DIFFERENTIAL INEQUALITIES AND LOCAL VALENCY

Q. I. Rahman and J. Stankiewicz

An entire function $f(z)$ is said to have bounded value distribution (b.v.d.) if there exist constants p, R such that the equation $f(z)=w$ never has more than p roots in any disk of radius R. It was shown by W. K. Hayman that this is the case for a particular p and some $R>0$ if and only if there is a constant $C>0$ such that for all z

$$
\left|f^{(p+1)}(z)\right| \leq C \max _{1 \leq \nu \leq p}\left|f^{(\nu)}(z)\right|
$$

so that $f^{\prime}(z)$ has bounded index in the sense of Lepson.
The fact that $f^{\prime}(z)$ has bounded index if $f(z)$ has b.v.d. follows readily from a classical result on p-valent functions. In the other direction Hayman proved that if

$$
\left|f^{(n)}(z)\right| \leq \max _{0 \leq \nu \leq n-1}\left|f^{(\nu)}(z)\right|
$$

then $f(z)$ cannot have more than $n-1$ zeros in $|z| \leq \sqrt{n} / e \sqrt{20}$. Here the order of magnitude is correct in the sense that $\sqrt{n} / e \sqrt{20}$ cannot be replaced by $\sqrt{3} \sqrt{n}$. The result when applied to $f(z)-\boldsymbol{w}$ does show that $f^{\prime}(z)$ has bounded index only if $f(z)$ has b.v.d. but it is clearly of interest to determine the largest disk containing at most $n-1$ zeros of $f(z)$. We are able to replace $\sqrt{n} / e \sqrt{20}$ by $\sqrt{n} / e \sqrt{10}$.

The above mentioned result of Hayman appeared in [2]. He did not assume $f(z)$ to be entire but simply regular in $|z|<2 n$. To be precise he proved [2, Theorem 3] the following:

Theorem A. If $f(z)$ is regular in $|z|<2 n$, where it satisfies

$$
\begin{equation*}
\left|f^{(n)}(z)\right| \leq \max _{0 \leq \nu \leq n-1}\left|f^{(\nu)}(z)\right| \tag{1.1}
\end{equation*}
$$

then $f(z)$ possesses at most $n-1$ zeros in

$$
\begin{equation*}
|z| \leq \frac{\sqrt{n}}{e \sqrt{20}} \tag{1.2}
\end{equation*}
$$

In his proof of Theorem A Hayman made use of the following lemma.
Lemma A. Let $z_{\nu}, \nu=1,2, \ldots, n$ be complex numbers such that $\max _{1 \leq \nu \leq n}\left|z_{\nu}\right|=\rho_{0}$. If

$$
\begin{equation*}
\varphi(z)=\left\{\prod_{\nu=1}^{n}\left(1-z_{\nu} z\right)\right\}^{\varepsilon}=\sum_{0}^{\infty} b_{k} z^{k} \tag{1.3}
\end{equation*}
$$

and

$$
b_{1}=\sum_{\nu=1}^{n} z_{\nu}=0, \varepsilon=1 \quad \text { or } \quad-1, \text { then }
$$

$$
\begin{equation*}
\left|b_{k}\right|<(\sqrt{n})^{k} \rho_{0}^{k}, \quad k>1 \tag{1.4}
\end{equation*}
$$

The bound in (1.4) is not the best possible and this is one of the reasons why the conclusion of Theorem A is not precise. We observe that (1.4) can be considerably improved, viz. we have

Lemma A^{\prime}. Under the hypotheses of Lemma A

$$
\begin{equation*}
\left|b_{k}\right| \leq\left\{\sqrt{\left(\frac{n}{2}\right)}\right\}^{k} \rho_{0}^{k}, \quad k>1 \tag{1.5}
\end{equation*}
$$

Now Hayman's reasoning itself gives us the following improvement of Theorem A.

Theorem A'. Under the hypothesis of Theorem $A f(z)$ possesses at most $n-1$ zeros in

$$
\begin{equation*}
|z| \leq \frac{\sqrt{n}}{e \sqrt{10}} \tag{1.6}
\end{equation*}
$$

This refined version of Theorem A gives corresponding refinements in several of the other theorems proved by Hayman in [2]. For example, Theorems 4 and 6 of his paper may respectively be replaced by

Theorem 4'. Suppose that $f(z)$ is regular in $\left|z-z_{0}\right|<R$ and satisfies there

$$
(C R)^{p+1}\left|\frac{f^{(p+1)}(z)}{(p+1)!}\right| \leq \max _{1 \leq v \leq p}(C R)^{v}\left|\frac{f^{(v)}(z)}{v!}\right|
$$

with $C \leq 1 / 2$. Then $f(z)$ is p-valent in $\left|z-z_{0}\right| \leq C R /\left\{e \sqrt{10}(p+1)^{1 / 2}\right\}$.
Theorem 6'. Consider the differential equation

$$
y^{(n)}+a_{1} y^{(n-1)}+\ldots+a_{n} y=0
$$

in the disk $D_{0}=\left\{z| | z-z_{0} \mid<R\right\}$, where $0<R \leq \infty$ and the functions a_{1} to a_{n} are supposed to be regular and bounded in D_{0}. Let t_{0} be the positive root of the equation
where

$$
\begin{aligned}
& \sum_{v=1}^{n} \alpha_{v} t^{\nu}=1 \\
& \alpha_{v}=\sup _{z \in D_{0}}\left|a_{v}(z)\right|
\end{aligned}
$$

If $y(z)$ is a solution of the differential equation then $y(z)$ has at most $n-1$ zeros in

$$
\left|z-z_{0}\right| \leq R_{1}^{\prime}=\min \left\{t_{0} \frac{\sqrt{n}}{e \sqrt{10}}, \frac{R}{2 e(10 n)^{1 / 2}}\right\},
$$

i.e. the differential equation is disconjugate in $\left|z-z_{0}\right|<R_{1}^{\prime}$.

