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DIFFERENTIAL INEQUALITIES AND LOCAL VALENCY

Q. I. RAHMAN AND J. STANKIEWICZ

An entire function/(z) is said to have bounded value distri-
bution (b.v.d.) if there exist constants/?, R such that the equation
f(z) = H'never has more than/? roots in any disk ofradius/?. It was
shown by W. K. Hayman that this is the case for a particular/? and
some R>0 if and only if there is a constant C > 0 such that for all
z

l/^+ 1 )(z)|<C max \fv\z%

so that/'(z) has bounded index in the sense of Lepson.
The fact that/'(z) has bounded index if/(z) has b.v.d. follows

readily from a classical result on /?-valent functions. In the other
direction Hayman proved that if

|/(">(z)| < max | /«(z ) | ,
0<v<n— I

then/(z) cannot have more than #i — 1 zeros in \z\ < \Zw/e\/2δ
Here the order of magnitude is correct in the sense that y/n/ey/2Ω
cannot be replaced by \βy/n. The result when applied tof(z) - w
does show that/'(z) has bounded index only if/(z) has b.v.d. but it
is clearly of interest to determine the largest disk containing at
most n — 1 zeros of f(z). We are able to replace f /

The above mentioned result of Hayman appeared in [2]. He did not
assume/(z) to be entire but simply regular in \z\ < 2n. To be precise he
proved [2, Theorem 3] the following:

THEOREM A. Iff(z) is regular in \z\ < In, where it satisfies

(1.1) l / n ) ω|< max |/'>(z)|,
0<i»<n— 1

then f(z) possesses at most n — 1 zeros in

<' 2> | z l s J
In his proof of Theorem A Hayman made use of the following lemma.

LEMMA A. Let zP9 v = 1, 2, ... , n be complex numbers such that

max \zv\ =
\<p<n
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{π
v = l

bx = Σ? = 1 z9 = 0, ε = 1 or - 1 , then

166

(1.3)

and

(1.4)

The bound in (1.4) is not the best possible and this is one of the reasons
why the conclusion of Theorem A is not precise. We observe that (1.4) can
be considerably improved, viz. we have

LEMMA A'. Under the hypotheses of Lemma A

(1.5) 1**1* fir-*- k>\

Now Hayman's reasoning itself gives us the following improvement of
Theorem A.

THEOREM A'. Under the hypothesis of Theorem A f(z) possesses at
most n — 1 zeros in

(1.6)

This refined version of Theorem A gives corresponding refinements in
several of the other theorems proved by Hayman in [2]. For example,
Theorems 4 and 6 of his paper may respectively be replaced by

THEOREM 4'. Suppose thatf(z) is regular in \z — zo| < R and satisfies
there

(CR) p + l < max (CRY
l<v<p VI

with C < 1/2. Thenf(z) isp-valentin \z - zo\ < CR/{eΛ/Ϊ0(p + 1)1/2}.

THEOREM 6'. Consider the differential equation
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in the disk Do = {z||z — z01 < i?}, wΛere 0 < i? < oo and the functions ax to

an are supposed to be regular and bounded in Do. Let t0 be the positive root of

the equation

Σ <MV = i
where v = 1

<xv = s u p | α v ( z ) | .
zeD0

Ify(z) is a solution of the differential equation then y(z) has at most n — \

zeros in

i.e. the differential equation is disconjugate in \z — zo\ < R\.

DEFINITION. Let^ r t denote the class of polynomials

n

v = l

which do not vanish in \z\ < 1 and for whichp'n(0) = Σ"=i - zv = 0.
Lemma A' may now be stated in the following equivalent form.

THEOREM 1. If

oo

(1 *7Λ / \ f / \ 11 NT L k

0 '

wherepn(z) G &n ande = 1 or — 1,

( 1 . 8 ) l ^ . l ^

Ifnisevenand/?rt(z) = (1 — elΊ z2)n/2 where γ is real then \bλ \ \ = \b2, _i |
= π/2 which shows that (1.8) is the best possible result of its kind.

The bound in (1.8) is not sharp for k >: 3 and it is clearly of interest to
get precise estimates for \bκ ε | for each k. We are able to do it for k < 4.

THEOREM 2. Under the hypothesis of Theorem 1 we have
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(1.9) 1*2 el ̂  n/2,

(1.10) |d=£»/3,
(1.11) |Z>4,, I < (n 2 - 2 M ) / 8 ,

(Liz) l^—ij ^ (n "Γ £n)/o.

