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A UNIFIED APPROACH TO BOUNDARY VALUE PROBLEMS
ON COMPACT INTERVALS

FRANKLIN T. IHA

Let L be a formal differential operator of order n and
consider L as an operator from Cn([α, b]) c L2([a, b]) into
L2([a,b]). Let {ηu * ,^} be a set of linear functionals
defined on Cn([a, b]) with the property that each -η/Γ, j =
1, , I, is continuous, where T is a continuous right inverse
of L. Let M be the set of all / € Cn([α, 6]) such that Vj(f) = 0,
1 ^ i ^ ϊ, and N be the set of all feM such that L/ = 0.
It is shown that the inverse of L from L(M), the image of
M under L, into M Π N1 is a compact operator and can be
represented as an integral operator. In particular, if I = n
and {yjj} is linearly independent, the inverse of L maps C([a, b])
onto M and it is compact. The Hilbert-Schmidt expansion
theorem is generalized to these inverse operators when L is
self-adjoint on M.

The purpose of this paper is to put the homogeneous boundary
value problems of ordinary differential equations in an abstract
setting, so that the properties which make the whole analysis go
through become transparent. We replace the usual boundary con-
dition with a linear functional rj defined on Cn([a, &]), where n is the
order of the differential equation. This has been done by many
authors, but their main purpose was to facilitate the notation and,
with the exception of Calkin in [1] and Dunford and Schwartz in [2],
the topological property of rj was never used. In this paper, however,
the continuity of rjT, where T is an operator whose construction will
be given later, is essential. It is this property which will make the
integral representation of the inverse of a differential operator possible.
Once the integral representation is obtained, we can generalize the
Hilbert-Schmidt expansion theorem to this inverse operator when the
differential operator is self-adjoint on M where M is the set of all
functions in Cn([af b]) satisfying the boundary conditions. The integral
representation of the inverse of a differential operator has been
obtained almost always through the use of the Green's function
associated with the boundary value problem. But it is easy to find
an example for which the Green's function does not exist. Even in
such a case, however, we can construct an inverse of a differential
operator L from the range L{M) of L on M into Mf) N1, where N
is the null space of L in M, and this is the operator for which we
obtain an integral representation and prove that it is compact.

145



146 F. T. IHA

2* Notations* Throughout the paper L denotes the operator
defined by

(1) (Lf)(x) = Σ Pk(x)f(n-k)(x) , fe C*([a, 6]) ,

where each Pk(x) is a continuous function on the closed finite interval
[a, b] and P0(x) Φ 0 for any xe [a, b]. We regard L as a mapping
from Cn([a, b]) c L2([α, 6]) into C([α, b]) c L2([α, 6]), and whenever con-
tinuity is mentioned, it is with respect to the norm of L2([a, 6]). All
the functions are restrictions to [α, 6], Thus we simply write Lf = 0
meaning (Lf)(x) = 0 for all xe [α, 6],

We set

(2) S={feC«([a,b))\Lf=O}.

It is a classical result that S is an ^-dimensional linear space.

3* Generalized homogeneous boundary value problems* We
first of all construct an operator T from C([α, b]) into Cn{[a, b]) having
the property LTf = f for a l l / e C([α, δ]). For this purpose we take
a basis {Vj(x)} of S and consider the system of equations

(3) Σ a k ( x ) y ί ^ ( x ) - δs%f(x)/P(x) , l £ j £ n 9
k=i

where ^ i w = 0 if j Φ n and δnn = 1. Since {?/,•} is a basis for S and
P0(x) ^ 0 for any xe[a,b], the Wronskian T7(a;) of {ys} does not
vanish at any point of [α, δ]. Hence we can solve the system (3) for
ak(x) and obtain

( 4 ) aj(x) = Fό{x)f{x) , l ^ j ^ n ,

in which each F, is of the form Qj(x)[P0(x)W(x)]~1 where Q3(x) is a
polynomial in yf"X){x)9 l^j ^n, l<.k^n. Since W(a?) Φ 0 for any
# e [α, δ], it follows each Fs is continuous on [α, δ]. We define T by

(5) (Tf){x) - J[[g yi{x)Fά{ζ)\mdξ , /e C[α, 6].