Definition. Let \mathscr{P}_{n} denote the class of polynomials

$$
p_{n}(z)=\prod_{v=1}^{n}\left(1-z_{v} z\right)
$$

which do not vanish in $|z|<1$ and for which $p_{n}^{\prime}(0)=\sum_{v=1}^{n}-z_{\nu} \equiv 0$.
Lemma A^{\prime} may now be stated in the following equivalent form.

Theorem 1. If

$$
\begin{equation*}
\varphi(z)=\left\{p_{n}(z)\right\}^{\varepsilon}=\sum_{0}^{\infty} b_{k, \varepsilon^{2}} z^{k} \tag{1.7}
\end{equation*}
$$

where $p_{n}(z) \in \mathscr{P}_{n}$ and $\varepsilon=1$ or -1 , then

$$
\begin{equation*}
\left|b_{k, \varepsilon}\right| \leq\{\sqrt{(n / 2)}\}^{k} \tag{1.8}
\end{equation*}
$$

If n is even and $p_{n}(z)=\left(1-e^{i \gamma} z^{2}\right)^{n / 2}$ where γ is real then $\left|b_{2,1}\right|=\left|b_{2,-1}\right|$ $=n / 2$ which shows that (1.8) is the best possible result of its kind.

The bound in (1.8) is not sharp for $k \geq 3$ and it is clearly of interest to get precise estimates for $\left|b_{k, \varepsilon}\right|$ for each k. We are able to do it for $k \leq 4$.

Theorem 2. Under the hypothesis of Theorem 1 we have

$$
\begin{align*}
\left|b_{2, \varepsilon}\right| & \leq n / 2 \tag{1.9}\\
\left|b_{3, \varepsilon}\right| & \leq n / 3 \tag{1.10}\\
\left|b_{4,1}\right| & \leq\left(n^{2}-2 n\right) / 8 \tag{1.11}\\
\left|b_{4,-1}\right| & \leq\left(n^{2}+2 n\right) / 8 \tag{1.12}
\end{align*}
$$

The example $p_{n}(z)=\left(1-z^{2}\right)^{n / 2}$ where n is even shows that (1.9), (1.11) and (1.12) are sharp. To see that (1.10) is sharp we may consider $p_{n}(z)$ $=\left(1-z^{3}\right)^{n / 3}$ where n is divisible by 3 .

The following theorem shows that $\left|b_{2, \varepsilon}\right|$ and $\left|b_{3, \varepsilon}\right|$ cannot both be large at the same time.

Theorem 3. Under the hypothesis of Theorem 1 we have

$$
\begin{equation*}
\left|b_{2, \varepsilon}\right|+\left|b_{3, \varepsilon}\right| \leq \frac{25}{48} n \tag{1.13}
\end{equation*}
$$

$$
\begin{equation*}
\left|b_{2, \varepsilon}\right|+\frac{3}{4}\left|b_{3, \varepsilon}\right| \leq n / 2 \tag{1.14}
\end{equation*}
$$

$$
\begin{equation*}
\frac{2 \sqrt{2}}{3}\left|b_{2, \varepsilon}\right|+\left|b_{3, \varepsilon}\right| \leq n / 2 \tag{1.15}
\end{equation*}
$$

If k is fixed, $k>4$ and n is large, the bound in (1.8) can also be sharpened.

Theorem 4. Let $p_{n}(z) \in \mathscr{P}_{n}$ and λ a real number $\neq 0$. If

$$
\begin{equation*}
\varphi_{\lambda}(z)=\left\{p_{n}(z)\right\}^{\lambda}=\sum_{0}^{\infty} b_{k, \lambda} z^{k} \tag{1.16}
\end{equation*}
$$

then for every given $0<\delta<\pi$ there exists an integer n_{0} depending on λ and δ such that

$$
\begin{equation*}
\left|b_{k, \lambda}\right| \leq 2 \frac{\left(1+\sin \frac{\pi}{2|\lambda| n}\right)^{2|\lambda| n}-1}{\left(1+\sin \frac{\pi}{2|\lambda| n}\right)^{2|\lambda| n}+1}\left\{\sqrt{\left(\frac{|\lambda| n}{\delta}\right)}\right\}^{k} \tag{1.17}
\end{equation*}
$$

provided $n>n_{0}$.
The proof of Theorem 4 depends on the fact that if $p_{n}(z) \in \mathscr{P}_{n}$ then

$$
\begin{equation*}
\omega(z)=\frac{1-\left\{p_{n}(z)\right\}^{1 / n}}{z^{2}} \tag{1.18}
\end{equation*}
$$

is analytic in $|z|<1$ and there exists a positive number ρ_{0} independent of n such that

$$
\begin{equation*}
|\omega(z)| \leq \frac{1}{2}+\frac{1}{8}|z|^{2}+|z|^{4} \tag{1.19}
\end{equation*}
$$

for $|z|<\rho_{0}$. For the study of polynomials $p_{n}(z) \in \mathscr{P}_{n}$ it will be very helpful to get precise estimates for $|\omega(z)|$. The example

$$
p(z)=\left(1-z^{2}\right)^{n / 2}, n \text { even }
$$

shows that

$$
\max _{p(z) \in \mathscr{P}_{n}}|\omega(z)| \geq \frac{1}{2}+\frac{1}{8}|z|^{2}+\frac{1}{16}|z|^{4}+\frac{5}{128}|z|^{6}
$$

