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RANDOM POINTS IN A SIMPLEX

W. J. REED

The expected values of certain functions of N points chosen
at random in an n dimensional simplex or parallelotope are consi-
dered, and a decomposition of such integrals is obtained by use of a
generalised form of Crofton's Theorem.

Explicit expressions are found for the moments of the area of
the triangle formed by three points chosen at random in a triangle
or parallelogram.

L Introduction. In Euclidean «-space a convex body Kn of volume Kis

given, and n + 1 points

are chosen independently, at random in Kn.

Let C(xx, x2, . . . , xn + i) denote the volume of the convex hull of the

n + 1 points, which with probability one is an Ai-simplex, and let

Let V h

Knbe the Λth moment of D(Kn)

Vh

Kn = E(lD(Kn)]h).

Since a ratio of volumes, and thus a uniform distribution over a body, is

preserved under affine transformation, it follows that Vh

Kn is an affine

invariant of Kn.

The problem of finding Vh

Kn is almost trivial for the case n = 1, for Kx

is a line segment.

vh = 2

* ι (A + l ) ( ή + 2 ) '

For the case of n = 2, the problem of finding the first moment Vx

Kl, for

various plane convex figures K^ was investigated by Sylvester and others

during the 1860's and has come to be known as Sylvester's Problem (see[3]

for references).

For the equivalence class of triangles Δ2 it is known that
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and for the ellipse B2

In higher dimensions the problem is more difficult. Klee [4] considers
the problem, and in particular asks for V\n where Δrt is the n-simplex.

Kingman [5] shows that for the n-dimensional ellipsoid Bn

He also shows that the second moment V\n = (w + l)//«! F n + 2, where /
is the determinant of the inertia matrix of Kn regarded as a body of uniform
density.

One way of tackling Sylvester's problem in two dimensions has been
with the use of Crofton's Theorem (see [1] and [3]). This sets up a differ-
ential equation involving the expected value of D(K2) when one of the
points, X! say, is chosen according to some probability law on the boundary
of K2, and x2 and x3 are chosen independently, at random from the interior
of K2. This reduces the total number of degrees of freedom of the random
points by one, i.e. it reduces the number of integrations involved by one.

In this paper it is shown how a generalized form of Crofton's Theorem
can be repeatedly applied, to simplify the problem of finding Vh

Kn when Kn

is the ̂ -simplex ΔΛ or the n dimensional parallelotope Pn.
In particular, in two dimensions it is shown for the triangle Δ2, how

Vi2 can be expressed as a linear combination of two basic expectations, in
each of which the number of degrees of freedom of the random points is
reduced by three. These basic expectations are found, and it is shown that

vϊ ^-ϋΔ,

A similar decomposition into two basic expectations holds for the
parallelogram P2, and it is shown that

Λ r
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It is shown how in principle, a decomposition of Ϋ1^ into a linear
combination of basic expectations in each of which the number of degrees
of freedom is reduced by n + 1, could be obtained when Kn is either the
Λ-simplex Δrt or the w-dimensional parallelotope Pn.

However for n > 2 the evaluation of these basic expectations seems
difficult.

In II an analytic formulation of the problem for the w-simplex Δrt is
developed along with a suitable notation.

In HI the generalized Crofton theorem is used to obtain expressions
for Vh

Kl for the triangle and the parallelogram.
In IV the problem in higher dimensions is considered, and some

numerical results given.

II. Random points in the it-simplex Δ^ The ratio of the volumes of
two bodies in n -space is invariant under a nonsingular affine transforma-
tion. It follows that a unifprm distribution over a body will be preserved
under such a transformation.

Since any nondegenerate w-simplex ΔΛ is affinely equivalent to a re-
gular w-simplex Sn it follows that

Λ) = C(ju . . ., yn +
of Sn)

where yh y* ..., yn + i are n + 1 points chosen independently at random in

Let Xh X^ ... , Xk be k independent random variables with distribu-
tion function

and let

Fix)'
0 , x< 0
1 - e~x

y x > 0

rj"ΊΓ

The fc-dimensional vector random variable

Y =

(/=1,-,*).

has a uniform distribution over the regular (k — l)-simplex
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l
7 = 1

and furthermore Y is independent of the denominator

k

I*,.
1

(This is a particular case of a fc-variate Dirichlet distribution (see

[10]).)

