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ON THE THEORY AND APPLICATION
OF SUM COMPOSITION OF LATIN SQUARES

AND ORTHOGONAL LATIN SQUARES

A. HEDAYAT AND E. SEIDEN

The object of this paper is three-fold. First, it puts the theory
of "sum composition" of Latin squares and orthogonal Latin
squares in its most precise form. Second, it compiles and unifies
previous results which have appeared in technical reports and in
proceedings of a conference in Italy, which are not readily availa-
ble. Finally, it presents some new results in this area.

The research relates to the following question: given two Latin squares
Lx and L2 of order nx and n2(nx> n2\ respectively, in how many ways (if
any at all) can one compose Lx and L2 in order to obtain a Latin square L3

of order m, where m is a function of nx and n2 only? It is well known that L3

= Lx ® L2 is a Latin square of order nx n2 irrespective of the combinatorial
structures of Lx and L2. The theory produces a Latin square L3 of order nx

+ n2 (thus the name "sum composition"), provided Lx has a certain com-
binatorial structure. Although this method does not work for all pairs of
Latin squares, it has an immediate application in the construction of
orthogonal Latin squares with certain interesting and useful combinatorial
structures, including those of order At + 2, t > 2. As will be seen this
method is easy, and is simpler than other known methods for the con-
struction of orthogonal Latin squares of order At + 2 (see [1]). Perhaps the
idea of sum composition can be extended to other combinatorial structures
and designs.

In §2 preliminary concepts and definitions are presented, which are
then used in the following sections. Section 3 develops the basic idea of the
sum composition of Latin squares and points out the usefulness of these
concepts. Section 4 introduces the idea of horizontal and vertical projec-
tions of a transversal on rows and columns. It also introduces the idea of
"capturing" a lost transversal. It contains two lemmas for capturing a
transversal by horizontal and vertical projections. These lemmas are con-
sidered to be the fundamental lemmas in sum composition. In §5 a tech-
nique is developed which forms a basis for the construction of an O(n, 2)
via sum composition of an O(nx, 2) based on GF(nx) and an arbitrary O(n2,
2). Section 6 introduces a family of O(n, 2) with a sub O(n2, 2) by sum
composition of an O(nx, 2) based on GF(nx) and an arbitrary O(n2, 2)
where n2 hits the upper bound namely [nx /2], where [a] denotes the integer
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part of a. Section 7 presents a family of O(π, 2) with a sub 0(3, 2) by sum
composition of an O(nx, 2) based on GF(n{) of odd order and an 0(3, 2).
The lowest order which n2 can take on in the present theory is 3 (also see
§ 10). In §8 a family of O(pa + 4,2) with sub O(4,2) is constructed. Section
9 concerns itself with the construction of a family of O(pa + 5,2) with sub
0(5, 2). The order of the Latin squares composed in this case is always of
the form 4/ + 2. Section 10 discusses extensions of the theory in two
different ways. Several unsolved problems are also stated.

2 Preliminaries. Let Σ be a set of cardinality n > 1. Let L be a Latin
square of order n on Σ.

DEFINITION 2.1. L is said to have a transversal if there exists a
collection of n cells in L with the properties that: (i) no row and column of
L contains more than one cell of this collection, (ii) the entries of these cells
exhaust the set Σ.

Of course, not every Latin square has a transversal.

DEFINITION 2.2. L is said to have t parallel transversals if L
contains t transversals, no two of which have any cell in common.

DEFINITION 2.3. Let Lx, L2,..., Lr be r Latin squares of order n on Σ.
Then a collection of n cells is said to form a common transversal for these r
Latin squares if the collection is a transversal for each of these r Latin
squares.

DEFINITION 2.4. A set of r Latin squares of order n on Σ is said to
contain t parallel common transversals if they have t common transversals
which are pairwise parallel.

Hereafter, the symbol O(n, r) denotes a set of r pairwise orthogonal
Latin squares of order n. The notation, Lx ± L29 indicates that Lλ is
orthogonal to L2. It is easy to see that:

LEMMA 2.1. An 0(n9 f) exists if and only if an 0(n, r — 1) with n

common parallel transversals exists.

