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RANDOM POINTS IN A SIMPLEX
W.J. REED

The expected values of certain functions of N points chosen
at random in an n dimensional simplex or parallelotope are consi-
dered, and a decomposition of such integrals is obtained by use of a
generalised form of Crofton’s Theorem.

Explicit expressions are found for the moments of the area of
the triangle formed by three points chosen at random in a triangle
or parallelogram.

I. Introduction. In Euclidean n-space a convex body K, of volume V'is
given, and n + 1 points

are chosen independently, at random in X,
Let C(x,, X, ... , X, 1) denote the volume of the convex hull of the
n + 1 points, which with probability one is an n-simplex, and let

D(K,) = C(X}, X, ... , X, 4 )/ V.
LetV ',}nbe the Ath moment of D(K,,)
Vi, = E(QD(K)]").

Since a ratio of volumes, and thus a uniform distribution over a body, is
preserved under affine transformation, it follows that V%, is an affine
invariant of Kn.

The problem of finding V%, is almost trivial for the case n = 1, for K|
is a line segment.

ho_ 2
Ve, = (h+1)(h+2)

For the case of n = 2, the problem of finding the first moment ¥ ,, for
various plane convex figures K, was investigated by Sylvester and others
during the 1860’s and has come to be known as Sylvester’s Problem (see[3]
for references).

For the equivalence class of triangles A, it is known that
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1 1
VA2 = -ii
and for the ellipse B,
1 _ 35
VBZ = :‘g ﬂz

In higher dimensions the problem is more difficult. Klee [4] considers
the problem, and in particular asks for ¥4, where A, is the n-simplex.
Kingman [5] shows that for the n-dimensional ellipsoid B,

Ve, = (%&111))“1/ (%(&111))22) 2"

He also shows that the second moment V% = (n + 1I/n! V" *? where I
is the determinant of the inertia matrix of K, regarded as a body of uniform
density.

One way of tackling Sylvester’s problem in two dimensions has been
with the use of Crofton’s Theorem (see [1] and [3]). This sets up a differ-
ential equation involving the expected value of D(K,) when one of the
points, X, say, is chosen according to some probability law on the boundary
of K, and x, and x; are chosen independently, at random from the interior
of K,. This reduces the total number of degrees of freedom of the random
points by one, i.e. it reduces the number of integrations involved by one.

In this paper it is shown how a generalized form of Crofton’s Theorem
can be repeatedly applied, to simplify the problem of finding V% whenK,
is the n-simplex A, or the n dimensional parallelotope P,

In particular, in two dimensions it is shown for the triangle A;, how
V4, can be expressed as a linear combination of two basic expectations, in
each of which the number of degrees of freedom of the random points is
reduced by three. These basic expectations are found, and it is shown that

6(h+1)% + (h+2)° fo—l-—}

h 2
(r)

A similar decomposition into two basic expectations holds for the
parallelogram P,, and it is shown that

ho_ 12
A (1) (h+2)3(h+3)(2h+5)

h+1

’ 3 (h+1) +2 (h+2) Zl-}

T D (e (e 3)2
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It is shown how in principle, a decomposition of V%, into a linear
combination of basic expectations in each of which the number of degrees
of freedom is reduced by n + 1, could be obtained when K, is either the
n-simplex A, or the n-dimensional parallelotope P,

However for n > 2 the evaluation of these basic expectations seems
difficult. .

In II an analytic formulation of the problem for the n-simplex A, is
developed along with a suitable notation.

In III the generalized Crofton theorem is used to obtain expressions
for V%, for the triangle and the parallelogram.

In IV the problem in higher dimensions is considered, and some
numerical results given.

II. Random points in the n-simplex A,, The ratio of the volumes of
two bodies in n-space is invariant under a nonsingular affine transforma-
tion. It follows that a uniform distribution over a body will be preserved
under such a transformation.

Since any nondegenerate n-simplex 4, is affinely equivalent to a re-
gular n-simplex S, it follows that

D(An) = C(p - » Yo+ l)/(VOIume of Sn)

wherey,, ¥, ..., ¥» + 1are n + 1 points chosen independently at random in
A

Let X, X5, ..., X, be k independent random variables with distribu-
tion function

0 , x<0
F(x) =
1-e* x20
and let
o X
J= k ’ U:l,,k)
X.
i; !