We prove

Theorem 5. If $p_{n}(z) \in \mathscr{P}_{n}$ then

$$
\begin{equation*}
|\omega(z)|=\left|\frac{1-\left\{p_{n}(z)\right\}^{1 / n}}{z^{2}}\right| \leq \frac{1}{2}+\frac{1}{8}|z|^{2}+\frac{1}{16}|z|^{4}+\frac{3 \sqrt{3}}{4}|z|^{6} \tag{1.20}
\end{equation*}
$$

at least for $|z| \leq 1 / 2$.
The following corollary is obtained by applying Theorem 5 to the reciprocal polynomial $z^{n} p_{n}(1 / z)$, and setting $\alpha=z^{-1} \omega\left(z^{-1}\right)$.

Corollary 1. Let

$$
p_{n}(z)=\prod_{k=1}^{n}\left(z-\alpha_{k}\right)
$$

be a polynomial of degree n having all its zeros in $|z| \leq 1$. If the centre of gravity of the zeros lies at the origin then for $|z|>2$ the equation

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{n} \log \left(1-\frac{\alpha_{k}}{z}\right)=\log \left(1-\frac{\alpha}{z}\right) \tag{1.21}
\end{equation*}
$$

has a solution which satisfies

$$
\begin{equation*}
|\alpha| \leq \frac{1}{2|z|}+\frac{1}{8|z|^{3}}+\frac{1}{16|z|^{5}}+\frac{3 \sqrt{3}}{4|z|^{7}} \tag{1.22}
\end{equation*}
$$

If $\alpha_{k}, k=1,2, \ldots, n$ are complex numbers of absolute value ≤ 1 and $m_{k}=p_{k} / q_{k}, k=1,2, \ldots, n$ are positive rational numbers such that $\sum_{k=1}^{n} m_{k}$ $=1, \Sigma_{k=1}^{n} m_{k} \alpha_{k}=0$ then

$$
\left\{\prod_{k=1}^{n}\left(z-\alpha_{k}\right)^{p_{k} / q_{k}}\right\}^{q_{1} q_{2} \ldots q_{n}}
$$

is a polynomial of degree $q_{1} q_{2} \cdots q_{n}$ having all its zeros in $|z| \leq 1$. Besides, the centre of gravity of the zeros (taking into account their multiplicity) lies at the origin. Hence by the above corollary the equation in α

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{p_{k} q_{1} q_{2} \cdots q_{k-1} q_{k+1} \cdots q_{n}}{q_{1} q_{2} \cdots q_{n}} \log \left(1-\frac{\alpha_{k}}{z}\right) \equiv \\
& \sum_{k=1}^{n} m_{k} \log \left(1-\frac{\alpha_{k}}{z}\right)=\log \left(1-\frac{\alpha}{z}\right)
\end{aligned}
$$

has a solution α which satisfies (1.22) at least for $|z| \geq 2$. It is clear that if some or all the numbers m_{k} are irrational then we get the same conclusion by a limiting process. Thus we have

Corollary 1'. If we have $m_{k}>0, \Sigma m_{k}=1,\left|\alpha_{k}\right| \leq 1, \Sigma m_{k} \alpha_{k}=0,|z|$ ≥ 2 (where $k=1,2,3, \ldots, n)$ then there exists an α such that

$$
\begin{equation*}
|\alpha| \leq \frac{1}{2|z|}+\frac{1}{8|z|^{3}}+\frac{1}{16|z|^{5}}+\frac{3 \sqrt{3}}{4|z|^{7}} \tag{1.22}
\end{equation*}
$$

with

$$
\begin{equation*}
\sum m_{k} \log \left(1-\frac{\alpha_{k}}{z}\right)=\log \left(1-\frac{\alpha}{z}\right) \tag{1.23}
\end{equation*}
$$

This result was proved by Walsh (see [4], Lemma 2 and (1.10) on p. 358) except that he had

$$
|\alpha| \leq \frac{1}{2|z|}+\frac{3}{2|z|^{2}}
$$

for $|z|>3$ instead of (1.22) which we prove to be valid for $|z| \geq 2$. As illustrated by Walsh (see [4], pp. 358-360) such a result is very useful for applications.
2. Lemmas. We shall need the following subsidiary results.

Lemma 1. If

$$
f(z)=\sum_{0}^{\infty} a_{k} z^{k}
$$

is analytic in $|z|<1$, where $|f(z)| \leq 1$ then

$$
\begin{equation*}
\left|a_{0}\right|^{2}+\left|a_{k}\right| \leq 1, \quad k \geq 1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{0}^{\infty}\left|a_{k}\right|^{2} \leq 1 \tag{2.2}
\end{equation*}
$$

For (2.1) we refer to [3, p. 172, exer. \#9]. Inequality (2.2) follows from the fact that for $0<r<1$

$$
\sum_{0}^{\infty}\left|a_{k}\right|^{2} r^{2 k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta \leq 1
$$

Lemma 2. Under the hypothesis of Lemma 1 we have

$$
\begin{equation*}
\left|\sum_{0}^{\infty} \frac{a_{k}}{k+2} z^{k}\right| \leq \frac{1}{2}\left|a_{0}\right|+\frac{1}{3}\left(1-\left|a_{0}\right|^{2}\right)\left|a_{0}\right||z| \text { for } \quad|z|<1 \tag{2.3}
\end{equation*}
$$

