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TORUS GROUP ACTIONS ON SIMPLY CONNECTED
MANIFOLDS

SOON-KYU KIM, DENNIS MCGAVRAN, JINGYAL PAK

In this paper it is shown that effective torus Tractions
on simply connected closed (n + 2)-manifolds Mn+Z for all n ^ 1
exist, and a complete orbit structure is given. It turns
out that all maximal isotropy subgroups must generate the
whole group Tn. The cross-sectioning theorem for the orbit
map π: ikf->ikf* — Mn+2ITn is given, and as its application an
equivariant classification theorem is obtained.

It is also shown that free torus Tractions on simply
connected closed (n + 4)-manifolds for all n ^ 1 exist.

The purpose of this paper is to study the actions of Tn on simply-
connected manifolds with low codimension. It is shown here that
the orbit space M* = Mn+2/Tn is a disk D2 with the boundary points
corresponding to only isotropy subgroups Tus and T2's of T* and the
interior points corresponding to only principal orbits.

It is also given that a subgroup Tk(n > k ^ 1) cannot contain
all nonf ree elements of T*f where, by a nonf ree element we mean an
element that fixes some points of Mn+2. This implies that all maximal
isotropy subgroups (which are Γ2's) must generate the whole group Tn.

We prove that if Tn acts on a closed orientable (n + 2)-manifold
Mn+2 with one or two orbit types of orbit structure, and with simply
connected orbit space then Mn+2 is homeomorphic to L(p, q) x Tn~ι for
•n ^ 2. Hence Tn cannot act freely on any simply connected closed
(n + 2)-manifold Mn+2 for n > 1. However, we demonstrate here the
existence of a free Γw"2-actions on a simply connected closed (n + 2)-
manifold.

It is known that Tn cannot act effectively on a simply connected
closed (n + l)-manifold Mn+1 for n ^ 3 [4], and with the above
statements we suspected that Tn cannot act effectively on a simply
connected (n + 2)-manifold Mn+2 for n ^ 5. However, we prove the
existence theorem of T^-actions on simply connected closed (n + 2)-
manifold Mn+2 for all n.

We state the cross-sectioning theorem and equivariant classification
theorem without proof.

As a result, we more or less know completely about torus group
actions on simply connected closed manifolds with the low codimension.
That is, Tn cannot act freely on a simply connected closed (n + 1)
or (n + 2)-manifold, but Tn can act freely on a simply connected
closed (n + 4)-manifold; and Tn cannot act effectively on a simply
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connected closed (n + l)-manifold for n ^> 3, but Tn can act effectively
on a simply connected closed (n + 2)-manifold.

Although most of our results carry over to the topological category
we will work in the locally smooth category. Definitions and termi-
nologies are all standard and can be found in Bredon's book [1].

1* Isotropy subgroups and applications* Let a torus group Tn

act effectievely on a simply connected closed (n + 2)-manifold Mn+2.
Then by the slice theorem [2] there are principal orbits which are
homeomorphic to Tn and the orbit space M* = Mn+2/Tn is a simply
connected compact 2-manifold.

We first prove the following theorem as an application of a result
of Pak [4]. It will say that Tn cannot act freely on simply connected
closed (n + 2)-manifold Mn+2 unless n = 1.

THEOREM 1.1. // Tn acts on a closed orίentable (n + 2)-manifold
Mn+2 with one or two types of orbit structure, and the orbit space
M* is simply connected, then Mn+2 — L(p, q) x Tn~ι for n^2, where
L(p, q) is a lens space which includes the case of S3 and S2 x S1.

Proof. Suppose the action is free (only one orbit type). Since
M* is simply connected it must be S2. Let Tn~ι c Tn and T1 be a
complementary circle subgroup to Tn'1 in T\ Let N denote the orbit
space Mn+2/Tn-\ Then T1 acts freely on N such that N/T1 = S2.
Then N is either S\ S2 x Sι or L(\k\,ϊ) for some integer keZ.
Therefore, Mn+2 is a principal ^"'-bundle over these spaces. Then
it follows by [4] that Mn+2 - L(p, q) x Tn~ι for n ^ 2.