The k-dimensional vector random variable
Y,
Y = ( s')
Y,

has a uniform distribution over the regular (k — 1)-simplex
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Sk-1 =

Jj=1

X k
(s ):szo (G=1..k), 2 x=1
Xk

and furthermore Y is independent of the denominator

M=

X"'

i=1

(This is a particular case of a k-variate Dirichlet distribution (see

(10]).)
Suppose y,, ¥2, .. » ¥a 41 are the Cartesian column vectors ofn + 1
points in S,,. It can be shown that the ratio of the volume of the convex hull

of these n + 1 points to the volume of S, is

|det (¥, Y25 --- ¥ + 1)

and hence D(A,) can be expressed

D(A,) = ————1————| det((X;;)) ;...

nﬁl (:';l X, J.)

j=1

n+1

where X;; (i, j = 1,...,n 4+ 1)are (n + 1)? independent random variables
with distribution function F(x), and furthermore it can be shown that
D(4,) is independent of its denominator

n+l n+1

I (2%)

j=1

Since the sum of independent exponential random variables has a
gamma distribution it follows that the hth moment of D(4,), will be

hl.

E” det((Xij))i,j=l,...,n+l
" [(n+h)!n1]"*!

44
The second moment of the determinant of a matrix of independent,
identically distributed random variables is known and thus

y? o n!
A - .
" o (n+1)"(n+2)"




RANDOM POINTS IN A SIMPLEX 187

Higher even order moments 12" may admit a solution, by similar methods,
but odd order moments look very difficult due to the presence of the
absolute value sign.

However, as pointed out by Kingman [5] the even order moments
determine the distribution of D(A,) and thus determine the odd order
moments in principle, although this hardly seems to offer a practical
method of solving Klee’s problem of finding V', .

It is obvious that if

Xl':-O

and X;(j = 2, ..., n + 1) are independent r.vs with df. F(x), then the (n +
1)-dimensional vector r.v.

where

, (G=1..,n)

represents a point at random in the (n — 1) simplex S, _ ; which forms the
“face” of S, opposite to the vertex

1
( Q) ’
0
Similarly if X; = X, = 0, all other X; independent r.vs. with df. F(x),
then Y represents a point at random in the (n — 2)-simplex S, _, which

forms that part of the boundary of S, opposite to the “edge” joining
vertices

1 0
1
(O) and (O) .
0 0
Let X, ;, = X5, b= . = X, =0,k =<n + 1 for some sequence

(i1, B, ... , i) and suppose all other X ; are r.vs with d.f. F(x).
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Define the vectors

)
Y, = (sl” ) for j=1,..,n+1
Yn+1J

h
where ¥

U

T
2ln=le_]

and define the matrix M, (i1, ..., i) =(Y1, ... , Y, 1 1)

This matrix represents n + 1random points each in some simplex of the
boundary S, or in S, itself. Note that no two points can have a common
zero barycentric coordinate, since M, has at most one zero in each row.

We shall be concerned only with functions of #» + 1 points in S, which:

(a) are symmetric in the sense of being invariant under permutations
of the points.

(b) depend only on intrinsic properties of the points and their relative
positions and not on their positions relative to S,

Such a function will be invariant under permutations of rows and
columns of the configuration matrix M, (i, ..., i).

It should be fairly clear that by permuting rows and columns of the
matrix M, it can be arranged that the sequence (i}, ... , i) satisfies the
following,.

(1) itis nondecreasing.

(2) foreachr, 1 <r < i,thereexistsj, 1 <j =<k, such thati; = r.

(3) foreachr, 1 <r = i, define m(r) as the number of i's which equal
r. Then for each r, s such that 1 < r < s < iy it follows that m(r) = m(s).

Under the operations of permuting points or relabelling vertices, any
sequence of k positive integers, k < n + 1, satisfying (1), (2) and (3) above
will determine an equivalence class in the set of configurations of n + 1
random points chosen either in S, or in a simplex of the boundary of S, in
such a way that no two points have a common zero barycentric coordinate.

For a function ¢ satisfying (a) and (b) and any sequence (iy, ... , i)
satisfying (1), (2) and (3) we define

Pl - i) = E{@(M ,, (i, ... , ip))}

where M (i, ... , i;) is any matrix obtained by permuting rows and columns
Oan(i], ceey ik)‘

We also define p, = E{¢(Yy, ..., Y, 4 1)} if all X;;have d.f. F(x), i, j =
,...,n+ L
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To illustrate the notation we show the case of n = 2. The dots in the

matrix represent the nonzero Y ;.