The example pn(z) = (1 — z2) r t /2 where w is even shows that (1.9),
(1.11) and (1.12) are sharp. To see that (1.10) is sharp we may considerpn(z)
= (1 — z3 )n/3 where n is divisible by 3.

The following theorem shows that \bχ e \ and \b3> ε \ cannot both be large
at the same time.

THEOREM 3. Under the hypothesis of Theorem 1 we have

I h I _ι_ I h I <.

(1.14) \b2J+\\b,J< n\l

(1.15)

If k is fixed, k > 4 and « is large, the bound in (1.8) can also be
sharpened.

THEOREM 4. Letpn(z) G ̂  α/w/λ a real number Φ 0. If

(1-16) f»A(z) = | ^ ( z ) } Λ = lbκλz
k

then for every given 0 < δ <π there exists an integer n0 depending on λ and
δ such that

\2 | Λ | π

1 + s i n - r V + 1
\ 2|Λ|»/

provided n > n0.

The proof of Theorem 4 depends on the fact that if pn(z) E @n then
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(1.18) ω(z) = 1-bn(*)\ n

zι

is analytic in \z\ < 1 and there exists a positive number ρ0 independent of n
such that

(1.19) | ω ( z ) | < I + i | z | 2

+ | z | 4

for \z\ < ρ0. For the study of polynomials pn(z) G 0*n it will be very helpful
to get precise estimates for |ω(z)|. The example

shows that

max |ω(z) |>U^|z | 2

 + -L|z|4 + - | -
p(z)e^ 2 8 16 128

We prove

THEOREM 5. Ifpn (z) G 0>n then

(1.20) M =

at least for \z\ < 1/2.

-{/>„(*) 11 / n

z
2 +

The following corollary is obtained by applying Theorem 5 to the
reciprocal polynomial znpn(l/z% and setting a = z~ιω(z~ι).

COROLLARY 1. Let n

Pn(z) = Π (* - «*)

fee a polynomial of degree n having all its zeros in \z\ < 1. If the centre of
gravity of the zeros lies at the origin then for \z\ > 2 the equation

has a solution which satisfies

α < + + r + —^r .

2\z\ 8|z|3 16|z|5 4|z|7

If ak, k = 1, 2,..., w are complex numbers of absolute value < 1 and
Mk=Pk/<lk>k=z h 2,..., Λ are positive rational numbers such that Σn

k=ιmk

= Othen
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I I I (z - ak)
p>l9k\9ιn™«

is a polynomial of degree qλ q2- •#„ having all its zeros in |z| < 1. Besides,
the centre of gravity of the zeros (taking into account their multiplicity) lies
at the origin. Hence by the above corollary the equation in a

'"Qn 1 Λ *k\ s

has a solution a which satisfies (1.22) at least for \z\ > 2. It is clear that if
some or all the numbers mk are irrational then we get the same conclusion
by a limiting process. Thus we have

COROLLARY Γ. If we have mk > 0, Σmk = 1, \ak | < 1, Σmkak = 0, |z|
> 2 (where k — 1,2,3, ... ,n) then there exists an a such that

(1.22) μ < J
+ + +

2|z| 8|z|3 16|z|5 4|z|7

(1.23)

This result was proved by Walsh (see [4], Lemma 2 and (1.10) on p.
358) except that he had

2\z\ 2|z|2

for \z\ > 3 instead of (1.22) which we prove to be valid for \z\ > X As
illustrated by Walsh (see [4], pp. 358-360) such a result is very useful for
applications.

2. LEMMAS. We shall need the following subsidiary results.

LEMMA 1. If

Σ
o

is analytic in \z\ < 1, where [f(z)\ < 1 then
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(2.1) | α o | 2 + \ak\ < 1, k>\

171

and

(2.2) Σkl2< i.

For (2.1) we refer to [3, p. 172, exer. #9]. Inequality (2.2) follows from
the fact that for 0 < r < 1

= ±!'jΛre")\2dθ < 1 .

LEMMA 2. Under the hypothesis of Lemma 1 we have

(2.3) y ak
o k + 2

<hao\+\(l-\ao\
2)\ao\\z\ for \z\<\.

Proof of Lemma 2. By Schwarz's lemma

for |f I < 1. Hence

y «* :>

o k + 2

1

LEMMA 3. 7/"

is analytic in \z\ < 1, where

(2.4) Reg(z) > 0

and
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(2.5) \g(z)\ < M

then

(2.6, ,.J s 2 ^ i .

Proof of Lemma 3. The function G(z) = F~ ! (w) where

iM-wΫ= l ί ^ - ^ f _ {lM~l\2\\ \ ( i M - w

I w M + W \iM+l) \j WiM+wl

- 1) + ...

