ON CONJUGATION COBORDISM

Duane O'Neill

Abstract

An almost-complex manifold supports an involution if there is a differentiable self-map on the manifold of period two. The differential of the map acts on the coset space of the almost-complex structures on M by inner automorphism. This action is also of period two. If the almost-complex structure is sent to its conjugate, the manifold with structure, together with the given involution is called a conjugation. Any linear involution of Euclidean space may be used to stabilize this situation, giving a cobordism theory of exotic conjugations. The question considered here is: What is the image in complex cobordism of the functor which forgets equivariance. The result shown in the next section is: If a stably almost-complex manifold supports an exotic conjugation, every characteristic number is even.

The first cobordism results on conjugations are due to Conner and Floyd [3] (§24). In [4], Landweber established the equivariant analogues of the Thom theorems. Certain examples have been considered by Landweber, [5] (§3), and together with the result here the image of the forgetful functor can be seen to be maximal, in some cases.
2. Proof of the theorem. It is well-known from the work of Thom and Milnor that the unoriented bordism ring \mathscr{N}_{*}, with spectrum $M O$, is a polynomial ring over \boldsymbol{Z}_{2} on manifold classes n_{t}, $t+1$ any positive integer not a power of two (t nondyadic). Also \mathscr{U}_{*}, the complex bordism ring with spectrum $\boldsymbol{M U}$, is a polynomial ring over \boldsymbol{Z} on manifold classes $u_{t}, t=0,1, \cdots$. Representatives for the dyadic generators $u_{t}, t+1=2^{j}$, may be chosen so that every normal characteristic number is even. The principal ideal in \mathscr{U}_{*} generated by dyadic generators is the graded Milnor ideal associated to 2, I. $I_{2 k}=I \cap \mathscr{U}_{2 k}$.

If a partition of k contains a dyadic integer the partition will be called dyadic. Let $d(k)$ denote the dyadic partitions of $k, n(k)$ the nondyadic partitions of k. If $\alpha=a_{1} \alpha_{2} \cdots a_{r}$ is a partition of k then the group generator $u_{a_{1}} \cdots u_{a_{r}} \in \mathscr{U}_{2_{2 k}}$ will be denoted u_{α}. Similarly for $n_{\alpha} \in \mathscr{N}_{k}$.

If $M U(n)$ is given the involution defined in [4] then it is a G-complex, $G=\boldsymbol{Z}_{2}$, in the sense of Bredon. Note that $\tilde{\omega}_{0}(M U(n))=$ $\tilde{\omega}_{1}(M U(n))=0$. The construction given in the next section produces, for each partition of k, α, and sufficiently large n, an equivariant
inclusion and a G-complex $e^{\alpha}: M U(n) \rightarrow Y^{\alpha}$ such that
(c i) $\quad \tilde{\omega}_{n+k}\left(Y^{\alpha}\right)=\left\{\begin{array}{cl}\left(Z_{2} \rightarrow 0\right) & \text { if } \alpha \in n(k) \\ 0 & \text { if } \alpha \in d(k)\end{array}\right.$
(c ii) $\quad \tilde{\omega}_{2 n+2 k}\left(Y^{a}\right)=\left(0 \rightarrow\left\{Z,(-1)^{n+k}\right\}\right)$
(c iii) $\omega_{t}\left(Y^{\alpha}\right)=0 \quad$ if $t \neq n+k, 2 n+2 k$
(c iv) $\quad e^{\alpha}\left(\frac{\boldsymbol{G}}{e}\right)_{\sharp}: \tilde{\omega}_{2 n+2 k}(M U(n))\left(\frac{\boldsymbol{G}}{e}\right) \cong \mathscr{U}_{2 k} \rightarrow \tilde{\omega}_{2 n+2 k}\left(Y^{\alpha}\right)\left(\frac{\boldsymbol{G}}{e}\right) \cong \boldsymbol{Z}$ maps u_{α} to an odd multiple of the generator $\alpha \in n(k)$.

Let the $r+s$ sphere with the orthogonal involution fixing an equatorial s-sphere be denoted $S^{r, s}$. The G-complex formed by attaching the cone over $S^{0, s}$ in $S^{r, s}$ will be denoted $S^{r, s} / S^{0, s}$. Let the equivariant homotopy groups

$$
\left|\left[\frac{S^{n+a, n+b}}{S^{0, n+b}}, M U(n)\right]\right| \text { and }\left|\left[\frac{S^{n+a, n+b}}{S^{0, n+b}}, Y^{\alpha}\right]\right|
$$

be denoted $\lambda \mathscr{U}_{a, b}$ and $\lambda Y_{a, b}$ respectively. It is understood that $a+b$ is much less than n whenever this is used.