Proof of Lemma 2. By Schwarz's lemma

$$
|f(\zeta)| \leq \frac{\left|a_{0}\right|+|\zeta|}{1+\left|a_{0}\right||\zeta|}
$$

for $|\xi|<1$. Hence

$$
\begin{aligned}
&\left|\sum_{0}^{\infty} \frac{a_{k}}{k+2} z^{k}\right|=\left|\frac{1}{z^{2}} \int_{0}^{z} \zeta f(\zeta) d \zeta\right| \leq \frac{1}{|z|^{2}} \int_{0}^{|z|}|\zeta| \frac{\left|a_{0}\right|+|\zeta|}{1+\left|a_{0}\right||\zeta|} d|\zeta| \\
&=\frac{1}{2}\left|a_{0}\right|+\left(1-\left|a_{0}\right|^{2}\right) \sum_{k=1}^{\infty}(-1)^{k+1} \frac{\left|a_{0}\right|^{k-1}}{k+2}|z|^{k} \\
& \leq \frac{1}{2}\left|a_{0}\right|+\frac{1}{3}\left(1-\left|a_{0}\right|^{2}\right)\left|a_{0}\right||z|
\end{aligned}
$$

Lemma 3. If

$$
g(z)=1+\sum_{k=1}^{\infty} \alpha_{k} z^{k}
$$

is analytic in $|z|<1$, where

$$
\begin{equation*}
\operatorname{Re} g(z)>0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
|g(z)|<M \tag{2.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\alpha_{k}\right| \leq 2 \frac{M^{2}-1}{M^{2}+1} \tag{2.6}
\end{equation*}
$$

Proof of Lemma 3. The function $G(z)=F^{-1}(w)$ where

$$
\begin{gathered}
\left.F(w)=\left\{\left(\frac{i M-w}{i M+w}\right)^{2}-\left(\frac{i M-1}{i M+1}\right)^{2}\right\} \right\rvert\,\left\{\left(\frac{i M-w}{i M+w}\right)^{2}-\left(\frac{i M+1}{i M-1}\right)^{2}\right\} \\
=\frac{1}{2} \frac{M^{2}+1}{M^{2}-1}(w-1)+\ldots
\end{gathered}
$$

maps the unit disk $|z|<1$ onto the semicircular disk

$$
D^{+}=\{w: \operatorname{Re} w>0,|w|<M\}
$$

such that $G(0)=1, G^{\prime}(0)=2\left(M^{2}-1\right) /\left(M^{2}+1\right)$. Since the function $g(z)$ maps the unit disk into D^{+}and the function $G(z)$ is convex univalent it follows from a well-known result (see e.g. [3], p. 238, exer. \#6) that

$$
\left|\alpha_{k}\right| \leq\left|G^{\prime}(0)\right|=2 \frac{M^{2}-1}{M^{2}+1}, \quad k \geq 1
$$

Lemma 4. If

$$
p_{3}(z)=\prod_{v=1}^{3}\left(1-z_{v} z\right)=\sum_{0}^{3} b_{k, 1} z^{k} \in \mathscr{P}_{3}
$$

then

$$
\begin{equation*}
\left|b_{2,1}\right|^{2}+\left|b_{3,1}\right|^{2} \leq 1 \tag{2.7}
\end{equation*}
$$

Proof of Lemma 4. Let $\left|z_{1}\right|=\max _{1 \leq \nu \leq 3}\left|z_{\nu}\right|$. The polynomial

$$
\hat{p}_{3}(z)=p_{3}\left(\frac{z}{z_{1}}\right)=1+\hat{b}_{2,1} z^{2}+\hat{b}_{3,1} z^{3}
$$

also belongs to \mathscr{P}_{3} and $\left|b_{2,1}\right| \leq\left|\hat{b}_{2,1}\right|,\left|b_{3,1}\right| \leq\left|\hat{b}_{3,1}\right|$. Hence it is enough to prove (2.7) for $\hat{p}_{3}(z)$. We have

$$
\hat{p}_{3}(z)=1-\left(1-\hat{z}_{2} \hat{z}_{3}\right) z^{2}-\hat{z}_{2} \hat{z}_{3} z^{3}
$$

where $\left|\hat{z}_{2}\right| \leq 1,\left|\hat{z}_{3}\right| \leq 1$ and $1+\hat{z}_{2}+\hat{z}_{3}=0$. Since $\hat{z}_{2}+\hat{z}_{3}=-1$ we may suppose

$$
\hat{z}_{2}=-a+i b, \hat{z}_{3}=-1+a-i b, \quad 0 \leq a \leq 1 / 2
$$

Since $\left|\hat{z}_{3}\right| \leq 1$ we have $(1-a)^{2}+b^{2} \leq 1$, i.e.

$$
\begin{equation*}
b^{2} \leq 2 a-a^{2} \tag{2.8}
\end{equation*}
$$

We write $\hat{z}_{2} \hat{z}_{3}=(-1+a-i b)(-a+i b)=x+i y$, where

$$
x=a(1-a)+b^{2}, y=b(2 a-1)
$$

Then

$$
\begin{aligned}
& \left|\hat{b}_{2,1}\right|^{2}+\left|\hat{b}_{3,1}\right|^{2}=|1-x-i y|^{2}+|x+i y|^{2} \\
= & 2\left(x^{2}+y^{2}-x\right) \\
= & 2\left\{\left(b^{2}+a(1-a)\right)^{2}+b^{2}(2 a-1)^{2}-b^{2}-a(1-a)\right\} \\
= & 2\left\{\left(b^{2}-a(1-a)\right)^{2}-a(1-a)\right\}
\end{aligned}
$$

In view of (2.8) and since $0 \leq a \leq 1 / 2$, we have

$$
\left(b^{2}-a(1-a)\right)^{2} \leq a^{2} \leq a(1-a)
$$

and now Lemma 4 follows.