Suppose yh y2, ... , yn +1 are the Cartesian column vectors of n + 1
points in Sn. It can be shown that the ratio of the volume of the convex hull
of these n + 1 points to the volume of Sn is

|det (yi, y2, ...y*+i)|

and hence Z>(ΔΠ) can be expressed

1
/ J = l Λ+l

where Zy (i,j = 1,..., Λ + 1) are (n + I)2 independent random variables
with distribution function F(x), and furthermore it can be shown that
Z)(Δrt) is independent of its denominator

tit'')-
Since the sum of independent exponential random variables has a

gamma distribution it follows that the Λth moment of D(ΔΠ), will be

n.- *)!/«!]n + l

The second moment of the determinant of a matrix of independent,
identically distributed random variables is known and thus

A" (« + ! ) " («+ 2 ) " '
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Higher even order moments V^ may admit a solution, by similar methods,
but odd order moments look very difficult due to the presence of the
absolute value sign.

However, as pointed out by Kingman [5] the even order moments
determine the distribution of D(Δn) and thus determine the odd order
moments in principle, although this hardly seems to offer a practical
method of solving Klee's problem of finding V\n.

It is obvious that if

Xx = 0

and Xj (j = 2, ..., n + 1) are independent r.vs with df. F(x), then the (n +
l)-dimensional vector r.v.

Y =
F,

where
y.

(y = l , . . . , n )

represents a point at random in the (n — 1) simplex Sn _ i which forms the
"face" of Sn opposite to the vertex

( : ) •

Similarly if Xx = X2 = 0, all other Xj independent r.vs. with df. F{x\
then Y represents a point at random in the (n — 2)-simρlex £„ _ 2 which
forms that part of the boundary of Sn opposite to the "edge" joining
vertices

( ! )
and

Let XUx = X2t i2 = .... = Xk, ik = 0> k — n + 1 f°Γ some sequence
(ι"i, i2, .., ik) and suppose all other Xy are r.vs with d.f. F(x).
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Define the vectors

where
y..

and define the matrix Mn(iu ..., ik) = (5Ί, • -., ^« + i)
This matrix represents « + 1 random points each in some simplex of the

boundary Sn or in Sn itself. Note that no two points can have a common
zero barycentric coordinate, since Mn has at most one zero in each row.

We shall be concerned only with functions of n + 1 points in Sn which:
(a) are symmetric in the sense of being invariant under permutations

of the points.
(b) depend only on intrinsic properties of the points and their relative

positions and not on their positions relative to 5rt.
Such a function will be invariant under permutations of rows and

columns of the configuration matrix Mn(ih ..., ik).
It should be fairly clear that by permuting rows and columns of the

matrix Mn it can be arranged that the sequence (ih ... , ik) satisfies the
following.

(1) it is nondecreasing.
(2) for each r, 1 < r < ίk, there existsy, 1 < y < k, such that /, = r.
(3) for each r, 1 < r < /* define m{r) as the number of ijs which equal

r. Then for each r, s such that 1 < r < s < ik it follows that m(r) > m(s).
Under the operations of permuting points or relabelling vertices, any

sequence of A: positive integers, k < n + 1, satisfying (1), (2) and (3) above
will determine an equivalence class in the set of configurations of n + 1
random points chosen either in Sn or in a simplex of the boundary of Sn in
such a way that no two points have a common zero barycentric coordinate.

For a function φ satisfying (a) and (b) and any sequence (ih . . . , ik)
satisfying (1), (2) and (3) we define

where M*n(ih ..., ik) is any matrix obtained by permuting rows and columns
ofMw(/b . . .,/*).

We also define μn = E{φ(Yb ..., Yn + 0} if all Xg have d.f. F(x), i,j =
1, . . . ,w+ 1.
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To illustrate the notation we show the case of n = 2. The dots in the
matrix represent the nonzero YitJ.

Expected Value

ofφ
Configuration

Matrix
S2

Situation

M 2(l) =

M 2 ( l ,2) = 0

/ι2 (1,1,2)

M2(l,2,3) =
0

Δ

A
A
A
Δ

3 points at random in 5 2 .