Now suppose that there are two types of orbit. Then T* alone
cannot be isotropy subgroup of Tn for a fixed i ^ 2. Therefore, T1

is the only nonempty isotropy subgroup of T\ Then Tn~ι = Tn/Tι

acts freely on Mn+2 and the orbit space N = Mn+2ITn-χ is a 3-manifold
on which T1 acts semi-freely and N/T1 = D2 and 3D2 = F(T\ N).
Then N is the 3-sphere S\ which is gotten from D2 x Γ1 by identifying
each t x S1 to a single point for all t e 3D2. Then Mn+2 is the trivial
T^-bundle over S\ Thus Mn+2 - S3 x Tn~\

COROLLARY 1.2. Tn cannot act freely on simply connected closed
(n + 2)-manifold Mn+2 unless n = 1.

Proof. If Tn acts freely on Mn+2, then Mn+2 = L(p, ?) x Tn~ι for
^ ^ 2 so that Mn+2 is not simply connected. For w = 1, the Hopf
fibering (ϊ71, S3) is a free action.

We note that Corollary 1.2 can also be seen by looking at the
homotopy exact sequence of the fibering Tn —»Jlί—> S2. We also note
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that Tn, for n >̂ 2, cannot act freely on any sphere Sm since it
contains a subgroup Zpζ$ Zp.

If Tn acts effectively on a simply connected closed (n + 2)-manifold
Mn+2, then there must exist a nontrivial isotropy subgroup since the
action cannot be free for n ^ 2. It is not too hard to see that for
i ^ 3, any T* subgroup of Tn cannot be an isotropy subgroup, and
T1 or T2 subgroups cannot be the only isotropy subgroup of Tn.
Furthermore, the product of T1 or T2 with a finite subgroup of the
corresponding complementary subgroups cannot be an isotropy sub-
group of Tn. In summary we have:

THEOREM 1.3. Let (Tn, Mn+2) be an effective T'-action on a
simply connected closed (n + 2)-manifold Mn+2, n ^ 2. Then both T1

and T2 subgroups of Tn must appear as isotropy subgroups of Tn

and these are the only possible nontrivial isotropy subgroups of Tn,
and the TlJs are subgroups of the T2's, and at least two T2 subgroups
always appear. If n ^ 3, then three or more T2 subgroups must
appear as isotropy subgroups of Tn (see the next example). Hence
the orbit space M* is a disk D2 with the boundary points, 3D2,
corresponding to only T17s and T2's, and the interior points corre-
sponding to only principal orbits.

For n = 2, the theorem says that F{T2, M4) Φ 0 for simply
connected 4-dimensional manifolds, thus generalizing the result [3,
I, Lemma 5.1].

Proof of this theorem uses the parity of the dimensions of the
slice and that of the orbit. We leave the proof to the reader.

EXAMPLE 1.4. Let the orbit space M* of an effective action (T\
Λf*+2) be given by D2 and isotropy subgroups on 3D2 = S1 are given
as on the figure:

In this case 2? U T\ generates T2 and T2

2 so that T2 = T2. Let Tn~2

be the complementary subgroup of Tt in Tn. Then Mn+2 is a principal
T%-2-bundle over Mn+2/Tn~2 which is a 4-manifold. Then by [3, (5.4)]

Mn+2jTn-2 = s^ S i n c e t h e s e kun(iies are classified by ίP(S4; φ Γ 1 Z) =
0, it is a trivial bundle. Then Mn+2 = S4 x Tn~2, which is not simply
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connected for n ^ 3.
We also prove the existence of a particular isotropy subgroup

Tι in Tn, which fixes a nonsimply connected subspace of Mn+2.

THEOREM 1.5. If Tn acts effectively on a simply connected closed
(n + 2)-manifold Mn+2, then there exists a circle subgroup T1 in Tn

such that every component of F(Tι, Mn+2) is homeomorphic to
Lip, q) x Tn'z for n^4.

Proof. We know that M* = Mn+2/Tn is a disk D2 and each point
of 3D2 corresponds to either an orbit of an isotropy subgroup Tι c T*
or T2 c Tn and Tι c T2 for some T2 c T\ Then T acts on Mn+2

semi-freely and Mn+2/T1 is a simply connected (n + l)-manifold Mn+1

with boundary d(Mn+1) = F(T\ Mn+2). Let Mn be a component of
d(Mn+1). Now Tn~\ the complementary subgroup of T1 in Tn, acts
on Mn and the orbit space Mn\Tn~1 is homeomorphic to the unit
interval [0,1] since f c f and the complementary subgroup of T1

in T2 is a subgroup of Tn~\ From the results of [4], we conclude
that Mn — L8(j>, #) x Tn~B for n ^ 4. This completes the proof.