\iM-\

1 M 2 + 1

maps the unit disk |z| < 1 onto the semicircular disk

D+ = {w : Re w > 0, |w| < M}

such that G(0) = 1, G'(0) = 2(M2 - 1)/(M2 + 1). Since the function g(z)
maps the unit disk into D+ and the function G(z) is convex univalent it
follows from a well-known result (see e.g. [3], p. 238, exer. #6) that

M + 1

LEMMA 4. i/*

3 3

Pz(z) = Π(l-V) = Σ ^ i ^ e ^
v = l 0

then

|*w |2 + \b3Λ |
2 < 1.

Proof of Lemma 4. Let |zι I = max \zv I. The polynomial

also belongs t o ^ 3 and 16?, 11 < \h2, x |, |63,! | < |53>, |. Hence it is enough to
prove (2.7) for jP3(z). We have
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where \z2\ < 1, |i31 < 1 and 1 + z2 + h = 0. Since z2 + l 3 = - l w e may
suppose

i 2 = - a + ib, z3 = - 1 + a - ib, 0 < a < 1/2.

Since |i31 < 1 we have (1 - af + b2 < 1, i.e.

(2.8) b2<2a- a\

We write z2z3 = (-1 + a - ib)(-a + ib) = x + iy, where

x = a{\ - a) + b\y = b(2a - 1).

Then

= 2{φ2 + a{\ - a))2 + b2(2a - I)2 - b2 - a{\ - a)}
= 2{φ2 - a{\ - a))2 - a{\ - a)}.

In view of (2.8) and since 0 < a < 1/2, we have

and now Lemma 4 follows.

3. Proofs of theorems.

Proof of Theorems 1, 2, 3. It has been proved by Dieudonnέ [1, p. 7]
that if

n

PnW = Π(l-*v*)
v = l

is a polynomial of degree n with all its zeros in \z\ > 1 then in \z\ < 1

z -

where Ψ(z) is analytic and |Ψ(z)| < 1. We observe that if/>n(z) ε ^, , i.e.
Σ"= iz r = 0 then ^(0) = 0 and hence by Schwarz's lemma Ψ(z) = zψ(z)
where ψ(z) is analytic and |ψ(z)| < 1 in \z\ < 1. Thus for polynomialspn(z)
E ^ n the representation (3.1) takes the form

ί 3 2) Pn<<z) = ~nzΨ(z)
1 ' Pn(z) 1 - z2ψ(z)

If <p(z) = {pn(z)Y = 2™ h,ez
k then
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(3.3) ff'(z) = -εnzψ(z)
φ(z) 1 - z2ψ(z)

(3.4) zφ\z) = {z'φXz) - nez2φ(z)} ψ(z).

Setting ψ(z) = Σ^Locvz
μ and comparing coefficients on the two sides of (3.4)

we get

k-2

(3.5) kbke= l(~nε + v)bvεck_2_v, k>2.
v = 0

In particular

(3.6) 2b2ε = -nεc0, 3b3ε = -

which give (1.9) and (1.10) immediately since the coefficients of a function
ψ(z) analytic and bounded by 1 in \z\ < 1 are themselves bounded by 1.

Again from (3.5) we have

4b4ε = -nεc2 + {-nε + 2)b2^c0

= -nεc2 - - nε(-nε + 2)CQ using (3.6)

By (2.1)

which readily gives (1.11), (1.12) and completes the proof of Theorem 2.
Theorem 3 is an immediate consequence of (3.6) and (2.1).
Now we come to the proof of Theorem 1. From inequalities

(1.9)^(1.12) it follows that Theorem 1 holds for k < 4. For a given n > 4
let (1.8) hold for k <j - 1. We shall show that it then holds for k=j and
(for n > 4) the theorem will follow by the principle of mathematical
induction. By formula (3.5) we have

J-2

* Σl-Λβ + v i i M ^ j
v = 0
v * l

* {n+j-2)Ji\bvJ\cj_2J
v = 0
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x / V . ,2\1/2/yV2| |2\1/2

Using (2.2) and the induction hypothesis we deduce

v = 0

J-2

- ( 2 / Λ )

^ ' i f y > 5 .

This completes the proof of (1.8) for n > 4. If n = 2 or 3 we argue as

follows.

It follows from (2.7) that if

then \b2>, | < 1, |63,, | < 1.

Since |6A> j | = 0 for k > 4 we trivially have

From (1.9), (1.10) and (1.12) we have

(3.7) f o r / t < 4 .