2 points at random in 5 2 , one

at random on an edge.

2 points at random in 5 2 , one

fixed at a vertex.

one point at random in ιS2, one

at random on each of two

edges.

one point at random in 5 2 ,

one fixed at a vertex, and one

at random on opposite edge.

one point at random on each

of 3 edges.

It will be shown how μn can be decomposed into a linear combination
of basic expectations

HI. Application of a generalized form of Crofton's theorem. Crof-
ton's Theorem (see [1], [3]) gives a differential relationship between the
expected value of a function of JV points chosen independently at random
in a domain D, and the expected value of that function when one of the
points is constrained to the boundary of D and the other NΊ are selected at
random in D.

In [6] the following more general theorem is proved.
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THEOREM. Suppose that for j = 1, ... 9k,Dj is a domain in nΓdimen-
sional Euclidean space, with volume Jj, and that Nj points are chosen inde-
pendently at random in Dj.

Let μ be the expected value of some numerical function of the ΣJL x Nj
points, which depends only on intrinsic properties of the points and their
relative positions and not on the domains Dj or the positions of the points
relative to them, and suppose that under an affine transformation μ changes
only through Vx, ..., Vk.

If each domain Dj is incremented by an infinitesimal around ΔVj,j =
1, ...,/:, in such a way as to preserve affine equivalence with the original
situation, then

AV

where Δμ is the increment in μ, and for j = 1, ..., k, μf is the expected value

of the function when one point is chosen at random in the increment ofDJ9

Nj — 1 points are chosen at random in Dj, and Nιpoints are chosen at random

in Dt,for I Φ j,l = 1, ... ,k.

The theorem is now applied in finding the expected value of functions

of three random points in the triangle Δ2.

Let Kbe the area of a regular (equilateral) triangle 52, and let s be the

length of the sides. Let φ be a symmetric function of three points in S2

depending only on intrinsic properties of the points, and let μ2 be the

expected value of φ, which we shall assume changes under an affine

transformation only through V.

We apply the theorem with three points in one domain (Sy, incre-

menting S2 by a narrow band of area ΔF parallel to one of the edges. (This

is simply Crofton's original theorem.)

Δ F

Using the notation developed in II, we have

from which we obtain

0)
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We now apply the theorem again for μ2(l) The situation is now that there
are two points at random in S2, and one point at random in the side of S2.
Incrementing S2 along an edge other than the one containing a point we
obtain

Aμ2(l) = ψ

and since V = s2 \β/4 it follows that Δ VIV = 2Δs/s and hence

(2)

Applying the theorem again for μ2(l, 2) incrementing S2 along the
edge containing no point gives

) = [^(1,2,3) _ M ^

which gives

(3) ^ { ^ ( U ) } = [//2(l,2,3)-

We apply the theorem again for μ2{\, 1) incrementing S2 along the
edge opposite to the vertex at which the point is fixed.

This gives

Δ/ι2(l,l) =

which gives

(4) — I "

If the expectations μ2(l, 2, 3) and μ2{\, \, 2) can be determined for a
given function of the random points, then in principle it should be possible
to determine μ2 by integrating equations (1) through (4).

Since a distribution function can be expressed as the expected value of
an indicator random variable, in principle we can determine the distribu-
tion function of a given function of the random points if we can determine
it in the two constrained cases.
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Before considering these constrained expectations we make some re-
marks concerning the way in which the theorem has been applied.

Firstly we have always incremented S2 along an edge to which no
points are constrained. A close examination of the proof of the theorem [6]
will reveal that it would not be valid to apply the theorem if this were not
the case. This is because the expectation in the case with the enlarged
domain must decompose, to first order, into two parts—one is μ* the
constrained expectation and the other reduces to μ, the expectation with the
original domains. If we were to increment S2 along an edge containing a
point the latter part would be fundamentally different from μ.

