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THE STRUCTURE OF GALOIS
CONNECTIONS

ZAHAVA SHMUELY

This paper deals with Galois connections between two partially
ordered sets (posets) A, B. The first sections are devoted to the
construction of all Galois connections between A and B. The last
sections deal with properties of A ® B9 the set of mappings Γ: A—*
B which "participate" in a Galois connection between A and B,
with the pointwise partial order.

Every Galois connection between two posets A, B can be uniquely
extended to a Galois connection between v{A) and v(B\ the completions by
cuts of A, B resp., and A® Bis characterized as a subset of v{A) ® v(B). As
an application we get: The completion by cuts of a residuated groupoid
(semigroup) is a residuated groupoid (semigroup, resp.). The completion
by cuts of a Brouwerian lattice is a Brouwerian lattice. The completion by
cuts of a relation algebra is a relation algebra. When A and B are complete
lattices, A ® B is isomorphic to a certain set of semi-ideals of A x B. This
yields a procedure for constructing all Galois connections between any two
posets. By dualization all sup-preserving and inf-preserving mappings are
determined.

Bounded posets A, B are embedded in A ® B in a peculiar way. A ® B
is a completely distributive, complete (Boolean) lattice iff A and B are
completely distributive, complete (Boolean, resp.) lattices. Formal pro-
perties of ® as a binary operation on bounded posets are investigated. In
particular Λ ®2B^AB whenΛ is a complete lattice, implying^ 0 £ c s
Ac ® B^(A ® B)c when A, B are complete lattices and C is a poset. In
certain respects, the behavior of A ® B as a product of A and B resembles
that of the tensor product of linear spaces.ι

1. In the following, A, B9 C denote partially ordered sets (posets). A D

is the dual A. A is bounded if it contains universal elements 0,1 with 0 < p
< 1 for everyp G A. 2 is the poset {0,1} with 0 < 1. A mapping T.A-+B
is isotone or order-preserving (antitone) whenever/?! <p2inA implies T(px)

< T(p2) (T(pι) > T(p2)). Isomorphism here means order-isomorphism. A
is a complete lattice if every set {xa} Q A has a l.u.b., Vαxα, and a gib.,

α. A complete lattice is completely distributive whenever

Λα eaVβeB a

Xaβ =
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holds for every set {xaβ } C A. X C A is a (dual) semi-ideal of A if (y > x)
y < x andx G AT implies 7 G X.

For AT C Λ let X+,XACAbe defined by * + = {a\a < JC for every x G
X} XA = { φ > x for every x G l } . Adjoining 0 to A if necessary put ([1]
p. 126): v(A) = {Z A + |Z C Λ}. y(Λ), partially ordered by inclusion is the
completion by cuts oϊA. a —• {fl}Λ+ embeds 4̂ in the complete lattice v(A).

A x Bis the Cartesian product of A and B, partially ordered by (ah b{)
< (a2, b2) if α i < a2, b\ <b2.A

B is the set of all isotone mappings T:B-~*A
partly ordered by the pointwise partial order, i.e., Γ, < Γ2 G Λ* if Γ,(#) <
Γ2(^) for each q G JS.

A pair (Γ, G> of mappings Γ: ̂ 4 —• B, G: B -* A is a Gαfow connection
between A andB [10] if: (i) Γ, G are antitone; (ii) for each/; G A, GT(p) >
/?, for each q G J5, ΓG(#) > r̂. Galois connections are treated in [1], [4], [10],
[12] and used in many disciplines of mathematics (see for example [14],
[16]). A ® B denotes the set of mappings T.A-+B for which a (necessarily
unique) mapping denoted by Γ*: B —* A exists, such that (Γ, Γ*) is a
Galois connection between A and B. A ® B is given the pointwise partial
order. If A, B are complete lattices then ([12]):

(1) TEA®B iff: (i) 7X0) = 1; (ii) Γ(V aaa) = Λ α 7R)

for every set {aa} C A,

i.e., Γis a complete join-morphism on A into BD. Galois connections are
also studied in a dualized form. The mapping T: A —> B is residuated
(residual) if T E A ® BD(T G AD ® B). The semigroup of residuated
mappings, where multiplication is function composition, is studied and
used by many authors (see [2], [3], [5], [6], [8], [9]). By (1), residuated
(residual) mappings on complete lattices are exactly the sup-(inf-) pre-
serving mappings.