From (3) and (4) we obtain

(6 ) Σ V{rι)(x)Fk(x) - dJn/P0(x) , 1 ̂  j £ n .
k=l

From (5) and (6) we obtain the following properties of T: For each

/eC([α,δ]),

( 7 )
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D\Tf){x) = \[[£y^x)F^)]fm^

D\Tf){x) = f(x)

(9)

The clue to the generalization to the standard boundary value
problems is given by the following very simple observation:

LEMMA 1. Let T be the operator defined by (5) and ce[a,b].
Let ζk>c be the linear functional defined by ζk,e(f) =f{k)(%)> / G Cn(la, fr])>
0 ^ k ^ n — 1. Then each ζk,cT, 0 <: k ^ n — 1, is continuous, that
is, there exists a constant Ak such that

fsC([a,b]),

where \\ \\ denotes the norm of L2([α, &]).

From the lemma it follows that the linear functional η occurring
in the usual boundary value problems all have the property that rjΎ
is continuous.

LEMMA 2. Let TQ be an operator having the following properties:
( i ) LTJ = ffor all fe C([a, b]),
(ii) \\TJ\\ ̂  A\\f\\ for all feC([afb]).

If η is a linear functional such that ηTQ is continuous, then ηT
is also continuous.

Proof. Let {zu z2i , zn} be an orthonormal basis for S. Then
Tf - TJeS and in fact Tf - TJ = Σ?=i (Tf - Tof, zd)zs. Hence,

ηTf = yjTJ + Σ (Tf - TJ, zj

from which the assertion follows.

DEFINITION 1. Let T be the operator defined by (5). A linear
functional rj defined on Cni[a, b\) is said to be a boundary functional
for L if it has the property that rjT is continuous (with respect to
the norm of L2([α, 6])).

DEFINITION 2. A set {ηu , ηt) of boundary functionals for L
is said to be linearly independent if they are linearly independent as
duals on S, that is, if Σί=i ajVj(f) — 0 for all fe S implies aά = 0,
1 ^ j S I, where S is the set defined in (2), or equivalently, if for
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any basis [f3] of S, the rank of the matrix [yjAfj)] is I.
As a direct generalization of the usual homogeneous boundary

value problem, we have

THEOREM 1. Let {ηly •••,%} be a set of linearly independent
boundary functionals for L and let

(10) M = {fe C%a, b\) \ Vj(f) = 0 , 1 £ j £ n}.

Then the inverse K of L from C([a, b]) into M exists, and it is
compact. Moreover, there exists a function K(x, ζ) having the fol-
lowing properties:

(11) (Kf)(x) = Γ K(x, ξ)f(ζ)dζ , fe C([a, b})
Ja

for each x e [a, b]

(12) K(x,ξ)eL\[a,b});

and

(13) Γ I K{x, ζ) \2dξ £ B2 for all x e [a, b]
Jα

for some constant B.

Proof. Let {yl9 , yn) be a basis for S. It is straightforward
to show that L is one-to-one on M.

Since det [̂ 0/,-)] Φ 0, given feC([a,b]), there exist unique CJf

1 ^ 3 ̂  n, such that

(14) Σ rh{yό)Cό = -rh{Tf) , 1 £ i £ n .

Moreover, each Cd is of the form

(15) Cy - Σ α i 4

where akj are constants which depend only on f]%{y3), 1 <L ί <L n,
ί ^ j ^ n. From (14) and (15) we obtain

(16) Vi(£ Σ ajkηk{Tf)yj + Tf) = 0, 1 <£ i £
\i=i fc=i /

n .

We set

(17) (TJ)(x) = ±± ajkVk( Tf)Vj(x) , / e C([a, b])

and
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(18) Kf=TJ+Tf, feC([a,b]).

From (16), (17), and (18) we have ηt(Kf) = 0, l£i£n,fe C([a, &]),
so that Kfe M for all fe C([a, b]). Moreover, from (9), (17), and (18),
we see that L(Kf) = / for all feC([a, δ]). The compactness of K
follows from the fact that To is a continuous operator with finite
dimensional range, so that To (along with T) is also compact. From
the hypothesis, for each j , 1 ̂  j <Ξ nf there exists a constant A5

such that

| % ( Γ / ) | ^ i i y | | / | | , feC([a,b]).

Since C([a, b]) is dense in L2([α, δ]), we can extend the continuous
linear functional /—>%•(Tf) continuously to L2([a, b]) with the same
bound Aj. Hence it follows that there exists G5 e L2([af b]) such that

(19) Vj(Tf) = Γ Gtf)ftf)dS , fe C([a, b])

and

(20)

Substituting (19) in (17), we obtain

(21) (TJ)(x) = ί T ± Σ «tjyt(x)Gtf)]f(e)dS , fe C([a, b}) .