It is easy to see, from the cochain complex, [1] I § 6, of $S^{r, s} / S^{0, s}$ that if $\tilde{\omega}$ is any generic coefficient system with a G-action g on $\tilde{\omega}\left(\frac{G}{e}\right)$ then

$$
H_{G}^{k}\left(\frac{S^{r, s}}{S^{0, s}} ; \tilde{\omega}\right) \cong\left\{\begin{array}{cl}
0 \quad \text { if } 0<k \leqq s \text { or } r+s<k \\
\frac{\operatorname{Ker}\left(1+(-1)^{k-s} g\right)}{\operatorname{Im}\left(1+(-1)^{k-s-1} g\right)} & \text { if } s<k<r \\
\tilde{\omega}\left(\frac{G}{e}\right) & \\
\frac{\text { if }}{} \frac{k=r+s}{\operatorname{Im}\left(1+(-1)^{r+s} g\right)} &
\end{array}\right.
$$

Note that the groups $\lambda Y_{a, b}$ are the same for all partitions α of k. I.e., by Bredon's classification theorem [1] II (2.11)

$$
\begin{aligned}
\lambda Y_{k+q, k-q} & \cong \frac{\boldsymbol{Z}}{\left(1+(-1)^{q+1}\right) \boldsymbol{Z}} \\
\lambda Y_{k+q+t, k-q} & \cong\left\{\begin{array}{lll}
0 & q & \text { even } \\
\boldsymbol{Z}_{2} & q & \text { odd }
\end{array} \quad t \geqq 1\right. \\
\lambda Y_{l, m} & =0 \quad l+m<2 k .
\end{aligned}
$$

From this computation the main result may now be deduced. Let ψ denote the forgetful functor.

Theorem. $\quad u_{\alpha} \in \operatorname{Im}$ age $\left\{\psi: \lambda U_{k+q, k-q} \rightarrow \mathscr{U}_{2 k}\right\}$ only if $\alpha \in d(k)$.
Proof. Suppose u_{α} is in the image of ψ. Consider the com-
mutative diagram with exact row (see [3], p. 286 for definitions of α, β, and $\psi)$:

$$
\begin{align*}
& \lambda \mathscr{U}_{k+q, k-q} \xrightarrow{\psi} \mathscr{U}_{2 k} \\
& e^{\alpha}\left(\frac{G}{G}\right)_{\sharp \downarrow} \downarrow^{\alpha+q, k-q} \quad e^{\alpha}\left(\frac{G}{e}\right)_{\#} \tag{2.1}\\
& \cdots \longrightarrow \lambda Y_{k+q+1, k-q} \xrightarrow[\beta]{\longrightarrow} \lambda Y_{k+q, k-q} \underset{\psi}{\longrightarrow} \pi_{2 n+2 k}\left(Y^{\alpha}\right) \xrightarrow[\alpha]{\longrightarrow} \lambda Y_{k+q+1, k-q-1} \\
& \xrightarrow[\beta]{\longrightarrow} \lambda Y_{k+q, k-q-1} \cdots \text {. }
\end{align*}
$$

If q were odd, the lower ψ is zero. By (c iv) the upper ψ is zero and $u_{\alpha}=0$, a contradiction. Now suppose q is even. The exact row then is $0 \rightarrow \boldsymbol{Z} \rightarrow \boldsymbol{Z} \rightarrow \boldsymbol{Z}_{2} \rightarrow 0$ so that $e^{a}\left(\frac{G}{e}\right)_{\#}$ maps u_{α} to an even multiple of the generator and by (c iv), $\alpha \in d(k)$.

Corollary. Image $\psi \subseteq I$.
Proof. By ([4], (4.1)), $2 u_{\alpha} \in$ Image ψ for every α.
Then if $w \in$ Image ψ, subtract off even multiples of group generators until we have $w=2 w^{\prime}+u_{\alpha_{1}}+u_{\alpha_{2}}+\cdots+u_{\alpha_{l}}$. Now construct diagram (2.1) for α successively equal to $\alpha_{1}, \cdots, \alpha_{l}$. This shows that $\alpha_{1} \in d(k), \cdots, \alpha_{l} \in d(k)$, and the corollary is proved.

