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ON THE RADICALS OF LATTICE-ORDERED RINGS

H. J. SHYR AND T. M. VISWANATHAN

In this note, it is sliown that for several classes of
lattice-ordered rings, the ^-radical L(A) and the prime radical
P(A) coincide and that A modmlo the ^-radical is an /-ring.
in particular, this is true for the class of positive square
rings satisfying the identity α+&_ = 0.

The most well-behaved lattice-ordered rings are the /-rings satis-
fying the identities xa+ Λα_ = 0 where x is an arbitrary positive
element and a an arbitrary element of the l-τing A. All other rings
are then studied by dissecting the ring into parts — one part called
the radical where the idiosyncracies of the ring play a role and the
other is the ring modulo the radical where the ring is expected to
behave more like an /-ring. The radicals are themselves varied: There
is the ϊ-radical L(A) of Birkhoff and Pierce which is the union of
nilpotent i-ideals of A and the P-radical <&*(A), being the intersection
of all the prime ί-ideals of A. It is known that L(A) £ P(A). The
object of this note is to show that equality holds and that the radicals
behave well for several classes of ί-rings.

2, Square-archimedean rings. A square-archimedean ring A
is an l-rΪTLg satisfying the following: Given x, y in the positive cone
A+, there exists a positive integer n — n(x, y) such that xy + yx ^
n(x2 -f y2). The positive square Z-rings, having square elements positive
or zero are indeed square-archimedean. The following is an example
of a commutative ϊ-ring with identity which is square-archimedean
but not positive square: The ring A has the additive group of two
copies of the ordered group Z of integers with multiplication defined
by (al9 a2)(b1, b2) = (aj>lt aφ1 + aj)2) and order provided by (aL, a2) in

A+ if a2 ^ aλ ^ 0 in Z, Notice also that the bound n(x, y) may not
be uniform.

it is appropriate at this point to introduce the upper Z-radical
U(A) which is the union of all nil Z-ideals of A, U(A) is an ϊ-ideal
whereas the set H(A) of all absolutely nilpotent elements need not
be an ideal. We have the containment relation L(A) £ P(A) £
U(A) £ H(A). Throughout the remaining part of this section A is
assumed to be a square-archimedean ring.

PROPOSITION 1. If x and y are elements of A+ and m a positive
integer, then there exist positive integers λm and μm such that
(x + VT Si \JW + ΊT) and (xyfm £ μm(x*m+1 + ^ " + 1 ) .
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Proof. Use induction on m. For the second inequality, xy ^
xy + yx <: n(x2 + y2) and so (xyfm ^ n2m(x2 + ?/2)2m a n ( * n o w u s e the
first.

PROPOSITION 2. The set H(A) is a sublattίce subring of A which
is also square-archimedean.

Proof. This is a consequence of Proposition 1 and the following
identity in A: a + b = (a V b) + (a A b).

THEOREM 1. If A is a square-archimedean ring, then L(A) —
P(A) = U{A). In particularι, the three radicals coincide for positive
square l-rings.

Proof. We shall obtain a reduction to the case when A itself
will be a nil ring. For this, U(A) is an ϊ-ideal of A and so by (2.18)
of [2], the Z-radical of U(A) is equal to L(A). Since U(A) is a nil
ring, the theorem will be proved if we show that the ^-radical of
a nil ring is the whole ring. This is the next lemma.

LEMMA 1. For every integer m ^ 1, let p(m) — 2m. If A is a
nil ring then the set Im = {x e A: | x \Pίm) = 0} is a nil potent l-ideal.
Hence L(A) = A.

Proof. It is enough to prove the result for m = 1, since the
general case would then follow by induction by passing to the
quotient say A/I^,^. For m = 1, we already know from Proposition
1 that Iλ is a sublattice subring of A. Given x ^ 0 in Ix and a in
A+, we have xax = xax + ax2 ̂  n{axf for some positive integer n
and by iteration, xax ̂  nsa8xax for every s ^ 2 and so xax = 0,
making the square of both ax and xa vanish. Thus Ix is a nilpotent
ϊ-ideal of index 2.