3. Proofs of theorems.

Proof of Theorems 1, 2, 3. It has been proved by Dieudonné [1, p. 7] that if

$$
p_{n}(z)=\prod_{v=1}^{n}\left(1-z_{v} z\right)
$$

is a polynomial of degree n with all its zeros in $|z| \geq 1$ then in $|z|<1$

$$
\begin{equation*}
\frac{p_{n}^{\prime}(z)}{p_{n}(z)}=\frac{n}{z-\frac{1}{\Psi(z)}} \tag{3.1}
\end{equation*}
$$

where $\Psi(z)$ is analytic and $|\Psi(z)| \leq 1$. We observe that if $p_{n}(z) \in \mathscr{P}_{n}$, i.e. $\sum_{v=1}^{n} z_{\nu}=0$ then $\Psi(0)=0$ and hence by Schwarz's lemma $\Psi(z)=z \psi(z)$ where $\psi(z)$ is analytic and $|\psi(z)| \leq 1$ in $|z|<1$. Thus for polynomials $p_{n}(z)$ $\in \mathscr{P}_{n}$ the representation (3.1) takes the form

$$
\begin{equation*}
\frac{p_{n}^{\prime}(z)}{p_{n}(z)}=\frac{-n z \psi(z)}{1-z^{2} \psi(z)} \tag{3.2}
\end{equation*}
$$

If $\varphi(z)=\left\{p_{n}(z)\right\}^{\varepsilon}=\Sigma_{0}^{\infty} b_{k, \varepsilon} z^{k}$ then

$$
\begin{equation*}
z \phi^{\prime}(z)=\left\{z^{3} \phi^{\prime}(z)-n \varepsilon z^{2} \phi(z)\right\} \psi(z) \tag{3.4}
\end{equation*}
$$

Setting $\psi(z)=\Sigma_{\nu=0}^{\infty} c_{\nu} z^{\nu}$ and comparing coefficients on the two sides of (3.4) we get

$$
\begin{equation*}
k b_{k, \varepsilon}=\sum_{\substack{v=0 \\ v \neq 1}}^{k-2}(-n \varepsilon+v) b_{v, \varepsilon} c_{k-2-v}, \quad k \geq 2 \tag{3.5}
\end{equation*}
$$

In particular

$$
\begin{equation*}
2 b_{2, \varepsilon}=-n \varepsilon c_{0}, \quad 3 b_{3, \varepsilon}=-n \varepsilon c_{1} \tag{3.6}
\end{equation*}
$$

which give (1.9) and (1.10) immediately since the coefficients of a function $\psi(z)$ analytic and bounded by 1 in $|z|<1$ are themselves bounded by 1 .

Again from (3.5) we have

$$
\begin{align*}
4 b_{4, \varepsilon} & =-n \varepsilon c_{2}+(-n \varepsilon+2) b_{2, \varepsilon} c_{0} \\
& =-n \varepsilon c_{2}-\frac{1}{2} n \varepsilon(-n \varepsilon+2) c_{0}^{2} \tag{3.6}\\
& =-n \varepsilon\left\{c_{2}-\frac{1}{2}(n \varepsilon-2) c_{0}^{2}\right\}
\end{align*}
$$

By (2.1)

$$
\left|b_{4, \varepsilon}\right| \leq \frac{n}{8}\left\{(|n \varepsilon-2|-2)\left|c_{0}\right|^{2}+2\right\}
$$

which readily gives (1.11), (1.12) and completes the proof of Theorem 2.
Theorem 3 is an immediate consequence of (3.6) and (2.1).
Now we come to the proof of Theorem 1. From inequalities (1.9)-(1.12) it follows that Theorem 1 holds for $k \leq 4$. For a given $n \geq 4$ let (1.8) hold for $k \leq j-1$. We shall show that it then holds for $k=j$ and (for $n \geq 4$) the theorem will follow by the principle of mathematical induction. By formula (3.5) we have

$$
\begin{aligned}
j\left|b_{j, \varepsilon}\right| & \leq \sum_{\substack{v=0 \\
v \neq 1}}^{j-2}|-n \varepsilon+v|\left|b_{v, \varepsilon}\right|\left|c_{j-2-v}\right| \\
& \leq(n+j-2) \sum_{v=0}^{j-2}\left|b_{v, \varepsilon}\right|\left|c_{j-2-v}\right|
\end{aligned}
$$

$$
\leq(n+j-2)\left(\sum_{v=0}^{j-2}\left|b_{v, \varepsilon}\right|^{2}\right)^{1 / 2}\left(\sum_{v=0}^{j-2}\left|c_{j-2-v}\right|^{2}\right)^{1 / 2}
$$

Using (2.2) and the induction hypothesis we deduce

$$
\begin{aligned}
j\left|b_{j, \varepsilon}\right| & \leq(n+j-2)\left\{\sum_{v=0}^{j-2}(n / 2)^{v}\right\}^{1 / 2} \\
& =(n+j-2)(n / 2)^{j / 2}\left\{\sum_{v=0}^{j-2}(2 / n)^{j-v}\right\}^{1 / 2} \\
& <(n+j-2)(n / 2)^{j / 2} \frac{2 / n}{\sqrt{1-(2 / n)}} \\
& <j\left(\sqrt{\frac{n}{2}}\right)^{j} \quad \text { if } j \geq 5
\end{aligned}
$$

This completes the proof of (1.8) for $n \geq 4$. If $n=2$ or 3 we argue as follows.