As a corollary of the construction in [5] §3 there are free exotic conjugations on representatives $u_{t}, t=2^{j}-1$, showing that Image $\left\{\psi: \lambda \mathscr{U}_{t+q, t-q} \rightarrow \mathscr{U}_{2 t}\right\}$ contains u_{t} provided q divisible by $2^{\phi(t+2)}$. Since the image of a forgetful functor is an ideal in \mathscr{U}_{*} this shows:

Corollary. Image $\left\{\psi: \lambda U_{k+q, k-q} \rightarrow \mathscr{U}_{2 k}\right\}=I_{2 k}$ if $t=2^{j}-1 \leqq k<$ $2^{j+1}-1$ and q divisible by $2^{\phi(t+2)} . \phi(m)$ is the familiar number equal to the number of integers $s, 0<s<m$ with $s \equiv 0,1,2,4(\bmod 8)$.
3. The construction. Recall Bredon's procedure for killing the homotopy groups of a G-space X, with $\tilde{\omega}_{0}\left(X, x_{0}\right)=\tilde{\omega}_{1}\left(X, x_{0}\right)=0$. Let T be some G-set and $F(T)$ the free abelian G-module on T such that Hom $\left(F(T), \tilde{\omega}_{r}(X)\right.$) contains an epimorphism A_{r}. By use of [2], Chapter II, (2.11), take a representative $a_{r}: S^{r}\left(T^{+}\right) \rightarrow X$ and define X_{r+1} by the equivariant Puppe sequence,

$$
S^{r}\left(T^{+}\right) \xrightarrow{a_{r}} X \xrightarrow{j} X_{r+1} \longrightarrow S^{r+1}\left(T^{+}\right) \longrightarrow \cdots
$$

Bredon shows, [2], (6.6), that

$$
\begin{aligned}
& j_{\sharp}: \widetilde{\omega}_{t}(X) \longrightarrow \tilde{\omega}_{t}\left(X_{r+1}\right) \text { is an isomorphism for } \\
& 0 \leqq t \leqq r-1 \text { and } \tilde{\omega}_{r}\left(X_{r+1}\right)=0
\end{aligned}
$$

In this construction of Y^{α} there are at most two r where A_{r} is not taken to be an epimorphism. To begin, let α be a partition of $k \geqq 0$ and take $n>2 k-1$ so that $\pi_{n+k}(M O(n))=\tilde{\omega}_{n+k}(M U(n))\left(\frac{G}{G}\right) \cong$ \mathscr{N}_{k} and $\pi_{2 n+2 k}(M U(n))=\tilde{\omega}_{2 n+2 k}(M U(n))\left(\frac{\boldsymbol{G}}{e}\right) \cong \mathscr{U}_{2 k}$. If α is dyadic let $n_{\alpha} \in \mathscr{N}_{k}$ denote the zero element. Regard n_{α} and u_{α} as elements of $\tilde{\omega}_{*}(M U(n))$.

Let $Y_{0}=M U(n)$ and let all A_{r} be epimorphisms $0<r<n+k$. Denote the composition of the inclusions by $E_{r}: M U(n)=Y_{0} \subset \cdots \subset Y_{r}$. If α is dyadic, let A_{r} be epimorphisms $0<r<2 n+2 k$; if not let A_{n+k} be defined as follows. Let T_{n+k} be the G-set of all elements in $\tilde{\boldsymbol{\omega}}_{n+k}\left(Y_{n+k-1}\right)\left(\frac{\boldsymbol{G}}{G}\right)$ except $E_{n+k t}\left(n_{\alpha}\right)$ and all elements in $\tilde{\omega}_{n+k}\left(Y_{n+k-1}\right) \times\left(\frac{\boldsymbol{G}}{e}\right)$. Take A_{n+k} to be the natural homomorphism defined by extending the G-set inclusion $T_{n+k} \subseteq \widetilde{\omega}_{n+k}\left(Y_{n+k-1}\right)$. Now let $A_{r}, n+k<r<$ $2 n+2 k$, be epimorphisms. Let the free cyclic summand containing $E_{2 n+2 k-1 \xi}\left(u_{\alpha}\right)$ in $\tilde{\omega}_{2 n+2 k}\left(Y_{2 n+2 k-1}\right)\left(\frac{\boldsymbol{G}}{e}\right)$ be denoted F. Define $T_{2 n+2 k}$ to be the G-set of elements in the union of the sets $\tilde{\omega}_{2 n+2 k}\left(Y_{2 n+2 k-1}\right)\left(\frac{G}{G}\right)$ and $\tilde{\omega}_{2 n+2 k}\left(Y_{2 n+2 k-1}\right)\left(\frac{G}{e}\right)-F$, and define $A_{2 n+2 k}$ to be the natural induced homomorphism. To define $Y_{r}, 2 n+2 k<r$, let A_{r} be epimorphisms. This defines Y^{α} as a limit of G-complexes $M U(n)=Y_{0} \subset Y_{1} \subset \cdots$. Let $e^{\alpha}: M U(n) \rightarrow Y^{\alpha}$ be the inclusion.