It is easy to see, by using the result of [3], that if the number
of T2 stability subgroups is small and there exists a Tn~2 subgroup
which is disjoint from all stability subgroups then the action (Tn,
Mn+2) is not effective. Furthermore, we actually prove that all T2

stability subgroups must generate the whole group Γ\

THEOREM 1.6. If (Tn, Mn+2) is an effective action of a torus
group Tn on a simply connected closed (n + 2)-manifold Mn+2, then
no subgroup Tk(n > k Ξ> 1) can contain all nonfree elements of Tn.

Proof, Suppose a subgroup Tk contains all nonfree elements of
Tn. If Tn~k is the complementary subgroup of Tk in Tn then Tn~k

acts freely on Mn+2. Thus we have the commutative triangle:

Mn+2-^->N= M/Tk

Mn+2/Tn .

The orbit space N relative to a Traction on Mn+2 is simply connected
and Tn~k acts freely on the space N. For if there is an element
g e Tn~k which fixes an element xe N, i.e., gx = x, then gx = x. There-
fore, there exists an element hx e Tk such that gx = hxx. Then h~ιg
fixes the element x, and hence h7ιg e Tk. This implies that g 6 Tk n
Tn'k. Thus g = e. Therefore, π"\ N->Mn+2/Tn is a principal Tn~k-
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bundle. Since the space Mn+2/Tn is a disk, N is homeomorphic to
jy. χ rpn-k^ contradicting the fact that N is simply connected.

COROLLARY 1.7. If (Tn, Mn+2) is an effective action of a torus
group Tn on a simply connected closed (n + 2)-manifold Mn+2, then
all stability subgroups must generate the whole group Tn, and there
are at least n different circle stability subgroups of Tn.

As illustrations of the above fact there are reactions on simply
connected 4-manifolds (see [3]). Also we have the action (T3, S5)
given by (tl9 t2, t3)(zlf z2, z3) = {txzu t2z2, t3z3), (tlf t2, t3) e T1 x Γ1 x T1 =

T\ (zl9 z2, z3) e S 5 c C 3 , and the actions (T2 x T\ S2 x S3) and (T2 x T2,
S3 x S3).

2. Cross-sectioning theorem and equivariant classification* In
[3], Orlik and Raymond proved a cross-sectioning theorem for the
orbit map π: Mn+2 -> M* = Mn+2/Tn for n = 2. By the similar technique
we can prove a cross-sectioning theorem for all n ^ 2. To see this, we
use the following two lemmas. The proofs are slight generalizations
of those in [3].

LEMMA 2.1. Let (Tn, Mn+2) be an effective Tn-action on an (n +
2)-manifold such that the orbit space ikf* is [0, 1] x [0, 1] and such
that there are only two types of orbits. Suppose that the points on
the arc [0, 1] x 0 have stability subgroup T1 c Tn and all other points
correspond to principal orbits Tn. Then the orbit map π: Mn+2 —>
M* has a cross-section. Moreover, every cross-section given on the
arc 4 = ( 0 x [0, 1]) U ([0, 1] x 1) U (1 x [0, 1]) may be extended to a

cross-section over all of Λf*.

LEMMA 2.2. Let (Tn, Mn+2) be an effective Tn-action on an (n + 2)-
manifold Mn+2. Assume that the orbit space M* is [ — 1,1] x [0, 1]
and that the points on [ — 1, 0) x 0 have stability subgroup Tl c Tn,
the points on (0, 1] x 0 have stability subgroup T2 c Tn, the point
0 x 0 has stability subgroup T2 which is generated by Tl and T\,
and all other points correspond to principal orbits Tn. Then there
is a cross-section for the orbit map π: Mn+2—+M*. Moreover, any
cross-section on the arc A = ((-1) x [0, 1]) U ([-1, 1] x 1) U (1 x [0, 1])
may be extended to a cross-section over all of M*.

Now we state a cross-sectioning theorem for an effective Traction
on a simply connected closed (n + 2)-manifold Mn+2.