Expected Value Configuration S, Situation
of ¢ Matrix
oo o
[} LI ) A
[*®°] 3 points at random in S,.
0e oT
#(D My = : ° : A 2 points at random in S;, one
[*®°] at random on an edge.
0Oee
(D M1 = 2 : : A 2 points at random in S,, one
L . fixed at a vertex.
—0 ) 0—‘ . .
_ one point atrandom in S, , one
p2(L.2) M1L.9)=)e 0 : at random on each of two
[®®° edges.
_0 ° o— . .
one point at random in S,
12 M(@1LY=|0 6 : one fixed at a vertex, and one
L. i at random on opposite edge.
Oee
123 M (1,23)=|e0 6 one point at random on each
R of 3 edges.

It will be shown how g, can be decomposed into a linear combination

of basic expectations

i, ...

s in + l)’

III. Application of a generalized form of Crofton’s theorem. Crof-
ton’s Theorem (see [1], [3]) gives a differential relationship between the
expected value of a function of N points chosen independently at random
in a domain D, and the expected value of that function when one of the
points is constrained to the boundary of D and the other N-1 are selected at

random in D.

In [6] the following more general theorem is proved.
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THEOREM. Suppose that forj = 1, ... , k, D; is a domain in n;-dimen-
sional Euclidean space, with volume V;, and that N; points are chosen inde-
pendently at random in D;.

Let p be the expected value of some numerical function of the Zf_ | N,
points, which depends only on intrinsic properties of the points and their
relative positions and not on the domains D; or the positions of the points
relative to them, and suppose that under an affine transformation p changes
only through V,, ..., Vy.

If each domain D; is incremented by an infinitesimal around AV}, j =
1, ..., k, in such a way as to preserve affine equivalence with the original
situation, then

k AV,
Ap =3 Niwj - )=+
Jj=1 J

where A, is the increment in y, and forj = 1, ..., k, p* is the expected value
of the function when one point is chosen at random in the increment of D;,
N; — 1 points are chosen at random in D;, and N, points are chosen at random
inDy, forl #j,l=1,..,k

The theorem is now applied in finding the expected value of functions
of three random points in the triangle A,.

Let ¥V be the area of a regular (equilateral) triangle S,, and let s be the
length of the sides. Let ¢ be a symmetric function of three points in S,
depending only on intrihsic properties of the points, and let p, be the
expected value of ¢, which we shall assume changes under an affine
transformation only through V.

We apply the theorem with three points in one domain (S,), incre-
menting S, by a narrow band of area AV parallel to one of the edges. (This
is simply Crofton’s original theorem.)

AAV

Using the notation developed in II, we have

AV

Apy = 3(uy(1) —#2)7

from which we obtain

) LIV} = 3u,(1) 02
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We now apply the theorem again for p,(1). The situation is now that there
are two points at random in S,, and one point at random in the side of S,.
Incrementing S, along an edge other than the one containing a point we
obtain

Bpa(1) = 20ma(12) - (DI + 1 L1 1) - ()15

and since V = s21/3/4 it follows that AV/V = 2As/s and hence

® AV Pun(1)) = [20p(1,2) + (LD

Applying the theorem again for py(1, 2) incrementing S, along the
edge containing no point gives

|4
A/"2(1’2) = [”2(1a2a3) - ﬂ2(112)]—%/— + [/"2(1’ 112) - /‘2(152)]%;i
+lp(11,2) - 1y(1,2))22
which gives

) L1Vu(1,2)) = [(1,2.3) - (L L]V

We apply the theorem again for py(1, 1) incrementing S, along the
edge opposite to the vertex at which the point is fixed.
This gives

AV
A/‘Z(lal) = 2[”2(171,2) -#2(1’1)}7
which gives

@ LIV 1) = 20,(11,2) V.

If the expectations py(1, 2, 3) and py(1, 1, 2) can be determined for a
given function of the random points, then in principle it should be possible
to determine p, by integrating equations (1) through (4).

Since a distribution function can be expressed as the expected value of
an indicator random variable, in principle we can determine the distribu-
tion function of a given function of the random points if we can determine
itin the two constrained cases.



192 W. J.REED

Before considering these constrained expectations we make some re-
marks concerning the way in which the theorem has been applied.

Firstly we have always incrémented S, along an edge to which no
points are constrained. A close examination of the proof of the theorem [6]
will reveal that it would not be valid to apply the theorem if this were not
the case. This is because the expectation in the case with the enlarged
domain must decompose, to first order, into two parts—one is u* the
constrained expectation and the other reduces to p, the expectation with the
original domains. If we were to increment S, along an edge containing a
point the latter part would be fundamentally different from u.

Secondly we have always incremented S, parallel to an edge. This
ensures that the enlarged domain is still a regular triangle and that in the
resulting constrained case the point will be chosen at random from the
edge. However the regularity of the enlarged domain is not essential, since
we assume that within an affine equivalence class p depends only on V.
Thus it would be sufficient that the enlarged domain be any triangle. This
would be the case if S, were enlarged by a wedge-shaped increment.