Hence (3.7) will be proved for all k if we show that it holds for k = j

provided it holds for k <y* - 2. So let (3.7) be true for A: < / - 2. From the

identity

1 °°

Γ~u 7 Ξ l*K-\Zk

1 + &2,lz + *3 l z °

we have

b/.-ι+ bj_2, -1b2j, + fy+1 _,63 >, = 0.
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Using this, Lemma 4, and the induction hypothesis, we deduce

<"\2,

This completes the proof of (1.8) for n = 3.
If

2

Pl(z) * Π 0 ~ zvz>
v = l

thenz2 = — zι. Hcnccp2(z) = 1 —

A:>2.

Next we prove Theorem 5 since we shall need it (in a weaker form) for
the proof of Theorem 4.

Proof of Theorem 5. It was shown by Dieudonnέ (see [1], p. 7) that if

/>,(*) = ΠU-V)
v = l

is a polynomial of degree n having all its zeros in \z\ > 1 then

is analytic in \z\ < 1 and |Ω(z)| < 1. If/?rt(z) G &n then Ω(0) = 0 and hence
by Schwarz's lemma

z2

is analytic in \z\ < 1 and |ω(z)| < 1. From (3.8) we get

(3.9) P'n<z) β -n\2zω(z)+z2ω(z))

Pn(
z) 1 - z2ω(z)
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The two representations (3.2) and (3.9) for/w (z)/pn (z) give us the identity

(3.10) {2ω(z) + zω\z)} - (1 + A>(z) + z3ω'

Setting
Ό OO CO

ω(z) = Σ αvz
v, ψ(z) =Σ

v=0

Σ
v=0

and comparing coefficients on the two sides of (3.10) we get

(3.11)

In particular

v-2

«2 =\ c0

2

Thus

(3.12)
V + 2

Σ «.- v + 2 ' *

Now let \z\ < 1/2. By (2.1) we have

(3.13) I
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(3.14)

17 i i . 157

1344' " 13440

(3.15)

Using (3.12)-(3.14) and Lemma 2 in (3.12) we get

2 8 1 ' 16' ' v =6

But by (2.2)

Σ WW <- ( Σ K l f ( Σ

Hence

This completes the proof of Theorem 5.
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Proof of Theorem 4. By Theorem 5

pn{z) = {1 - z2ω(z)}n

where ω(z) is analytic in \z\ < 1 and

| ω ( z ) | < I + i | 2 | 2 for \z\<\.

If λ is a real number =̂ 0 and n > 6/|λ| then by simple geometrical
considerations Reφλ(z) > 0 if |z| < ρ0 where p0 is the only positive root of
the equation

(3.,6, S . 2 , 1 *

In other words, Re φ\(ρoz) > 0 for \z\ < 1. Besides, in \z\ < 1

Hence by Lemma 3

— )
ι, i k * ~ * Λλ\nl

2\λ\n

sm -ΓTTT- - 1

it \ m "
1 + sin —7-7— + 1

2\λ\nl

This gives

1+sin-^r- -1

( 1 + sin ™. I + 1 y 1 + 4sin

from which the desired result follows at once.
It may be noted that for fixed λ

- 1
2 | A | l i ' - " as ^

1 + sin - r ^ + 1
\ 2\λ\nl
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4. Some remarks.

REMARK 1. Theorem 2 can be easily extended to read as follows.

THEOREM 2'. Let

Pn(z) = Π ( l - * v * )
v = l

be a polynomial of degree n not vanishing in \z\ < 1 and let

p'π(θ)=p'Λθ) = ...=Pnwφ) = o.

if

φ(z) - [pn{z)Y = ΣbKεz
k

where ε = 1 or — 1 then

\bKe\<n/k {l+\<k<2l+\\
and

For the proof we simply need to observe that in \z\ < 1

(41) p'^z) = ~"zιΨ(z)
PΛ(z) \-zMψ(z)

where ψ(z) is analytic and |ψ(z)| < 1 for |z| < 1.

REMARK 2. The radii of starlikeness and of convexity of the family

{z\Pn(z)]a:pn(z)*0 in | z |< l , Λ (0 )=l}

were determined by Dieudonnέ [1] with the help of the representation (3.1)
forp'n (z)/pn (z). In precisely the same way we may use (4.1) to determine the
radii of starlikeness and of convexity of the family

{z\pn(z)T :pn(z) Φ Oin \z\ < l,pH(0) = 1,^(0) =
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We are thankful to Professor Hayman for giving a series of very
inspiring lectures on the subject of his paper at the University of Montreal.
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