THEOREM 2.3. Let (Tn, Mn+2) be an effective Tn-action on a simply
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connected closed (n + 2)-manifold Mn+2. Then the orbit map π: Mn+2—>
M* has a cross-section.

Now we know the complete orbit structures and the existence
of cross-sections for the orbit maps π: Mn+2 —> ikf* for effective Tr-
actions on simply connected closed (n + 2)-manifolds. Therefore, we
can classify equivariantly these simply connected closed (n + 2)-mani-
folds which admit effective Tractions.

Let ikf* be the orbit space of an action (Tn, Mn+2). We associate
the stability subgroup of the points in the orbit to each orbit x* e ikf*.
The orbit space ikf* with associated orbit types is called a weighted
orbit space.

Let ikf* and iV* denote the weighted orbit spaces of a Traction
on Mn+2 and Nn+2, respectively. A weight preserving homeomorphism
of ikf* onto 2V* is a homeomorphism of M* onto N* which carries
the weights of ikf* isomorphically onto the weights of N*.

If manifolds Mn+2 and Nn+2 are simply connected and closed then
the orbit spaces ikf* and N* are disks with nontrivial stability
subgroups T1?s and T2's on the boundaries and the orbit map π: N—+
iV* have cross-sections by the above Theorem 2.3. By the same
argument that is used in [3] and [5], we have an equivariant classi-
fication theorem.

THEOREM 2.4. Let Tn act effectively on the simply connected
closed (n + 2)-manifolds Mn+2 and Nn+2. Then there is an equivariant
homeomorphism f of M onto N if and only if there is a weight
preserving homeomorphism /* of M* onto N*.

3* Free actions. We know by [4] and from the previous section
that a torus group Tn cannot act freely on a simply connected (n + 1)
or (n + 2)-manifold for n *> 3 or n ^ 2, respectively. This is of course
not true the higher codimension. For example for the codimension
4, the action (Γ2, Sz x S3) induced by the Hopf fibering (T\ S3) is free.
We note that this action (T2, Sz x S3) has the orbit space S2 x S2,
and by taking equivariant connected sums of S3 x £3>s we get more
free reactions on simply connected closed 6-manifolds. For all n9

we demonstrate the existence of a principal T*~2-bundle over a con-
nected sum of several copies of S2 x S2 with a simply connected total
space.

Let X be the connected sum of k copies of S2 x S2, i.e., X —
#ti(S2 x S%. Then we know HX{X, Z) = 0 and H2(X, Z) = ®2!ίZ= Z2\
Hence π2(X) ~ Z2k. Moreover, the universal-coefficient theorem [7]
shows that we have an isomorphism h: H\X, Zn~2)->Jlom(H2(X, Z), Zn~2)
defined by h(f) {Σcz) = Σf(ct) where / and Ict represent cohomology
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and homology classes, respectively.
Let P ' : Er —> BTn-2 be a universal Tw~2-bundle where the classifying

space Bτn-2 is the product of n — 2 copies of the Eilenberg-MacLane
space K{Z, 2). Then principal T^-bundles over X are in a one-to-
one correspondence with the set of homotopy classes of maps from X
to B, [X, B].

We also have a bisection ψ: [X, B] -+H2(X, Zn~2) defined as follows.
Let aeH\B,Zn-2) be 2-characteristic, i.e., h(a): H2{B, Z)-*Zn~2 is
an isomorphism, where h again comes from the universal-coefficient
theorem. Then ψ[f] = f*(a) e H\X, Zn~2) where [/] is a class in [X,
B] with a representative / .

Let φx\ ττ2(X) --> H2(X, Z) and 9>5: π2(B) -> H2(B, Z) be the Hurewicz
isomorphisms. Then we have an obvious isomorphism 7: Horn (H2(X,
Z\ Zn~2)~>Hom(τr2(X), π2(B)) defined by: 7(g) = φiιo(h{a))-ΌgoφZm

LEMMA 3.1. [X, B] ~ Horn (π2(X), π2{B)) where the image of a
class [/] G [X, B] is / # : ττ2(X) ^

Proof. From the above comments we have [X, B] ^ Hom(τr2(X),
7Γ2(J5)) by the map johoψ. We must show that 7%°^[/] = /#.