A procedure for constructing all Galois connections between comple-
tely distributive, complete Boolean lattices A = 2M

9 B = 2N was given by
Birkhoff ([1] p. 122). Raney [13], presented a procedure for constructing
Galois connections between complete lattices. By his procedure all Galois
connections between completely distributive, complete lattices, can be
constructed.

2. In this section we prove:

THEOREM 1.2. Every Galois connection (Γ, T*) between twoposetsA
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and Bean be uniquely extended to a Galois connection (T9T*) between v{A)
and v{B), the completions by cuts of A, B resp.

In the following let T(X)+ stand for {T(x)}tex, for X C A. Before
proving Theorem 1.2 we have:

LEMMA 1.2. Let (T,T*) be a Galois connection between theposets A
andB. Then * , Λ + C X2

A+ in v(A) implies T(X2)+ C T(XX)+ in v(B).

Proof We have

v Λ v Λ + Λ —> v"A + Λ v A
Λ I = Λ j JΛ2 = Λ2 '

Let j E T(X2)
+. Since y < T(x) for every c E * 2 , JC < Γ *(y) for every Λ: E

X2 follows. Thus, 7^(7) E X2

A c J^,A. From JC < Γ*(y) for every J C G ^
we get y < Γ(JC), for x E ΛΊ and y E Γ(X!)+ follows.

COROLLARY 1.2 X{

A+ = X 2

Λ + in i<Λ) /mp/fej Γ ( ^ i ) + = Γ(Z 2 ) +

in v{B).

Proof of Theorem 1.2. Identifying^, B with their images in v(A)> v(B)
we define f: v{A) ~* ^(5) by

(2) f(XA+) = Λ Ϊ(JC), i C i .

Here we put Γ(0) = 1, Γ(l) = 0 if 0, 1 resp. are adjoined to A and
similarly for Γ*. Since ΛxexT(x) = T(X)+, it follows by Corollary 1.2 that
f is well-defined. By (1) T E p(A) ® v(B) since

) = ΛxSUaXT(x)

)) = ΛaT(XA+).

Since ̂ ^ = VxGA:jcfor XcA,it follows by (1) that f is the only possible
extension of T. Obviously, T* E v{B) ® v(A) is given by

(2) f*^^ = Λ^Γ*(7), y ς f i ,

COROLLARY 2.2. >4 ® B can be considered as a subset ofv(A) ® ̂ (5).
(T,T*}isa Galois connection between v(A) and v(B) which is an extension of
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some Galois connection between A andB iff it satisfies {identifying, as before,
A andB with their images in v(A), v(B)):

(3) for every a E A, T(a) - b0 for some b0 E B\

for every b E B, Γ*(6) = a0 for some a0 E A.

Since pseudo-complementation defines a Galois connection on a
pseudo-complemented meet-semilattice A, Theorem 1.2 can be used to
show that v(A) is pseudo-complemented. In particular, a direct application
of Theorem 1.2 yields the Glivenko-Stone Theorem, for the Boolean lattice
A, with (T Λ + ) ' , the complement of XA+ in v(A) given by {*'}+E* = {X'} +-

We call T:A-^B a polarized mapping if T E A ® B. If T: A X B-*C is
given put Ta(b) = Tb{ά) = Γ(^ δ), for α E Λ 6 E B. The mapping Γ,
Γ: A x B—> Cis bipolarized if the mappings Ta: B -* C, Tb: A -* C are
polarized for each a G A, b G B. Biresiduated mappings are defined
analogously.

THEOREM 2.2 Each bipolarized mapping T: A x B -* C can be
uniquely extended to a bipolarized mapping v(T): v(A) X v(B)-*v(C).

Proof Identifying A, B, C, with their images in v(A), v(B), v{C) we
define v(T): v(A) x v{B) -> v{C) by:

\YΛ+)= ΛΉx,γ)
X fez A

r

where Γ(0, α) = T(b, 0) = 1, α E Λ 6 E 5; if 1 has to be adjoined then
T{\, b) = Γ(α, 1) i= Ofor 0 Φ a E Λ 0 Φ b E 5. Γβ*(c), ΓΛ*(c), where either
β E i , 6 E J 5 or c G C are universal are defined accordingly.