It follows from (2.7) that if

$$
p_{3}(z)=\sum_{0}^{\infty} b_{k, 1} z^{k} \in \mathscr{P}_{3}
$$

then

$$
\left|b_{2,1}\right| \leq 1,\left|b_{3,1}\right| \leq 1
$$

Since $\left|b_{k, 1}\right|=0$ for $k \geq 4$ we trivially have

$$
\left|b_{k, 1}\right|<\left(\sqrt{\frac{3}{2}}\right)^{k}, \quad k \geq 2
$$

From (1.9), (1.10) and (1.12) we have

$$
\begin{equation*}
\left|b_{k,-1}\right| \leq\left(\sqrt{\frac{3}{2}}\right)^{k} \quad \text { for } k \leq 4 \tag{3.7}
\end{equation*}
$$

Hence (3.7) will be proved for all k if we show that it holds for $k=j$ provided it holds for $k \leq j-2$. So let (3.7) be true for $k \leq j-2$. From the identity

$$
\frac{1}{1+b_{2,1} z^{2}+b_{3,1} z^{3}} \equiv \sum_{0}^{\infty} b_{k,-1} z^{k}
$$

we have

$$
b_{j,-1}+b_{j-2,-1} b_{2,1}+b_{j+3,-1} b_{3,1}=0
$$

Using this, Lemma 4, and the induction hypothesis, we deduce

$$
\begin{aligned}
\left|b_{j,-1}\right| & \leq\left(\left|b_{j-2,-1}\right|^{2}+\left|b_{j-3,-1}\right|^{2}\right)^{1 / 2}\left(\left|b_{2,1}\right|^{2}+\left|b_{3,1}\right|^{2}\right)^{1 / 2} \\
& \leq\left(\left|b_{j-2,-1}\right|^{2}+\left|b_{j-3,-1}\right|^{2}\right)^{1 / 2} \\
& \leq\left(\left(\frac{3}{2}\right)^{j-2}+\left(\frac{3}{2}\right)^{j-3}\right)^{1 / 2} \\
& <\left(\sqrt{\frac{3}{2}}\right)^{j}
\end{aligned}
$$

This completes the proof of (1.8) for $n=3$.
If

$$
p_{2}(z)=\prod_{v=1}^{2}\left(1-z_{v} z\right) \in \mathscr{P}_{2}
$$

then $z_{2}=-z_{1}$. Hence $p_{2}(z)=1-\left(z_{1} z\right)^{2}$ and

$$
\left|b_{k, \varepsilon}\right| \leq\left|z_{1}\right|^{k} \leq 1=\left(\sqrt{\frac{2}{2}}\right)^{k}, \quad k \geq 2
$$

Next we prove Theorem 5 since we shall need it (in a weaker form) for the proof of Theorem 4.

Proof of Theorem 5. It was shown by Dieudonné (see [1], p. 7) that if

$$
p_{n}(z)=\prod_{\nu=1}^{n}\left(1-z_{\nu} z\right)
$$

is a polynomial of degree n having all its zeros in $|z| \geq 1$ then

$$
\Omega(z)=\frac{1-\left\{p_{n}(z)\right\}^{1 / n}}{z}
$$

is analytic in $|z|<1$ and $|\Omega(z)| \leq 1$. If $p_{n}(z) \in \mathscr{P}_{n}$ then $\Omega(0)=0$ and hence by Schwarz's lemma

$$
\begin{equation*}
\omega(z)=\frac{\Omega(z)}{z}=\frac{1-\left\{p_{n}(z)\right\}^{1 / n}}{z^{2}} \tag{3.8}
\end{equation*}
$$

is analytic in $|z|<1$ and $|\omega(z)| \leq 1$. From (3.8) we get

$$
\begin{equation*}
\frac{p_{n}^{\prime}(z)}{p_{n}(z)}=\frac{-n\left\{2 z \omega(z)+z^{2} \omega^{\prime}(z)\right\}}{1-z^{2} \omega(z)} . \tag{3.9}
\end{equation*}
$$

The two representations (3.2) and (3.9) for $p_{n}^{\prime}(z) / p_{n}(z)$ give us the identity

$$
\begin{equation*}
\left\{2 \omega(z)+z \omega^{\prime}(z)\right\} \equiv\left\{1+z^{2} \omega(z)+z^{3} \omega^{\prime}(z)\right\} \psi(z) \tag{3.10}
\end{equation*}
$$

Setting

$$
\omega(z)=\sum_{v=0}^{\infty} \alpha_{\nu} z^{v}, \quad \psi(z)=\sum_{\nu=0}^{\infty} c_{\nu} z^{v},
$$

and comparing coefficients on the two sides of (3.10) we get

$$
\alpha_{0}=\frac{1}{2} c_{0}, \quad \alpha_{1}=\frac{1}{3} c_{1}
$$

$$
\begin{equation*}
\alpha_{v}=\frac{1}{v+2} c_{v}+\frac{1}{v+2} \sum_{\mu=0}^{v-2}(\mu+1) \alpha_{\mu} c_{v-2-\mu}, \quad v \geq 2 \tag{3.11}
\end{equation*}
$$