Let σ:S2—>X be a representative map of an element [σ]eπ2(X).
We have y[h o ψ([f])]([σ]) = φγo (h(a))-ιo (hoψ([f]))φz([σ]). And we
have ^ 1

by the commutative diagram

π2(X) —

= <P?<PBfJ[σ\) = f*W] -

This completes the proof.

THEOREM 3.2. Let X be the connected sum of k copies of S2 x
S2

f where k ^ n/2 — 1. Then there is a principal Tn~2-bundle over X
with a simply connected total space.

Proof. Choose an element /* in Horn (ττ2(X), π2{B)) = Horn (Z2k,
Zn~2) which is onto. The existence of an onto map is guaranteed by
the choice of k. Let p: E-> X be the Γw~2-bundle induced by / : X-+
B. Then / induces a map between the homotopy sequences for



442 SOON-KYU KIM, DENNIS McGAVRAN, JINGYAL PAK

bundles p': E' —> B and p: E —> X. Thus we have the following com-
mutative diagram

π2 (E) > π2(X) — πx{Tn~2) > πx(E) > πx{X) = 0

Λ

0 = π2{E') > π2(B) — ^(Γ—) > π^E9) = 0 ,

where the rows are exact and π2(E') = 0 = 7Γi(23") since 2?' is contrac-
tible. Therefore Δf is an isomorphism. Since /# is chosen to be onto,
J:π2(X)—>π1(Tn~2) must be onto. Hence πv{E) = 0. This completes
the proof.

4* Effective actions* Now we study effective actions of the
codimension 2. There are many (n + 2)-manif olds which do not allow
any Traction:

4.1. [D. Montgomery]. Tn cannot act effectively on the (n + 2)-
sphere Sn+2 for n > 3, or on Rn+2 for n > 2.

4.2. T2n cannot act effectively on Sp x Sq with p, q odd and
p + q = 2^ + 2 for n > 2.

4.1. follows from BoreΓs formula, and 4.2 can be deduced from
Golber's formula.

We know that Tn cannot act effectively on a simply connected
(n + l)~manifold for n ^ 3 [4], and we suspected that Tn cannot act
effectively on a simply connected (n + 2)-manifold for n ^ 5. However,
contrary to our suspicion, we construct an effective Traction on a
simply connected (n + 2)-manifold for any n.

We first define certain permutations. Let σk — (12& + 1) for 2 :g
k < n and σn — (123). Let μx — (1) and for 1 < k ^ n define μk by
μk°σk — μn-i (where μk°σk means "σk followed by μk"). Finally
define σn+1 by μnoσn+1 = (1). Let D* x Tn~2 = {(ίx, ί2, . . . , ί . ) ! ^ , ί2)e
D2 x D2 = D4}. We shall consider various copies of D4 x Γw~2 and we
will denote the kth copy by (D* x Γ71"2)^ Note that d(D4 x Γ'1-2)^ ==
(S1 x D2 x Tn~\ U (D2 x S1 x Tn~%.

For each 2 <, k S n define / , : (S1 x D2 x Tn~2)k -> (D2 x S1 x
T771"2).-! by fk(tl9 , ίn) = (ί.*d), , <α4c>). Note that for 2 ^ k < n,
Λ(ίi, , in) = (*2, ίfc+i, ί8, * ,ii, , ί«) with ίi appearing in the (k +
l)st position and for k = n fn(tlf ••-,£*) = (ί8, ί8, ti, , tΛ) Hence
each / fc is a homeomorphism.

For k = n+l define / . + 1 : (JD2 X S1 X T^X^iS1 x D2 x Tn~%
by /n +i(ίi, ••-,«») = (ίαΛ+ι(i>, , *on+1(»)). We must show that fn+ί is
a homeomorphism, i.e., we must show that σn+1(2) = 1.

LEMMA 4.3. σn o σ^i o . . . o σ3 o σ2 — σn+1.
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Proof. σt = μjι o μi_1 for 2 <^ i ^ n and σw+1 = μ"1. Hence

σno ... oσ2 = μ-'o μn_ι o μ-^ ° μn_2 ° o μ- 1 o μ 2 o

Now computations show that σn+ί(2) — 1 and hence / w + 1 is a homeo-
morphism.