Using the equivalence of T(x, y) > z with Γ*(z) > y and Γ*(z) > JC it
follows as in Lemma 1.2 and Corollary 1.2 that v{T) is well-defined. As in
Lemma 2.2 one can easily verify that both v{T)x/\+: v(B) —* v(C), V(T)YΛ + :

v(A)-*v(Q are polarized for each ^ A + E v(A), YΛ+ E v(B)with

= Λ r*(z), z e e
JίCΛ

Z(ΞZ

v(T)fA+(ZA+) is given similarly. Consequently, ^(7) is bipolarized.*>
clearly extends T. The uniqueness of the extension can be shown using (1)
as in Theorem 1.2.
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REMARK 1.2. Theorems 1.2 and 2.2 of course hold with "Galois
connections" and "polarized mappings" replaced accordingly by either
"residuated mappings" or "residual mappings." The extensions are then
defined with appropriate dualizations.

A po-groupoid (<?, ) is called residuated'(see [1], [3], [9]) if the mapping
T:GχG^G given by T(gh g2) = gx g2, gh £2 Ξ G, is biresiduated. This
means that for every a,b G G there exist elements denoted by a. -b (right
residuals) and a .b (left residuals) such that b * x < a iff x < a. b while x b
< a iff x < a-.b. By Theorem 2.2 and Remark 1.2 we get:

COROLLARY 3.2. The completion by cuts of a residuated {commutative)

groupoid G is a residuated (commutative) groupoid. In v(G) multiplication is

given by:

Right residuation in v(G) is given by:

ΛrΛ+. 7 Λ + = {m. γ\m G XA,y G y} + = (XΛ. Y)+

and similarly for left residuation. If 0 is adjoined to G then O g = g O = 0,
£ G G; if 1 has to be adjoined we put 1 -g = g-1 = 1,0 Φ g G G.

COROLLARY 3 * .2. The completion by cuts of a residuated semigroup is

a residuated semigroup.

COROLLARY 4.2. The conditional completion by nonvoid cuts of a

directed residuated groupoid is a lattice-ordered residuated groupoid.

A latticed is called Brouwerian or relativelypseudo-complemented(see

[1], p. 128) when T: A χA-*A, given by T(x,y) = x Λ y, x,y G A is a
biresiduated mapping. We have:

COROLLARY 5.2. 77ιe completion by cuts of a Brouwerian lattice A is a

Brouwerian lattice.

This is an easy consequence of Corollary 3.2 where " " is replaced by
"Λ" and both "•." and ".•" by ":". It can be shown that Λ defined here
coincides with the meet operation in v(A\ i.e., ΛΓΛ+Π YAJt = {x Λy\x EX,
y G 7 } Λ + = (X A Y)Λ+. Note that l(=x:x) G A.
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A relation algebra ([1], p. 344) is defined to be a residuated monoid
((?, •) with 0 and unity e, which is a Boolean algebra when considered as a
poset, in which e\ g = e' .g holds for each g G G , and denoting e'. g" by g,
the converse of g, such that g = g and g.A = kg for g, h & G. By using
Theorem 2.2, the Glivenko-Stone Theorem, together with the natural de-
finitions of complementation, multiplication and residuation in v(G) we
get:

COROLLARY 6.2. The completion by cuts of a relation algebra is a relation

algebra, with conversion given by

= X
Λ +

3. Here we show that Galois connections between complete lattices
A and B stand in a one-to-one correspondence with certain semi-ideals of
A xB.

DEFINITION 1.3. Let A, B be complete lattices, θ C A x B is called a
G'ideal oΐA x B when

( i ) (x,y) < (α, Z>) and (α, b) E θ implies (x,^) E 0;
(ii) if {(αα, frα)} C 0 then (Vααα, Λ A ) e 0 and ( Λ A , VA) G 0;

(iii) (0,1) E 0 and (1,0) G 0.

, E) denotes the set of all (7-ideals of A x 2?, partially ordered by
inclusion. Since A X B E Jφl,jB) and since Π ^ , where {θβ} C K(A,B) is
easily shown to be a G-ideal of A x B we get:

LEMMA 1.3. #04,5) is a complete lattice.