AN

S As

In this case the resulting constrained point will have a distribution with
alinear density function along the edge, and also A¥/V = As/s. In this way
it is possible to decompose p,(1, 1, 2) further, but not p,(1, 2, 3) because of
our earlier remark about the validity of the theorem’s application.

We now solve (1) to (4) for the case when ¢ is a function which varies
with ¥ proportionally to V.

In this case g, = fp,V*

pa (1) = p(HV*

etc., where the ji,’s are independent of V. We can rewrite (1) to (4) as

d (. h+3 A h42
V) = 3y

. . 1.
LDV = [25(1,2) + 5L 1)

d .
—AB(L2) V2] = [20,(1,2,3) + 1,(1,1,2) ] 4!
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d . .
W{pz(l,l)V””} = 20,(1,1,2) V+1,

Solving these and eliminating fi, (1), fi»(1, 2) and fi, (1, 1) gives

N 6 N N
b= Gt ey BAa(b 1h2) + 2(1,2.3)]

and a similar equation holds for the p,, py(1, 1, 2) and py(1, 2, 3).

It seems that this is not altogether a new result. In a footnote [2]
Crofton mentions that J. J. Sylvester has discovered “remarkable results”
which he calls a “decomposition of probabilities.” This is essentially (5)
with & = 0, the p,’s being in this case probabilities, which can be thought of
as expectations of indicator functions, independent of V.

There is a vague general account of a paper Sylvester read to the
British Association [7] concerning the result. He used the result in a solution
to a problem in the Educational Times, to find V', [8] and proposes a
question in a later issue of that journal [9] which asks for a proof. No proof
was forthcoming and as far as can be discovered Sylvester never gave any
further details.

When ¢ = (area of the triangle formed by three random points)”

The basic expectations i, (1, 1, 2) and f, (1, 2, 3) are easily found in this
case. By the methods of I1

h

0 X12 X13
E det 0 X22 X23
( ) X3l 0 X33
2,(1,1,2) =
E{XST E((X ), + Xop) "V EN(X 5 + Xp3 + X33)")
_ VR E(Xs+ X5)")
E{(X13+ X3+ X33)h’
since
X, X!
Vi = El det| 12713 /E{(Xlz+X22)"}E{(X13+X23)”|.
X22 X23
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Thus

2 Th+2) TG _ 4
(h+1)h+2) TQ@) Tt+3)  (+D(R+2)?

M M,1,2)=

Also
h
0 X12 X13
E< |det | X,; 0 X,
( ) X31 X32 0
ﬁz 1,2,3 =
E{(Xy, + X3)" E{(Xyy + X3,) " E(X 3 + X,3)")
= E{(XyXp3 X5, + X13X21X32)h}/[(h+1)!]3
3 (2) )
= EX X, X."x -rx,h-rxh-r
[(h+1)‘] oy ‘ 1242342314413 21 32
1 b
) = )
(h+1)? r=ZO (¢)2
From (6), (7), and (8),
12 b
vh = 6(h+1)%+ (h+2)? -—}
827 (h+1)3(h+2)3(h+3) (2h+5) I+ Zo (;1)2

A similar decomposition can be obtained for the affine equivalence
class of parallelograms, P, Repeated application of the theorem for func-
tions proportional to V'* gives

12 * -

e Y
where p* is the expectation when a point is fixed at each of two opposite
vertices, and a third point is chosen at random from the interior, and p** is
the expectation when one point is fixed at a vertex and a point is chosen at
random from each of the two sides non-incident with that vertex.

The hth moment of the area of the triangle formed by the three points
in each of the above situations is easily found by considering the configur-
ations in the square. From this we obtain
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3 h+1

ho_ 1
VR = (h+1)(h+2)*(h+3)%2""2 (h+1)+2(h+2),§17'

153

IV. Application of the theorem in higher dimensions. In higher
dimensions the problem does not admit such a simple solution.

Consider the general case of the simplex S, in n dimensions. The
generalized Crofton theorem can be repeatedly applied. Bearing in mind

the remarks in III about the validity of the application of the theorem we
see that S, can be incremented parallel to a “face” named by the vertex

opposite to it only if none of the n + 1 points has zero barycentric
coordinate for that vertex. Thus at each iteration of the theorem a new
expectation arises for a situation with a configuration matrix (as described
in IT) with one extra zero in a row which did not previously contain one.