It is clear that (c i) and (iii) are satisfied by this construction. To check the others some notation will be required. Let $g: S^{2 n+2 k} \rightarrow$ $M U(n)$ be some representative for u_{α}, transverse regular on $B U(n) \subset$ $M U(n)$ and let $M_{\alpha}=g^{-1}(B U(n))$. Let $v_{n} \in \widetilde{H}^{2 n}(M U(n) ; Z)$ denote the universal Thom class and $s_{\alpha} \in H^{2 k}(B U(n) ; \boldsymbol{Z})$ the symmetric function associated to α in the universal Chern classes c_{1}, c_{2}, \cdots. Let $f: M U(n) \rightarrow$ $K(\boldsymbol{Z}, 2 n+2 k)$ represent $s_{\alpha} \cup v_{n} \in \widetilde{H}^{2 n+2 k}(M U(n) ; \boldsymbol{Z})$. It is well-known that the degree defined by $f \circ g$ is the normal characteristic number of $M_{\alpha}, s_{\alpha}\left(u_{\alpha}\right)$.

The G-action of conjugation sends c_{1} to $-c_{1}$, so by the splitting principle c_{n} is sent to $(-1)_{c_{n}}^{n}, v_{n}$ to $(-1)^{n} v_{n}$ and $s_{\alpha} \cup v_{n}$ to $(-1)^{n+k} s_{\alpha} \cup$ v_{n}. However, this determines the G-action on homology which, through the Hurewicz isomorphism, gives the G-action on $\pi_{2 n+2 k}(M U(n))$. To check the remainder of (c ii) we attempt to extend the map f to a map $h: Y^{\alpha} \rightarrow K(Z, 2 n+2 k)$.

The preceding construction shows that an extension of f to $f^{\prime \prime}: Y_{2 n+2 k-1} \rightarrow K(Z, 2 n+2 k)$ exists for dimensional reasons. Thus there is an integer, $N \neq 0$, such that $N \cdot f_{\#}^{\prime \prime}\left(E_{2 n+2 k-1 \ddagger}\left(u_{\alpha}\right)\right)=f_{\ddagger}\left(u_{\alpha}\right)$ in $\pi_{2 n+2 k}(K(Z, 2 n+2 k))$. Note thatth is justifies the preceding claim that $E_{2 n+2 k-1 \#}\left(u_{\alpha}\right)$ lies in an infinite cyclic summand in $\tilde{\omega}_{2 n+2 k}\left(Y_{2 n+2 k-1}\right)(G /(e$,
F. Since $n+k$ may be taken odd, F has only one fixed point, 0. Thus, in the construction, Image $A_{2 n+2 k}$ and F have only 0 in common. But $f_{\#}^{\prime \prime}$ lives on F, so an extension $f^{\prime}: Y_{2 n+2 k} K(Z, 2 n+2 k)$ exists. The desired extension, h, exists now by dimensional considerations and the following homotopy diagram commutes.

Since $f_{\#}$ carries a generator to nonzero multiple of the generator, $s_{\alpha}\left(u_{\alpha}\right) \cdot g$, we see that $\pi_{2 n+2 k}\left(Y^{\alpha}\right)$ cannot be finite. By construction, it is cyclic on one generator and this completes the verification of (c ii).

From this diagram, note that e_{\ddagger}^{α} carries u_{α} to some multiple of the generator, y, of $\pi_{2 n+2 k}\left(Y^{\alpha}\right), e_{\#}^{\alpha}\left(u_{\alpha}\right)=M y$. By commutativity, M divides $s_{\alpha}\left(u_{\alpha}\right)$. But if $\alpha \in n(k), s_{\alpha}\left(u_{\alpha}\right)$ is odd; thus M is odd and (c iv) is verified.

References

1. G. E. Bredon, Equivariant Cohomology Theories, Lecture Notes in Math., (34), Springer-Verlag, 1967.
2. -, Equivariant Homotopy, Proceedings of the Conference on Transformation Groups, Springer-Verlag, 1968.
3. P. E. Conner and E. E. Floyd, Differentiable Periodic Maps, Ergb. der Math., N. S. (33), Springer-Verlag, 1964.
4. P. S. Landweber, Conjugations on complex manifolds and equivariant homotopy of $M U$, Bull. Amer. Math. Soc., 74 (1968), 271-274.
5. - Fixed point free conjugations on complex manifolds, Annals of Math., 86 (1967), 491-502.

Received September 19, 1973.
Suny at Buffalo