We set

(22) Jo(x9S) = ttatjyi(x)Gi(ξ)
ί=i i=i

(23) J(χ, ξ) = ± y£x)Ftf) i f a ^ ξ ^ x
3=1

= 0 if ξ> x ,

(24) K(x, ξ) = J0(x, ξ) + J(x, ξ) .

Then, from (18), (5), (23), (21), (22), and (24) we obtain

(Kf)(x) = Γ K(x, ξ)f(ξ)dξ , /6 C([a, b]) .
Ja

From (20), (22), (23), and (24) and from the fact that ys and Fj9

1 ^ j ^ n, are continuous functions on the compact set [α, 6], it fol-
lows that K(x, ξ) has the desired properties (12) and (13).

We next consider the case in which the number of boundary
f unctionals is not necessarily n and may not be linearly independent.
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THEOREM 2. Let {ηά}[ be a finite collection of boundary func-
tionals for L. Let

Mo = {fe C([a, b]) I Vj(f) = 0, l^j^l}

N=MonS={feMo\Lf=O}

Mι = Mo Π N1 = {fe Mo I (/, g) = 0 for all geN)

L(M0) = {f\f= Lu for some ueM0).

Then there exists an operator Kx from L(M0) into Mx such that
( i ) LKJ = f for all f 6 L(Ma),
(ii) Kx is compact on L(M0),
(iii) there exists a function KJjx, ξ) such that (Ktf)(x) =

Γ K&, ξ)f(ξ)dζ, fe L(M0); for each x e [a, b], Kx(x, ξ) e U([a, b]), and
Ja

S b

ζ) \2dξ ̂  B\ for all x e [α, b] for some constant Bλ.

Proof. Let dim N = p. Let {gά} be an orthonormal basis for N
and let

Then clearly ηι+i, 1 ̂  j ^ p, are boundary functionals for L.
Moreover,

ΛΓi = ί/e C (̂[α, &]) | %•(/) = 0 , 1 ̂  i ^ I + p) .

Since Af0 = ML 0 ΛΓ and iV is the null space of L on M09 L is one-
to-one on Mlf so that if a solution in Mι of the equation Ly — f does
exist, it is unique. Let {yt} be a basis for S. Then if feL(MQ) =

^), there exist unique Cy, 1 ̂  i ^ w, such that

Σ C^/a;) + (Γ/)(a?)

is the solution of Ly — f in M19 that is,

(25) L(±C3-Vj+ Γ/)=/

and

(26) ^ ( Σ C ^ , - + T/) = 0 , l ^ ί ^ ί + ί>.

From (26) it is seen t h a t each C3 is of the form

C, - Σ <xjkηk(Tf)
fc=l

w h e r e a j k e C d e p e n d o n l y o n rjj(yk)9 1 ̂ j ^ l + p , l ^ k ^ n . L e t
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(27) (KJ)(x) = Σ Σ «iMTf)v<(x) + (Tf)(x) , fe L(M0) .
* = 1 3=1

Then from (25), (26), and (27) we have KJeMx and L(KJ)=f
for all/eZ,(Mo). The proof that Kγ is compact and that it can be
represented as an integral operator satisfying (i)-(iii) is the same as
in the proof of Theorem 1.

4* Generalized Hilbert-Schmidt theorems* We get back to
Theorem 1. We need to extend the operator K to L2([a, b]) and
establish some elementary facts before we can state the next theorem.

Since each r)5T is a linear functional continuous on the dense
set C([α, &]), it has a unique continuous extension to L2([a, b]). Hence
To has a unique continuous extension To to L\[a, b\). We observe
that

(28) fofe Cn([a, b]) for all fe L*([a, b]) .

The integral defining T makes sense even if feL2([a, &]), and
denoting this extended operator by T, it is easily seen from (5) that

(29) ffe C([a, b]) for all fe L2([a, b]) .

Let

(30) K= f o + f .

Then K is the continuous extension of K and K is compact on
L2([α, 6]). From (28) and (29), we have

(31) Kfe C([a, b]) for all fe L2([α, &]) .

With these definitions and notations, we have the following
lemma.

LEMMA 3. Let λ be a nonzero eigenvalue of K and φ be the
corresponding eigenfunction. Then φeCn([a, 6]), and in fact φeM,
where M is defined by (10).

Proof. By definition, Kφ = λ<p and φ e L2([a, b]). Hence from (31)
we have Kφ e C([a, b]). Since λ Φ 0, it follows φ e C([a, 6J). But this
means that Kφ = Kφe M, so that φ e M.

From this lemma it follows that every eigenfunction of K cor-
responding to a nonzero eigenvalue is also an eigenfunction of L.