When each row of the configuration matrix contains exactly one zero
we will have exhausted the possibilities obtainable by incrementing S,
parallel to one of its faces. We will call these the basic expectations. Of
course it will be possible to decompose some of these basic expectations
further by incrementing S, in other ways, but these cases seem rather
difficult to deal with.

If we are considering only intrinsic, symmetric functions of the n + 1
points it will be seen that each basic expectation can be represented

F’n(il, ib LERIE ] in + l)

where i;, j = 1, ..., n + 1 satisfy the properties (1), (2), (3) of II, with the
further restriction that they do not all equal one. And furthermore it will be
seen that each such sequence represents a basic expectation which can be
arrived at by successive decomposition, using the theorem.

Thus the number of basic expectations will be the number of such
sequences

viz pn+1)—1

where p(m) is the number of ways the integer m can be partitioned into
integral parts, the order of the parts being immaterial.

For example, 3 is capable of partition as (1, 1, 1), (1, 2), (3) leading to
the basic expectations p,(1, 2, 3) and p,(1, 1, 2) for the case n = 2. (The last
partition (3) is discarded since it yields 3 zeros in one column.)

Again 4 is capable of partition as (1, 1, 1, 1), (1, 1, 2), (1, 3), (2, 2), (4),
and in the case n = 3 we have the following corresponding basic expecta-
tions
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p3(1,2,3,4), p3(1, 1,2, 3), pa(1, 1, 1,2) and p, (1, 1, 2, 2).

A closed form expression for p(m) is not known in general, and it has
not been possible to obtain a general decomposition formula for the n-di-
mensional case.
For any n it is, in principle, possible to apply the theorem repeatedly and
write down the solutions to the differential equations leading to a decom-
position.

For example for n = 3, if s is the length of an edge, A the area of a face
and V the volume of S then

av
7Z

<

3% _
S

N W
NN

and by applying the theorem repeatedly as in II we obtain seven differen-
tial equations in the uy’s which on solution for functions varying as V" give:

B 4 170u5(1,1,1,2) + 1785(1,1,2,2)
" 3(h+3)(h+4)(3h+10)Bh+11) | +606u5(1,1,2,3) + 3645(1,2,3,4)

M3

When we consider the volume of the convex hull of the four points we can
show

a1, 1, 1,2) = 331 and py(1, 2, 3, 4) = 5‘7

but the other two basic expectations have not been evaluated. They are the
expected value of the volume of the tetrahedron formed by four points
when there is:

(a) one point at random on each of two opposite edges of S3, and two
points at random in the interior of S

(b) one point at random in an edge of S;, and one point at random in
each of the two faces not incident with that edge, and the fourth point at
random in the interior of S;.

For higher values of n an algorithm could easily be developed to
obtain the decomposition into the linear combination of the p(n + 1) — 1
basic expectations. However in dimensions higher than two it seems that
the basic expectations are difficult to evaluate.

Similarly for the n-dimensional parallelotope P, a decomposition
could be achieved by repeated iteration of the theorem. We give some
numerical values for V}, . Firstly we give exact values of ¥}, calculated from
the formula in II.
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n 1 2 3 4 5
i, 1/6 /72 3/4000 8,/270,000 9.189 x 1077
n 6 7 8 9 10

Vi, 2334 x 1078 5.027 x 10710 9.374 x 10712 1539 x 107" 2260 x 107"

For n = 2 the first four moments V'}, of the distribution of D(4,) are
calculated from the formula in IIL.

h 1 2 3 4

h
W, 5 = = -

Forn = 3,..., 10 we give estimates of the first four moments VA"" of the
distribution of D(A,) based on Monte-Carlo studies with samples of size
10,000.

: , 3 7, A
3 1763 x 1072 7.747 x 10™*  5.971 x 107>  6.559 x 107°
4 3124 x 1073 2712 x 107° 4345 x 1077 1.023 x 1078
5 5185 % 107%  9.029 x 1077  3.960 x 10~° 3.364 x 107"
6 7.991 x 10~° 2440 x 10~%  2.085 x 10~'' 3.699 x 10~
7 1109 x 1075 5125 x 107" 5993 % 10~ 1.185 x 10°"
8 1437 x 107%  1.093 x 10~"' 3.927 x 107'0 3.324 x 1072
9 1780 X 1077 1.398 x 10°3 2.631 x 107" 7.923 x 1077
10 2,035 1078 1.954 % 10°% 4731 x 1072 1.863 x 107 %

The first four moments for the parallelogram P, are calculated from
the formula in II

h 1 2 3 4
P JL 53 149 -9
P 144 4800 72,000 19,600
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