For each 1 ^ Λ ̂  w define a Traction on (D* x T%-2)fc by (τlf

LEMMA 4.4. T&e homeomorphisms fk{2 ^ k ^ n) and fn+1 are
equivariant with respect to this action.

Proof. For 2 ^k^n,τeTn and t e (D* x Tn~% we have

/ί;(Γ X t) = fh\ΓμkU)1'l9

— Tμk-1U)tσk(l), ' ' '9

— T X (ίffJfe(i), ' *, ί

Hence / A is equivariant. Similar calculations show that fn+ι is equi-
variant.

Now let M, = (Z)4 x Tn~% and M2 - Mι \J/2 (& x ^ ~ 2 ) 2 . We know
that ^(D* x Tn~2)j = Zn~2 = <ί3> x x <ίw> where T71"2 = Γ8 x Γ4 x
••• x Γn and <ίA> corresponds to TCJ^TJ,). NOW we may assume that
AΓ2 was obtained by attaching S1 x D2 x Γw"2 x J to (i?2 x S1 x ΓΛ~2)i S
-Mi via / 2 defined on Sι x D2 x Tn~2 x 0 and attaching (D4 x Γπ-2)2

to S1 x D2 x Tn~2 x l g f f x f f x Γ%"2 x I via the identity on
(S1 x D2 x Tn~%. For convenience we may assume Λf,. and (Z)4 x
Γw~2)2 are open subsets of M2 with M, Π Φ 4 x Γ " 8 ), - S1 x ΰ 2 x

Tn~2 χ jr- ( j - a n o p e n interval in I ) . Now ^ ( S ι x ΰ 2 x Tn~2) ~
x <ί8> x . . . x < O If

(Z>4 x Γ-*)2) > TΓ̂ ikfO and

n (D4 x Γ-8),) > TΓ^D4 x Γ- 2 ) a

are the homomorphisms induced by inclusions, it is easy to see that
ker φί = <ί3> and ker φz = <ίx> and that each <£>* is onto. Then by
applying Van Kampen's theorem it is also easy to see that π^ΛQ is
isomorphic to π1{M1 n (D* x Tn~%) modulo the smallest normal subgroup
containing (ker φt) U (ker <p2), i.e., πx{M2) ^ Zn~z = <ί4> x x <ίΛ>

Now let M3 = M2 U/3 (D* x Γn"8)3 where we consider / 3 as a mapp-
ing onto (D2 x S1 x Tn~2)2 £ (D4 x Tn~2)2 g Λf2. The same argument
shows that π^Ms) ~ Zn~\ Continuing this process we obtain
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LEMMA 4.5. Mn^ = i l ί n ^ U / ^ ΰ 4 x Γw'2)w-i is a simply connected
manifold with the boundary d i k d = (D2 x S1 x Γn"2)Λ_i U (S1 x D2 x

r -%
Define f:d(D< x Tn'%^dMn.± by

ί/n(ίi, •• ,tn)forte (S 1 x D 2 x Γ- a )n
U " ' ' l Λ ( ί g / o r ί e (D2 x S1 x T*-)

Then these definitions agree on (S1 x D2 x T"~2)w n (D2 x S1 x Tn~% =
(Sι x S1 x Tn~%. For if t e (S1 x S1 x Tn~\f on the one hand, we
have t identified with (/> . . . ofn)(t) = (^o...σ2(1), , ί«,Λo...σ2)(n)) e (S1 x
S1 x Γ""2)! £ Af^. On the other hand, t is identified with /Λ + 1(ί) =
(^ +i(i), •» ̂ n+1(n,) e (S1 x S1 x Γ- 2 ) 1 S Λf-i. Then Lemma 4.1 shows
these two are equal.

LEMMA 4.6. The space Mn = -Mn-iU/C0* x ^ ~ 2 ) ί , is α simply
connected closed (n + 2)-manifold.

Proof. Since / is a homeomorphism from d(D4 x Tn~2)n onto
dMn_ly Mn is a compact manifold without boundary. It is easy to
see that the homomorphism φ: nx{d{D' x Tn~%) ~-> π^D* x Tn~% induced
by the inclusion is onto. A further application of Van Kampen's
theorem shows that Mn is simply connected.

Therefore we have proved the following:

THEOREM 4.7. There exists an effective Tn-action on a simply
connected closed (n + 2)-manifold Mn+2.
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