Observe that in K(A, E), Λfββ9 where θβ G K(A, 5) satisfies:

(4) Λ ^ = {(x,y) I x = Λ ^ , y = Λ ^ , where (JC

We are going to prove:

THEOREM 1.3 A ® B s ΛΓ(y4, 5) wAew ̂ 4, 5 are complete lattices.

The proof of this theorem is based on the following two lemmas.

LEMMA 2.3. if(T, T*) is a Galois connection between the complete
lattices A andB, then



THE STRUCTURE OF GALOIS CONNECTIONS 215

(5) 0 = {{a, b)\T(ά) >b}QAχB

is a G'ideal

Proof. lf(x,y) < (a, b) where T(a) > Z>, then T(x) >T(a)>b>y
since Γis antitone. If T(aa) >: ba for some set {(αα, ba)} CA x B, then

iXVβββ) = ΛaT(aa) > Λ A by (1),

and

Γ ( Λ A ) > V J ( α f l ) > V A

since Γis antitone. Γ(0) = 1 by (1) and Γ(l) >: 0 is clear.

LEMMA 3.3. Let 0 C A x B be a G-ideal of A x B, where A, B are
complete lattices. If the mappings T: A —• B, G: B -* A are defined by

(6) T(a) = V{b\(a9 b) G θ); G(b) = V{a|(α, Z>) G «},

then (T, G) is a Galois connection between A and 2?.

Proof T, G are well-defined and antitone by (i), (iii) in Definition
1.3; (ii) implies that if {{a, ba)} C θ then (a, V A ) e ft Thus (a, Γ(a)) G θ
for each α G ^ , and similarly, (G(b), b) G 0 for each 6 G 5. If a G Λ then
(7Γ(α) = V {aa \{aa, Γ(α)) Gfi}>α. Also ΓG(ό) > b for each 6 G B. Thus
(Γ, G) is a Galois connection.

Observe that in Lemma 3.3 (a, b)Gθis maximal in θ iff a = GT(x\ b
= T(x) for some x E A.

Proof of Theorem 1.3. For every TEA®B let σ(7) = θ be given by
(5), and for every θ G K(A, E) let η(0) = Γ: A — i? be given by (6). By
Lemmas 2.3,3.3 σ:A ® B-»K(A,B) while η: K(A,E)-»A ® B. For each
aEA wehaveησ(7)(α) = V{δ|(α, b) G σ(7)} = V{6|Γ(α) > 6} = Γ(α),
henceησ(Γ) = Γ holds.

For 0 G tf(Λ, B), σηtf) = {(* 6)|η(0)(«) ^ 6} = {(* 6)|Vα{δα|(α, ba)
e 0} > 6}. If (β, 6) G 0 then clearly (a, b) G στj(0). Conversely, (a, 6) G
ση(0) implies 6 < Vα6α where (a, ba) G 0, and by (i), (ii) in Definition 1.3
(a, b) G 0. It follows that σrj(0) = 0. σ is thus one-to-one and onto with σ"1

= TJ. Both σ and η are easily shown to be order-preserving and the proof is
completed.
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4. Let Γ C A x B be given where A, B are complete lattices. The
minimal G-ideal θ of A x B which contains Γ can be constructively
described as follows: θ is the semi-ideal generated by the "closure" of {Γ,
(0, 1), (1, 0)} with respect to the property described in (ii) Definition 1.3.
We call θ the G-ideal generated by Γ. Accordingly, the binary relation Γ C
A x B generates the Galois connection <Γ, T*} between the complete
lattices A and B if θ = {(a, b) \T(a) > b} is the G-ideal generated by Γ.

More generally, T Q A x B generates the Galois connection (Γ, Γ*>
between the posets A and B, if Γ embedded in v(A) x v{E) generates (v(T),
v(T*)) (see §2).

REMARK 1.4. It is important to observe that for every Galois
connection (Γ, Γ*} between the posets A and B there is at least one binary
relation Γ c ^ x f i generating it, namely, Γ = {(a, b)\T(a) > b}.