We now prove the Hilbert-Schmidt theorem for the inverse
operator of Theorem 1 when L is self-adjoint on M, that is, when
(L/, g) = (/, Lg) for all /, ge M. (For the conditions as to what
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differential operators can be self-ad joint, see Naimark [3].) Before
we state the theorem, however, we observe that if L is self-adjoint on
M, K is self-adjoint on C([a, b]) and so K is self-adjoint on L2([a, b]).
Moreover, since the range of K contains an infinite dimensional
subspace M, it follows that K has infinitely many eigenvalues. With
these and the elementary properties of self-adjoint compact operators
on a Hubert space in mind, we state the theorem.

THEOREM 3. Let L have the additional property that it is
self-adjoint on M. Let {φά} be the complete system of orthonormal
eigenfunctions of K corresponding to nonzero eigenvalues, and Xj
be the eigenvalue of K corresponding to φά. Then for each fe L2([a, b]),

(32) Kf = Σ (Kf, φ3)φό = Σ λ,(/, 9 > ,
i=i i=i

and the series converges to Kf uniformly on [a, b].

Proof. The fact that the series converges to Kf in L2([a, b])
follows from the theory of self-adjoint compact operators on a Hubert
space.

Using the Cauchy's inequality, we obtain

Σ
1/2Γ m Πl/2

Since = [b K( x> ξS*<p^dξ> flxing x e ί a > *I» r e c a l l i n S ( 1 2 ) a n d

(13), and applying the BesseΓs inequality to the function K(x, f), we
obtain

Hence,

Σ (/, [ m

Σ

for all x e [α, 6], from which we see that the sequence of the partial
sums S^x) of the series in (32) is uniformly Cauchy on [α, 6]. Each
φ5 is continuous by Lemma 3, so that S% e C([a, b]) for each I. Hence
the limit of the partial sums St(x) is also continuous on [a, b]. But
{St} converges to Kf in L\[a, b]) and Kfe C([a, b]) by (31). Hence
the function to which {S^)} converges uniformly must be Kf, which
completes the proof.

As an immediate consequence of Theorem 1, Theorem 3, and
Lemma 3, we have the following theorem:
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THEOREM 4. Let {ηu , ηJ be a linearly independent set of
boundary functionate for L and let L be self-djoint on M—{fe
Cn([a, b]) I %•(/) = 0, 1 <̂  j ^ n}. Let {φd} be the complete system of
orthonormal eig en functions of L and μ3- be the eigenvalue correspond-
ing to ψj. Then for every fe C([a, b]) the solution of the generalized
boundary value problem

Ly=f

VJ(V) = 0, l^J ^n

exists and can be represented by the series

Σ μΛf, ΨύΨi

the series converging to the solution uniformly on [a, b].

In order to facilitate the statements of the following two theorems,
we state conditions and definitions used in the theorems.

( i ) {Vu ' * '> Vι}> 1 = ^ = n> is a set of boundary functionals for
L, in which {ηl9 , Ύ]r) is linearly independent in the sense of
Definition 2.

(ii) ΛΓo = {fe C\[a, b]) \ ηs(f) = 0, 1 ^ j ^ I}.
(iii) L is self-adjoint on Mo.
(iv) N = Mo Π S; dim N = p = n — r; q = I — r.
(v) {ψl9 , ψ9} is an orthogonal basis for N.
(vi) ζy(/) = (/, Ψs)> / e L\[a, 6]), l^j^p. Then each ζy is a

boundary functional for L and the set {ηu , ηr9 ζlf , ζ̂ ,} is linearly
independent in the sense of Definition 2.

(vii) ThenbyTheorem

1, there exists a compact operator K such that LKf = f and Kfe M±

for all feC([a, b]).
(viii) {?>y} is the complete system of (orthonormal) eigenfunctions

of L in Mo Π M1 and μ, is the eigenvalue corresponding to φjf that
is, φi eMQΓ) Mt and Lφά = ^ <pi.

THEOREM 5. i^or e'yer?/ /eC([α, 6]) we have

κf=± μΆf, <Pi)<p> + Σ (/,
j ί

and the series (together with the second sum) converges to Kf
uniformly on [α, 6].

Proof. Since L is self-adjoint on Mo Π M19 K is self-adjoint on
L(MQ Π Mi), the image of Mo Π Mλ under L. We want to show that
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is invariant under K. We first show that KgeMof]Mι
for every g e C([a, b]) Γ)NL. To this end we show that every fe C([a, b])
can be expressed in the form

•0 + Σ (/, Ψi)Ψi
3 = 1

with geL(M0Π Mx).
Let ek — Kψk, 1 <; k ̂  q. We claim that the determinant of the

q x q matrix [ηr+i(ej)] is not zero. Suppose the contrary. Then
there exist a5 e C, not all zero, such that

Σ Vr+i(ej)(xj = 0 , l ^ i ^ q ,

o r

^ ) = 0, 1 ̂  i ^ g .