REMARK 1. The question naturally arises whether there exists
a positive square ί-ring for which U(A) Φ H(A). This is another
form of a question of Diem. (See p. 79 of [2].)

3. Rings with well-behaved radicals* We shall now complete
the work of Diem by showing that for several classes of rings
satisfying specific ϊ-ring identities, the i-radical equals the set N of
nilpotents so that all the radicals coincide. A basic tool is the notion
of an /-ideal, which is an i-ideal I such that A/I is an /-ring. Thus
an Z-ideal / is ad /-ideal if and only if it contains all elements of
the form xa+ A a~ and a+x A a~ for all x ^ 0 and for all a in A.
We observe that if the i-ring A has a nilpotent /-ideal, then L(A) = N9

making all the radicals coincide and in this case the Z-radical indeed
behaves well since A/L(A) is an /-ring without nilpotent elements.
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THEOREM 2. Let A be an l-rίng which satisfies one of the
following identities:

( i ) xa+ A xa~~ = 0 and a+x A a~x = 0 for all x ^ 0 and a in A.
(ii) xa+x A xa~x — 0 for all x ^ 0 and a in A.
(iii) a+xa~ = 0 for all x ^ 0 and a in A.
(iv) xα+w~x — 0 for all x ^ 0 and a in A.
(v) a+a~ = 0 for all a in A. Then L(A) = N.

Proof. We shall produce a nilpotent/-ideal in all cases except (v).

(i) and (ii). Let / = {x e A: Ax A = 0}. Let us show that I is an
/-ideal in the case of (ii). A similar proof works for (i). If c, d, and
x ^ 0 in A and a an element of A, then c(xa+ A a~)d ̂  cxa+d A ca'd g
ea+eAea~e where e is any upper bound of c, ex, and d and this last
element is 0. Since any element is the difference of two positive
elements, this shows that xa+ A a" belongs in J. Similarly a+x Λ or
belongs in /. Clearly 7 is a nilpotent i-ideal.

(iii) and (iv). It is clearly enough to prove (iv). Notice that
for every x >̂ 0 and a in A, the element (xafx ^ 0. Using this, it
is easy to show that the set J — {a e A: (x \ a \)2x = OVx e A+} is a
nilpotent /-ideal.

(v) Since A in this case is a positive square ring, by Theorem 1,
L(A) - P(A) and by Corollary 4.6 of [2], P(A) = N.

COROLLARY. Let A be an l~ring. Suppose the upper radical is
square-arckimedean or satisfies one of the identities above, then
L(A) - P{A) - U(A).

REMARK 2. The l-ring satisfying the identity a*a~~ = 0 also has
a nilpotent /-ideal. The proof however requires that H(A) be an
i-ideal, a consequence of Corollary 3.8 of [2]. Since the existence of
a nilpotent /-ideal implies that only a part of the ^-radical behaves
undesirably, it may be useful to describe this /-ideal.

From Lemma 1, if a and s are elements of A4" and if a2 = 0 and
s nilpotent, then asa = 0. Now if r e A+ and a e A/ an element such
that α2 = 0, then rar is nilpotent, since H(A) is an Z-ideal. Hence
for every r in A+ we have arara =• 0.

Now if a e A and r e A+ then (ra^ A a~f <̂  ra~a~ = 0. Hence
(ra+ A a~f = 0. Similarly (a+r A a~f = 0.

Let Z^A) — {a e A: (x \ a \fx = 0 V xe A+}. Since A is a positive
square ring, Zλ{A) is a nilpotent ί-ideal. Since it may not contain
ra+ A a~, we construct Z2(A) as the inverse image of Z^A/Z^A)),
using the natural epimorphism A—> A/Z^A). Z2(A) is a nilpotent
/-ideal of A.
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