By Theorems 1.2, 1.3 we get:

COROLLARY 1.4 Γ c ^ xB generates the Galois connection (T9 T*}
between the posets A and B iff T is the minimal element of A ® B which
satisfies T(a) > bfor every (a, b) E Γ.

For a given setΓ C>4 x f i w e determine the Galois connection {T9

T*) between v{A) and v(B) generated by Γ, by constructing the minimal
G-ideal of v(A) x v(B) which contains Γ. <f, f*> may be restricted to a
Galois connection between A and B in case it satisfies (3) (Corollary 2.2).
By letting Γ pass over all subsets of A x B, all Galois connections between
the posets A and B are determined.

The procedure presented here extends the one given by Birkhoff ([1],
p. 122): If <Γ, Γ*> is the Galois connection between A = 2M and B = 2N

generated b y p C M x i V i n Birkhoff s sense then Γis the minimal element
of A ® B satisfying T(p) > q for each (p, q) G p. Therefore (Corollary 1.4)
(T,T*) is also generated by p, embedded in A X B, in our sense.

For completely distributive complete lattices we have:

LEMMA 1.4. Let A, B be completely distributive, complete lattices.
Then the G-ideal of A X B generated by Γ C A X B equals

<:Λn V aφy< V Λ bφ}>

where



THE STRUCTURE OF GALOIS CONNECTIONS 217

Proof. Since θ is conained in each G-ideal which contains Γ, it
suffices to show that θ is a G-ideal. (i), (iii) in Definition 1.3 are obvious,
while (ii) can be easily proved by using the complete distributivity of both
A and B.

COROLLARY 2.4. If{θa), a G Ω, is a family of G'-ideals ofAxB,
where A and B are completely distributive complete lattices, then Vjθ^ the
G-idealgenerated by Uaθa satisfies

(7) V0α = {(x,y)\x < Λ̂  V^y ^ V/e/

where (aj, bj ) G θa for each i G / }.

The results presented above can be applied to either residuated or

residual mappings. In particular, every residuated (residual) mapping
T: A —• By Ay B complete lattices is uniquely determined by a set
σ(T) = ΘCAχ 5, namely, θ = {(a, b) \ T(a) < b}{ = {(α, b) \ T{a) > b)

resp.) such that:

(i) (a9b) G θ and x < α, y >: b(x > α, y < b resp.) implies (JC, J ) G 0;

(ϋ) if { ( α α y b a ) } Q θ t h e n ( V A , V Λ ) e 5

(iii) ( α θ ) ε f f , ( l , l ) e ί .
Call ί C i 4 x J? a G-relation if it satisfies unbracketed properties (i), (ii),
(iii) listed above. The following observation was made by M. F. Janowitz. If
0i = σ(Γ,) C Λί X £ 02 = σ(Γ2) C 5 X C are G-relations then σ(Γj)
o σ(T2) = {(Λ, C) I (a, b) G σ(F,), (b, c) G σ(Γ2) for some b G 5} is a

G-relation of 1̂ x C, and σ(ΓO « σ(Γ 2) = σ(Tx Γ2). Consequently, σ
embeds the semigroup of residuated mappings on the complete lattice A
into the semigroup of binary relations on A.

5. We now study order-theoretic properties of A ® B. Firstly observe
that Γ, < T2 in A 0 B iff Γf < 7? in 5 ® A. This follows by the
equivalence of T(p) > ^with T*(q) >p. Since (Γ*)* = Γin^l ® B we have
the well-known

THEOREM 1.5 A ® B^B ® Ay for any twoposets A9 B.

For A, B bounded posets let the mapping L?,:A-+B,a E Ayb E B be
defined by:
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b 0< x<a
0 xi a

One can easily prove:

LEMMA 1.5. LetA9 B be bounded posets. Then: (i) Lb E A ® B with
{Lb

aY = La

b (ii) TEA®B satisfies T(a) >biffT> Lb

a.

By Remark 1.4, Corollary 1.4, and Lemma 1.5 we get*

THEOREM 2.5. Let A, B be bounded posets. Every T E A ® B can be
represented as a l.u.b. of some set {Lb

a

a

a} C A ® B,a E I.
For complete lattices this result is independently proved in [11]. If A, B

are bounded posets, A ® B is also bounded with Q ~ La

0 = LI, a E A, b E
B and 1 == L\. The proof of the following lemma is straight-forward.