Secondly we have always incremented S2 parallel to an edge. This
ensures that the enlarged domain is still a regular triangle and that in the
resulting constrained case the point will be chosen at random from the
edge. However the regularity of the enlarged domain is not essential, since
we assume that within an affine equivalence class μ depends only on V.
Thus it would be sufficient that the enlarged domain be any triangle. This
would be the case if S2 were enlarged by a wedge-shaped increment.

As

In this case the resulting constrained point will have a distribution with
a linear density function along the edge, and also Δ V/ V — Δs/s. In this way
it is possible to decompose μ2(l, 1, 2) further, but not μ2(l, 2, 3) because of
our earlier remark about the validity of the theorem's application.

We now solve (1) to (4) for the case when φ is a function which varies
with V proportionally to Vh.

In this case μ2 = faV*1

etc., where the μ2's are independent of V. We can rewrite (1) to (4) as

~{
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Solving these and eliminating μ 2(l), jEt2(l, 2) and j&2(l, 1) gives

A2 = 7 r 6

and a similar equation holds for the μ2, μ2(l, 1, 2) and μ2(l, 2, 3).
It seems that this is not altogether a new result. In a footnote [2]

Crofton mentions that J. J. Sylvester has discovered "remarkable results"
which he calls a "decomposition of probabilities." This is essentially (5)
with h = 0, the μ2's being in this case probabilities, which can be thought of
as expectations of indicator functions, independent of V.

There is a vague general account of a paper Sylvester read to the
British Association [7] concerning the result. He used the result in a solution
to a problem in the Educational Times, to find V\2 [8] and proposes a
question in a later issue of that journal [9] which asks for a proof. No proof
was forthcoming and as far as can be discovered Sylvester never gave any
further details.

When φ = (area of the triangle formed by three random points)*

The basic expectations μ2 (1,1,2) and μ2 (1, 2,3) are easily found in this
case. By the methods of II

det

0 Xl2

0 X22

X^ 0

E{X2\\E\{Xn + X22)
h\E{{Xu + X23

1 3 + X23+ X52)
h\

since

- E det
,2

ΐ22
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Thus

(7)

Also

W. J. REED

T(h + 2) Γ(3)

Γ(2)

det X2l 0 X

^ 3 1 ^ 3 2

23

^1(^21 + ^31 >

£'{(J12^23/^31+ ^13

13 + * 2 3 ) Ί

1 r Y r V h-rγ h-rγ h-r
γ h-rγ h-r\

(8)
1 A 1

From (6), (7), and (8),

,rh 12

r=0

A similar decomposition can be obtained for the affine equivalence
class of parallelograms, P 2 Repeated application of the theorem for func-
tions proportional to Vh gives

μ =
12 2//**)

where μ* is the expectation when a point is fixed at each of two opposite
vertices, and a third point is chosen at random from the interior, and μ** is
the expectation when one point is fixed at a vertex and a point is chosen at
random from each of the two sides non-incident with that vertex.

The Λth moment of the area of the triangle formed by the three points
in each of the above situations is easily found by considering the configur-
ations in the square. From this we obtain
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yh = 3

IV. Application of the theorem in higher dimensions. In higher

dimensions the problem does not admit such a simple solution.
Consider the general case of the simplex Sn in n dimensions. The

generalized Crofton theorem can be repeatedly applied. Bearing in mind
the remarks in III about the validity of the application of the theorem we
see that Sn can be incremented parallel to a "face" named by the vertex
opposite to it only if none of the n + 1 points has zero barycentric
coordinate for that vertex. Thus at each iteration of the theorem a new
expectation arises for a situation with a configuration matrix (as described
in II) with one extra zero in a row which did not previously contain one.

When each row of the configuration matrix* contains exactly one zero
we will have exhausted the possibilities obtainable by incrementing Sn

parallel to one of its faces. We will call these the basic expectations. Of
course it will be possible to decompose some of these basic expectations
further by incrementing Sn in other ways, but these cases seem rather
difficult to deal with.

If we are considering only intrinsic, symmetric functions of the n + \
points it will be seen that each basic expectation can be represented

where ij9j = 1, ... , u + 1 satisfy the properties (1), (2), (3) of II, with the
further restriction that they do not all equal one. And furthermore it will be
seen that each such sequence represents a basic expectation which can be
arrived at by successive decomposition, using the theorem.