In particular

$$
\begin{aligned}
& \alpha_{2}=\frac{1}{4} c_{2}+\frac{1}{4} \alpha_{0} c_{0}=\frac{1}{4} c_{2}+\frac{1}{8} c_{0}^{2} \\
& \alpha_{3}=\frac{1}{5} c_{3}+\frac{7}{30} c_{0} c_{1} \\
& \alpha_{4}=\frac{1}{6} c_{4}+\left(\frac{5}{24} c_{0} c_{2}+\frac{1}{9} c_{1}^{2}+\frac{1}{16} c_{0}^{3}\right), \\
& \alpha_{5}=\frac{1}{7} c_{5}+\left(\frac{13}{70} c_{0} c_{3}+\frac{17}{84} c_{1} c_{2}+\frac{157}{840} c_{0}^{2} c_{1}\right) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\omega(z)=\sum_{v=0}^{\infty} \frac{1}{v+2} c_{v} z^{\nu}+\frac{1}{8} c_{0}^{2} z^{2}+\frac{7}{30} c_{0} c_{1} z^{3} \tag{3.12}
\end{equation*}
$$

$$
\begin{aligned}
& +\left(\frac{5}{24} c_{0} c_{2}+\frac{1}{9} c_{1}^{2}+\frac{1}{16} c_{0}^{3}\right) z^{4}+\left(\frac{13}{70} c_{0} c_{3}+\frac{17}{84} c_{1} c_{2}+\frac{157}{840} c_{0}^{2} c_{1}\right) z^{5} \\
& +\sum_{v=6}^{\infty}\left(\alpha_{v}-\frac{c_{v}}{v+2}\right) z^{v} .
\end{aligned}
$$

Now let $|z| \leq 1 / 2$. By (2.1) we have

$$
\begin{equation*}
\left|\frac{1}{8} c_{0}^{2} z^{2}+\frac{7}{30} c_{0} c_{1} z^{3}+\frac{1}{30} c_{0} c_{2} z^{4}\right| \tag{3.13}
\end{equation*}
$$

$$
\begin{align*}
& \leq\left\{\left(\frac{7}{60}+\frac{1}{120}\right)\left|c_{0}\right|^{2}+\frac{7}{60}\left|c_{1}\right|+\frac{1}{120}\left|c_{2}\right|\right\}|z|^{2} \leq \frac{1}{8}|z|^{2} \\
& \qquad\left|\left(\frac{1}{16} c_{0} c_{2}+\frac{1}{16} c_{0}^{3}\right) z^{4}\right| \leq \frac{1}{16}|z|^{4} \tag{3.14}\\
& \left|\left(\frac{9}{80} c_{0} c_{2}+\frac{1}{9} c_{1}^{2}\right) z^{4}+\left(\frac{13}{70} c_{0} c_{3}+\frac{17}{84} c_{1} c_{2}+\frac{157}{840} c_{0}^{2} c_{1}\right) z^{5}\right| \\
& \leq\left(\frac{9}{640}\left|c_{2}\right|+\frac{1}{72}\left|c_{1}\right|+\frac{13}{1120}\left|c_{3}\right|+\frac{17}{1344}\left|c_{1}\right|+\frac{157}{13440}\left|c_{1}\right|\right)|z| \\
& \leq\left(\frac{9}{640}+\frac{1}{72}+\frac{13}{1120}+\frac{17}{1344}+\frac{157}{13440}\right)\left(1-\left|c_{0}\right|^{2}\right)|z|
\end{align*}
$$

$$
\begin{equation*}
\leq \frac{1}{6}\left(1-\left|c_{0}\right|^{2}\right)|z| . \tag{3.15}
\end{equation*}
$$

Using (3.12)-(3.14) and Lemma 2 in (3.12) we get

$$
\begin{aligned}
|\omega(z)| \leq \frac{1}{8}|z|^{2} & +\frac{1}{16}|z|^{4}+\frac{1}{2}\left|c_{0}\right|+\frac{1}{2}\left(1-\left|c_{0}\right|^{2}\right)|z|+\sum_{v=6}^{\infty}\left(\left|\alpha_{v}\right|+\frac{\left|c_{v}\right|}{v+2}\right)|z|^{\nu} \\
& \leq \frac{1}{2}+\frac{1}{8}|z|^{2}+\frac{1}{16}|z|^{4}+\sum_{v=6}^{\infty}\left|\alpha_{v}\right||z|^{v}+\frac{1}{8} \sum_{v=6}^{\infty}\left|c_{v} \||z|^{v} .\right.
\end{aligned}
$$

But by (2.2)

$$
\begin{gathered}
\sum_{v=6}^{\infty}\left|\alpha_{v}\right||z|^{v} \leq\left(\sum_{v=0}^{\infty}\left|\alpha_{v}\right|^{2}\right)^{1 / 2}\left(\sum_{v=6}^{\infty}|z|^{2 v}\right)^{1 / 2} \leq \frac{|z|^{6}}{\left(1-|z|^{2}\right)^{1 / 2}} \leq \frac{2}{\sqrt{3}}|z|^{6}, \\
|\omega(z)| \leq \frac{1}{2}+\frac{1}{8}|z|^{2}+\frac{1}{16}|z|^{4}+\frac{3 \sqrt{3}}{4}|z|^{6} .
\end{gathered}
$$

Hence

$$
\sum_{\nu=6}^{\infty}\left|c_{v} \| z\right|^{\nu} \leq\left(\sum_{\nu=0}^{\infty}\left|c_{v}\right|^{2}\right)^{1 / 2}\left(\sum_{\nu=6}^{\infty}|z|^{\nu v}\right)^{1 / 2} \leq \frac{|z|^{6}}{\left(1-|z|^{2}\right)^{1 / 2}} \leq \frac{2}{\sqrt{3}}|z|^{6} .
$$

This completes the proof of Theorem 5.