LEMMA 2.5. Let A, B be bounded posets. Then:
( i ) La

b<L% iff a <ά EA,b<6 E B, when a, b are non-zero;
( i i ) if Vαα = a, Vbβ = b then V Lfβ = La

b;

(iii) ifΛaaa = a9 Λaba — b then ΛaLb* = Lb.

Now put Lb — Lb E A ® B, where b E B. By Lemma 1.5 we can put
L* — Lx

a E A ® B, where a E A. Note that by Lemma 2.5:

(8) if Λaba = b(Vaba = b) in B
then

ΛaLba = Lb(VaLba = Lb) inA®B.

A similar result holds for the mappings La*9 a E A. Also

(9) LI = Lx

ati = La

xΛLl = La* A L*.

In connection with (9) note:

LEMMA 3.5 Let A, B be bounded posets. The mapping Eb\ A —> B,
a EA,b E B, defined by.

Eb(x) =
I X<a

b x$ a
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belongs to A® B with (E$* = Eb

a and

(10) E% = La* V L,.

The proof is omitted. Using Lemma 2.5, (8), (9), (10) we conclude:

THEOREM 3.5. The mappings a —> La*, b —» Lb embed the bounded
posetsA, B resp. in A ® B. Under these embeddings;

(i) Lu.b.s. and g.l.b.s. are preserved;
(ϋ) OA and OB go into OA@B9 lA and \B go into \Λ®B;
(iii) if a E A,b E B then their images have both a l.u.b. andagl.b.;
(iv) the images of different pairs (ab b^) possess different Lu.b.s. and

different g.l.b.s. provided that at E A, bt E B are not universal

COROLLARY 1.5. A ® 2 s A, when A is a boundedposet.

LEMMA 4.5. IfT = ΛaLba GA® B, with A, B boundedposets, then T

Proof. For each 0 < x0 E A, T(x0) < Lba(xo) = ba. Hence (Lemma
2.5 (ii)) LΓ(if) < Lba9 and therefore LΓ ( Λ o ) < Γ. For each 0 < x Φ x0 in A,
T(x0) = LΓ ( Λ o ) < Γ(x). Similarily Γ(JC) < r (x 0 ) = b holds and Γ = Lb

follows, b = Vα6α is easily verified.

Note that by Lemma 45 and Theorem 1.5 T = ΛαL*α in Λ ® 5

6. It seems interesting to ask which properties of A, B are inherited
by A ® B. In [7] an example is given of two bounded lattices A, B for which
A ® B is not a lattice. However, if A, B are complete lattices so is A ® B
(Lemma 1.3). Actually, by using Lemma 4.5 and the remark after it we
have:

THEOREM 1.6 Let A, B be bounded posets. A ® B is a complete
lattice iff A and B are complete lattices.

We can also prove:

THEOREM 2.6. Let A, B be bounded posets. A ® B is a completely
distributive complete lattice iff A and B are completely distributive complete
lattices.
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Proof. The "only i f part follows by Theorem 1.6, (8) and the remark
following (8). We now prove the "if* part. By Theorem 1.3 it suffices to
show that K(A, B\ the complete lattice of G-ideals of A X 2?, is completely
distributive. Let {θaβ} C K(A, E) be given. Since

Λ \/θaβD V Λ0α φ ( α ),

we have to prove the reverse inclusion. Assume (x9 y) E Λα 6a
By (4) and (7) we have

(x,y) < (Λα G Ω Λ/e/α VβeBaJ<?*β> Λ«EΩV/e/β ΛβeBa/aβ%

where (xLβtjiβ) ^θaβ.

Using the complete distributivity of A, B and the identity

we get:

(x, jθ < (Λ ψ Λ α e Ω

= (ΛψVφGΠ5«ΛαGΩ χjgpβ), V+ΛΦ6UBΛ Λ β e 0 ;#go) = (α, έ)

By (4), each

belongs to

Λ

By (7) it now follows that

{x,y) < (α, 6)

which completes the proof.

