least (p — l)/2 if
p is odd, and at least p/2 if p is even.

We remark that the hypotheses of Theorem 3 require that

A(b, X) = β(X) - \bf(t, X)v(t, X)dt Φ 0 on L. This can be verified if we
Ja

assume
(i) /3(λ) + 1 > exp [bM(t)dt on L,

[Thm. 3.4, 5], or
(ii) (a) q(x, X) is not identically zero on any subinterval of X

for each λ e i , and is not identically zero on any subinterval of L
for each xe X.

(b) f(x, X)/q(xf X) is defined, integrable, nonpositive, and non-
decreasing on X for each Xe L.

(c) p^b, X) 2s pi(%, λ) on X for each Xe L.

(d) β(X) > - 2 exp Π*Λί(ί)dίΊ/(6, X)/q(b, X) on L,

[Thm. 3.5, 5].
Here M(t) is the Lebesgue integrable bound of the functions lfr(x, λ),
q(x9 λ), and f(x, X).
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