Since Σ?=i ^ Λ e -M"n it follows % ( Σ ; = i «yβy) = 0, l^k^l, t h a t is,
Σ;=i ^ i e i e ^ o Hence, (L(Σj=i ^yβy), 'f) = 0 for all f eN since L is
self-ad joint on MQ and NaM0. Since L(Σ?=i «<«<) = Σf=i aof y € iSΓ,
it follows that Σy=iαy^y =: °> which implies α, = 0, l^j^q, con-
tradicting the choice of a/a. Hence, det [ηr+i(ej)] Φ 0. Let fe C([α, b]).
Then Kfe Mίf and since det [y]r+i{e3)\ Φ 0, there exists a unique set

}?, /S, G C, such that

Σ Vr+i(ej)βj = Vr

or

Vr+ifKf-tβje^ - 0 , 1 ̂  i ^ ? ,

from which we have

•K/ ~ Σ iSyβy € Λf0 Π Jlίi .

y=i

Let g = / — Σy=i /5if i Then iΓg 6 Mo Π Λζ. and we have

Since βr = L(Kg) e L(ikf0 Π ML) and L is self-adjoint on Mo, we have
(flr, ψ) = 0 for all f e ΛΓ. Hence (/, ψk) = (g, f,) + Σ?=i /5i(f y, t*) = A,
1 ^ A; ̂  ?. Thus, for every / e C{[α, b\)

(33) f=g + Σi(f,*jWs
y
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with Kg e M0V[ Mi. It follows immediately from (33) that

(34) KfeMof] Mi for all fe C{[a, b]) Π iSΓ- .

To prove the in variance of L(M0 Π Mi) under K, let g e L(M0 Π Mi).
Then KgeM0Γϊ Mi, and since MιaN~, we have Kg e Nλ. Moreover,
Kg e C([a, b]). Hence from (34), K{Kg) e Mo f] Mλ or Kg e L(MQ Π Mi).
Thus L(M0 Π Mi) is invariant under K.

We let:
Ko be the restriction of K to L(M0 n Mi),
Jϊo be the closure of L(M0 f] Mi) in L2([α, 6]),
JKQ be the continuous extension of KQ to Ho.

Then Ĵ O is a compact self-adjoint operator on the Hubert space Ho.
We next show that if φ e HQ and λ ^ 0 such that Koφ — \φQ1 then
φ e L(M0 n Mi).

Since K is representable as an integral operator by Theorem 1,
Ko is representable as an integral operator and consequently just as
in the case of Theorem 1 we can show that

KofeC([a,b]) for all feH0,

so that φ = \~ιKQφ e C([α, &]). Hence by (33) we can write φ = # +
Σ?=i (̂ » ^ i )^ i w i t t l ^ G i ( ^ o Γl Mi). But (/, | ) = 0 for a l l/6 L(M0 Π Mi)
and for all ψeN. It follows from this that (/, f) = 0 for all fe Ho

and for all ψe N. Hence (φ, ψ3) = 0, 1 ^ i ^ g, so that φ ~ g e
L(MQ Π Mi). Hence iΓ^ = Koφ = Ko^ = λ<p and so L<ρ — λ""1^. It
follows from this that {φ^ is also the complete system of (orthonor-
mal) eigenfunctions of Ko corresponding to the nonzero eigenvalues
of Ko. Hence by the same argument as in the proof of Theorem 3,
for every fe HQ

Kof= f <& * - Λ - - ^ "-1

Σ
j

the series converging to Kof uniformly on [α, 6], Now let fe C([a, b])
and

Then from (33) g e L{M0 n Mi), so that

Kf = KQg + Σ (/, α
J = I

co q

= Σ ftτl(^? ^i)^i + Σ U\ Ψ.

oo q

= Σ i"7'
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since (ψk, φ3) = 0 for all k and j , and the series (together with the
second sum) converges to Kf uniformly on [a, b].

THEOREM 6. Under the conditions (i)-(viii), for every fe
C([a, b]) n NL

f the generalized homogeneous boundary value problem

Ly=f
ηό{y) = 0 , l^j^l

has a unique solution in MQ and the solution can be represented by
the series

Σ AW, ΨίίΨi

the series converging to the solution uniformly on [α, &].
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