COROLLARY 1.6. If A and B are finite distributive lattices then A® B
is distributive.
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Now let T G A ® B be given where A and B are completely distri-
butive, complete lattices. By Theorem 15, (8) (9) (10) and Theorem 2.6 we
get:

(11) T= V £ O

= Λ/e2/((VαeJL*α) V (V α e / . ; LJ)

(here 2' is the power-set of J, aj = 0 if / is empty and 6/ = 0 if / = /).
Therefore σ(Γ), the G-ideal of A x B associated with <Γ, Γ* ) equals {(x,
^) I either Λ: < α7 oτy < 6, for each /}. This means that <Γ, Γ* > is a tight
Galois connection ([13]). (11) relates our characterization of Galois con-
nections to the one given by Raney for completely distributive complete
lattices.
We now prove:

THEOREM 3.6. A ® 2B « A B when A is a complete lattice and B aposet.
By [1] p. 56, the complete lattice 2B of all isotone mappings T: B -» 2 is
isomorphic to the set of all dual semi-ideals of B, partially ordered by
inclusion. Under this isomorphism Bf= {x \ x G B,f(x) = 1} corresponds
t o / G 2B fb G 2δ is the characteristic function of {x \ x > b) C B, i.e.,
fb(x) = 1 iff* > b G £.

Proof of Theorem 3.6. It suffices to prove that 2* ® ̂  s AB (Theor-
em 1.5). For each t G 2* ® A let σ(0: 5 -* Λί be defined by o{t)(b) = ί(/^).
Since 6 < 6 in 5 ifffb > f6 in 2 5 and since t:2B-+Ais antitone, it follows
that σ(t) is isotone, i.e., σ: 2B ® A -* ^ 5 . For every T B AB let τj(Γ): 2*-»
4̂ be defined by

(12) η(Γ)(/)= ΛΆbX / # 0 i n 2 β ; η(Γ)(O) = 1.

If{/α}c2βthen

= Λ Λ T(b) = Λη(Γ)(/;).
a b&Bfa a
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By (1), τj(Γ) G2B®A follows, hence η: AB-+ 2B ® A. For every TEA*
and & G ϋ , ση(T)(b) = r,(7)(/6) = A^bT(br) = Tφ); thus ση(Γ) = T.
Conversely, for each t G 2B ® A9 and/ Φ 0 we get, using (1):

ση(t)(f) = Λ,Giί/σ(0(6) = ΛbeBjt(fb) = T(VbeBffb) =

Since τjσ(ί)(O) = 1 = ί(0), we proved that τjσ(0 = t. Consequently, σ is
one-to-one and onto with σ"1 = η. a and TJ are easily shown to be isotone,
hence AB and 2B ® A are isomorphic.

Theorem 3.6 yields:

COROLLARY 2.6. 2M ® 2N s 2M χ Λ r, wΛe/i Af, iV are posets.

If both Λf, ΛΓ are totally disordered posets, 2M, 2N are the lattices of all
subsets of Λf, N resp., and by Corollary 2.6, 2M ® 2N is the lattice of all
binary relations p C Λf x N (this is exactly BirkhofΓs and Everett's
characterization). By TarskΓs Theorem ([1] p. 119) this proves the " i f part
of

THEOREM 4.6. Let A9 B be bounded posets. A ® B is a completely
distributive complete Boolean lattice iff A and B are completely distributive
Boolean lattices.

Proof of the "only if" part. Assume A ® B is a completely distribu-
tive complete Boolean lattice. By Theorems 1.6, 2.6, and by symmetry it
suffices to prove that A is complemented. For a G A let T = VaLb« be the
complement of L*in A ® B. (We may assume ba Φ 0 for each α). By (9),

thus αΛflα = 0 and a A \Zaaa = 0 follows. Since L*a — L\, we get (see (11)):

Taking/ = /, £gvvαα« = χ f o l l o w s H e n c e α V Vααα = 1, and Vaaa is the

complement of a.

7. We discuss here some formal properties of ® as a commutative
binary operation on posets. Using the G-ideal characterization of A ® B we
have:
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THEOREM 1.7. A ® (B ® Q s (A ® B) ® C, when A, B, C are

complete lattices.

This theorem is independently proved in [11] using basically different

ideas.