Proof of Theorem 4. By Theorem 5

$$
p_{n}(z)=\left\{1-z^{2} \omega(z)\right\}^{n}
$$

where $\omega(z)$ is analytic in $|z|<1$ and

$$
|\omega(z)| \leq \frac{1}{2}+\frac{1}{4}|z|^{2} \text { for }|z| \leq \frac{1}{2} .
$$

If λ is a real number $\neq 0$ and $n>6 /|\lambda|$ then by simple geometrical considerations $\operatorname{Re} \phi_{\lambda}(z)>0$ if $|z|<\rho_{0}$ where ρ_{0} is the only positive root of the equation

$$
\begin{equation*}
\rho^{4}+2 \rho^{2}=4 \sin \frac{\pi}{2|\lambda| n} . \tag{3.16}
\end{equation*}
$$

In other words, $\operatorname{Re} \phi_{\lambda}\left(\rho_{0} z\right)>0$ for $|z|<1$. Besides, in $|z|<1$

$$
\left|\varphi_{\lambda}\left(\rho_{0} z\right)\right| \leq\left(1+\sin \frac{\pi}{2|\lambda| n}\right)^{|\lambda| n} .
$$

Hence by Lemma 3

$$
\left|b_{k, \lambda}\right| \rho_{0}^{k} \leq 2 \frac{\left(1+\sin \frac{\pi}{2|\lambda| n}\right)^{2|\lambda| n}-1}{\left(1+\sin \frac{\pi}{2|\lambda| n}\right)^{2|\lambda| n}+1} .
$$

This gives

$$
\left|b_{k, \lambda}\right| \leq 2 \frac{\left(1+\sin \frac{\pi}{2|\lambda| n}\right)^{2|\lambda| n}-1}{\left(1+\sin \frac{\pi}{2|\lambda| n}\right)^{2|\lambda| n}+1}\left(\frac{1}{\sqrt{1+4 \sin \frac{\pi}{2|\lambda| n}}-1}\right)^{k}
$$

from which the desired result follows at once.
It may be noted that for fixed λ

$$
\frac{\left(1+\sin \frac{\pi}{2|\lambda| n}\right)^{2|\lambda| n}-1}{\left(1+\sin \frac{\pi}{2|\lambda| n}\right)^{2|\lambda| n}+1} \rightarrow \frac{e^{\pi}-1}{e^{\pi}+1} \text { as } n \rightarrow \infty .
$$

4. Some remarks.

Remark 1. Theorem 2 can be easily extended to read as follows.
Theorem 2'. Let

$$
p_{n}(z)=\prod_{\nu=1}^{n}\left(1-z_{v} z\right)
$$

be a polynomial of degree n not vanishing in $|z|<1$ and let

$$
p_{n}^{\prime}(0)=p_{n}^{\prime \prime}(0)=\ldots=p_{n}^{(l)}(0)=0
$$

If

$$
\varphi(z)=\left\{p_{n}(z)\right\}^{\varepsilon}=\sum_{0}^{\infty} b_{k, \varepsilon} z^{k}
$$

where $\varepsilon=1$ or -1 then

$$
\left|b_{k, \varepsilon}\right| \leq n / k \quad(l+1 \leq k \leq 2 l+1)
$$

and

$$
\left|b_{2 l+2,1}\right| \leq \frac{n}{2(l+1)^{2}}(n-l-1),\left|b_{2 l+2,-1}\right| \leq \frac{n}{2(l+1)^{2}}(n+l+1)
$$

For the proof we simply need to observe that in $|z|<1$

$$
\begin{equation*}
\frac{p_{n}^{\prime}(z)}{p_{n}(z)}=\frac{-n z^{\prime} \psi(z)}{1-z^{l+1} \psi(z)} \tag{4.1}
\end{equation*}
$$

where $\psi(z)$ is analytic and $|\psi(z)| \leq 1$ for $|z|<1$.
REMARK 2. The radii of starlikeness and of convexity of the family

$$
\left\{z\left[p_{n}(z)\right]^{\alpha}: p_{n}(z) \neq 0 \quad \text { in } \quad|z|<1, p_{n}(0)=1\right\}
$$

were determined by Dieudonné [1] with the help of the representation (3.1) for $p_{n}^{\prime}(z) / p_{n}(z)$. In precisely the same way we may use (4.1) to determine the radii of starlikeness and of convexity of the family

$$
\begin{aligned}
\left\{z\left[p_{n}(z)\right]^{\alpha}: p_{n}(z) \neq 0 \text { in }|z|<1, p_{n}(0)=1,\right. & p_{n}^{\prime}(0)= \\
& \left.p_{n}^{\prime}(0)=\ldots=p_{n}^{(t)}(0)=0\right\}
\end{aligned}
$$

We are thankful to Professor Hayman for giving a series of very inspiring lectures on the subject of his paper at the University of Montreal.

References

1. J. Dieudonné, Sur quelques propriétés des polynomes, Actualités Sci. Indust. No. 114, Hermann, Paris, 1934.
2. W. K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44 (1973), 117-137.
3. Z. Nehari, Conformal Mapping, 1st ed., McGraw-Hill, New York, 1952.
4. J. L. Walsh, A theorem of Grace on the zeros of polynomials, revisited, Proc. Amer. Math. Soc., 15 (1964), 354-360.

Received June 1972. The work of both authors was supported by National Research Council of Canada Grant A-3081 and by a grant of le Ministère de l'Education du Gouvernment du Quebec.

Universite de Montreal