Thus the number of basic expectations will be the number of such
sequences

viz p(n + 1) — 1

where p(m) is the number of ways the integer m can be partitioned into
integral parts, the order of the parts being immaterial.

For example, 3 is capable of partition as (1, 1, 1), (15 2), (3) leading to
the basic expectations μ2(l, 2, 3) and μ2(l, 1, 2) for the case n = 2. (The last
partition (3) is discarded since it yields 3 zeros in one column.)

Again 4 is capable of partition as (1, 1, 1, 1), (1, 1, 2), (1, 3), (2, 2), (4),
and in the case n = 3 we have the following corresponding basic expecta-
tions
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μ3(l, 2, 3, 4), μ3(l, 1, 2, 3), μ3(l, 1, 1, 2) andμ 3 (1, 1, 2, 2).

A closed form expression for p(m) is not known in general, and it has
not been possible to obtain a general decomposition formula for the w-di-
mensional case.
For any n it is, in principle, possible to apply the theorem repeatedly and
write down the solutions to the differential equations leading to a decom-
position.

For example for n = 3, if s is the length of an edge, A the area of a face
and Fthe volume of S3, then

3 = =

s 2 A V

and by applying the theorem repeatedly as in II we obtain seven differen-
tial equations in the μ3's which on solution for functions varying as Vh give:

4)(3/2+10)(3Λ+ll)

170,u3(l, 1,1,2)+ 178//3(1,1,2,2)

+ 606/i3(l, 1,2,3) + 36/13(1,2,3,4)

When we consider the volume of the convex hull of the four points we can
show

fi3(l, 1, 1, 2) = A and /*3(1, 2, 3, 4) = ±

but the other two basic expectations have not been evaluated. They are the
expected value of the volume of the tetrahedron formed by four points
when there is:

(a) one point at random on each of two opposite edges of 53, and two
points at random in the interior of 5 3

(b) one point at random in an edge of S^ and one point at random in
each of the two faces not incident with that edge, and the fourth point at
random in the interior of S3.

For higher values of n an algorithm could easily be developed to
obtain the decomposition into the linear combination of the p(n + 1) — 1
basic expectations. However in dimensions higher than two it seems that
the basic expectations are difficult to evaluate.

Similarly for the w-dimensional parallelotope Pn a decomposition
could be achieved by repeated iteration of the theorem. We give some
numerical values for V\n. Firstly we give exact values of V\n calculated from
the formula in II.
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n

<

n

1

1/6

6

2.334 x 10"
8

2

1/72

7

5.027 x 10"

3

3/4000

8

10
 9.374 X 10"

4

8/270,000

9

12
 1.539 x 10"

5

9.189 x 10

10

13
 2.260 X 10

-7

-15

For n = 2 the first four moments V\2 of the distribution of D(Δ2) are
calculated from the formula in III.

yh 1 1 3 1
Δ 2 12 72 1375 9000

For n = 3,..., 10 we give estimates of the first four moments v£n of the
distribution of D(ΔΠ) based on Monte-Carlo studies with samples of size
10,000.

n V1 V2 V* V4

3 1.763 X 10-2 7.747 X 10~4 5.971 X 10~5 6.559 X 10"6

4 3.124 X 10-3 2.712 X 10~5 4.345 X 10~7 1.023 X 10~8

5 5.185 X 10- 4 9.029 X KΓ 7 3.960 X 10~9 3.364 X 10""

6 7.991 X 10~5 2.440 X KΓ8 2.085 X 1 0 " " 3.699 x 10~14

7 1.109 X KΓ5 5.125 X HΓ 1 0 5.993 X KΓ 1 4 1.185 X KΓ17

8 1.437 X 10~6 1.093 X 1 0 ' 1 1 3.927 X 10~16 3.324 X 10~20

9 1.780 X 10~7 1.398 X 10" l 3 2.631 X 10" l 9 7.923 x 10~25

10 2.035 X 10- 8 1.954 X 10" 1 5 4.731 X 10" 2 2 1.863 X 10~28

The first four moments for the parallelogram P2 are calculated from
the formula in II

Jfc JLL -52- 149 9
v
Pl 144 4800 72,000 19,600
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