Proof. Let A ® B ® C denote the set of all subsets YCAxBxC

satisfying:

( i ) (x,y, z) < (α, b, c), and (a, b, c) G y implies {x,y, z) G Y;

(ii) { ( α ^ ^ c j ) C Γimplies
(Vααα, ΛA, Λαcα) G y,

( Λ Λ ' Λ Λ » V f l c ) G 7;
(iii) (0, 1, 1) G y, (1, 0, 1) G y, (1, 1, 0) G y Orders ® B® C

by inclusion. For any X G Λ Θ (5 ® Q let σ(X) = {(α, 6, c) | (*, c) G
0, and (α, θ) G X for some 0 G B ® C). σ(X) G A ® B ® C is easily
verified. If yGΛ 0 5 0 C, let y(α) = {(6, c)|(α, 6, c) G y} EB® Cand
put

τ,(y) = {(β,0)|Λ G iί,0 G 5 0 C, and θ C 7(Λ)}.

τ}(y) G A ® (B ® Q is easily shown, σ and η are clearly isotone. By using

the definitions we get ησ(X) =X, ση(Y) =Y, for each X E A ® (B ® C),

Y(ΞA® B® C. Hence

A®{B® C)^A® B® C.

(A ® B) ® C ^ A ® B ® C can be shown in a similar manner

Using Theorem 1.7, 3.6 and 1.5 we get the interesting:

COROLLARY 1.7. A ® Bc ^ Ac ® B ^ (A ® B)c where A, B are

complete lattices and C is aposet.

(this corollary together with Theorems 1.5, 3.6, 1.7 suggests the formal

notation^ © B - A10*2*).

Let HoAa denote the Cartesian product of the posets Aa, partially

ordered pointwise. We then have:

THEOREM 2.7. A® UaBa ^Ua(A ® Ba) when A is a complete lattice

and the Ba are bounded posets. If the number of posets Ba is finite, it suffices

that A be a bounded lattice.
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Proof. If TG A ®UaBa then Ta\A-+Ba defined by

belongs toA®Ba with (T")*(ba) = Γ*(0, 0, ... , ba, 0,... ), K e 5*. Let

σ:Λ ® Πα5α — Πα(Λ ® Ba)be defined by [σ(Γ)]α = T. Conversely,
if t e Ua(A ® Ba) then τj(/): Λ — ΠαJ?α defined by
[τj(/)(α)]α = ta(a)9 a G A, belongs to A ® UaBa where

for each φι9b29...9ba9...) G UaBa. One easily verifies that σ induces the
isomorphism between A ® HaBa and Ha(A ® Ba) where σ"1 = η.

A certain formal similarity can be noticed between properties of
A ® B as a product of two posets A and J5 and those of the tensor product of
two linear spaces, with Lξ playing the part of the generators a ® b
(Theorems 2.5,1.2,1.7, 2.7, and Lemma 2.5). This similarity can be carried
further by:

LEMMA 1.7. For every bipolarized mapping T: A χ f i - » C (see §2),
where A, B9 C are complete lattices, there exists a unique polarized mapping
t:A ® B.-+C9 such that t{Lξ) = T(a, b\for each a EA,b G B.

This lemma also appears independently in [11] with a different proof.

Proof. For each G = VαL£α G 4 ® B put ί(G) = Λα Γ(0α»δα) . Since
Γ(0, b) = Γ(α, 0) = 1 for each 6 ε £, α ε 4 and since

holds for every subset {(α,-, 6,)} c Λ X i? it follows that

ΛαΓ(αα, ba) = Λ{Γ(α, 6) |(α, 6) G 0,
the G-ideal of A x 5 generated by {(aa, ba)}}.

Thus /: A ® 5-* C is well
defined, with t(La

b) = Γ(Λ, 6), α G A, b G 5. By (1) one easily verifies that
t G (A ® B) ® C. (1) also implies the uniqueness of/.

Lemma 1.7 together with Theorem 2.2 yield:

THEOREM 3.7. For every bipolarized mapping T:A x B—*C,where A9
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B, C are posets there exists a unique polarized mapping
t\v{A)®v{B) -— v(Q such that t(Lg) = T(a, b) for each
a G A C v{A)9 b G £ C

Since Γ: Λ -» £ is residuated if Γ G Λ ® 5^ it follows that Theorem
3.7 holds also with "polarized" replaced by "residuated."
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