LEMMA 2.2. An 0(n, n — 1) has no common transversal

EXAMPLE 2.1. Let Σ = {a, b, c, d). Then the underlined and par-
enthesized cells form two common parallel transversals for the following
O(4,2).
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(a) b c d (a) c d b
c (d) a b b (d) c a
d c (b) a , c a (b) d
b a d (c) d b a (c)

3. Sum composition of Latin squares. In order to make the reading
of this paper independent of our previous paρers[4], [5], [6], and [8], the sum
composition technique for the construction of Latin squares of order nx +
n2 from Latin squares of orders nx and n2 having certain combinatorial
structures is reviewed. Sum composition has numerous applications:

(i) It can be used for the construction of Latin squares of order n x +
n2 with sub-Latin squares of order n2 for all nx and n2 < nx except for (n{9

n2) = (2,1), (2, 2), (6, 5) and (6, 6).
(ii) It has an immediate application for the construction of pairs of

orthogonal Latin squares of order nx + n2, including those of the form At +
2, with sub-orthogonal Latin squares of order n2.

(iii) Latin squares and orthogonal Latin squares constructed via sum
composition enjoy certain combinatorial properties which are useful for
the construction of several useful experimental designs for successive stages
(see Hedayat, Parker and Federer [7]).

(iv) Hedayat [3] has utilized this method and has produced a Latin
square of order 10 which is orthogonal to its transpose.

(v) Finally, Federer [2] has pointed out several other applications of
sum composition.

Consider an m x m square B with a Latin square L of order n < m in
its top left corner. In the sequel the following concepts will be needed:

(i) the vertical projection of a given transversal in L on the rth row (r
> ή) of B means placing in the (r, j) cell of this row, that element of the
given transversal which appears in theyth column of L,j = 1, 2, ..., n.

(ii) Similarly, the horizontal projection of a given transversal on the
ίth column, t> n, of B means placing in the (/, t) cell of this column that
element of the given transversal which appears in the /th row of L, / = 1,2,
...,n.

The following example clarifies the above concepts.

EXAMPLE 3.1. Let L and B be the following squares.
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I and B =
2
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The underlined cells form a transversal for L. The vertical and horizontal
projections of this transversal on the 6th row and 5th column of B produce
the following square.
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The method of sum composition will be described next. Let Σx and Σ2

be two non-intersecting sets of cardinalities nx and n2, respectively, nx > n2.
Let Lx be a Latin square of order nx with n2 parallel transversals on Σ,.
Note that this is always possible except for (nx, n2) = (2, 1), (2, 2), (6, 5),
and (6, 6). Let L2 be a Latin square of order n2 on Σ 2 . £ 2 is not required to
have any specific combinatorial structure. Let Cx be an m x m, m = nx +
n2, square containing L, and L2 in the following fashion:

C,=

Project horizontally and vertically the n2 transversals of Lx on the last n2

columns and rows of Cx in any arbitrary manner. Note that there are n2\
choices for the projections on the rows and n2! choices for the projections
on the columns. Call the resulting square C2. Now replace the nx entries of
each transversal by a fixed element of Σ 2 such that no two transversals are
being replaced by the same element of Σ 2 . Call the resulting square L3. The
above process guarantees that JL3 is a Latin square of order nx + n2 on Σi U

L2
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The preceding steps can be elucidated via an example.

EXAMPLE 3.2. Let Σ{ = {I, 2, 3}, Σ 2 = {a, b) and

I (2) 3 a b

L, = 2 3 (i) and L2 =
(3) 1 2 b a

Note that the underlined and parenthesized cells form two parallel trans-
versals for Lx. Then

C, =

I

2

(3)

(2)

3

1

3

(1)

2

a

b

b

a

and a possible choice of

C,=

i

2

(3)

1

3

(2)

3

1

3

2

3

(1)

2

2

1

2

1

3

1

3

2

α

Observe that the underlined transversal has been projected on the fourth
row and on the fifth column and the parenthesized transversal has been
projected on the fifth row and on the fourth column. Now replace the
entries of the underlined transversal by a and the parenthesized ones by b
to obtain



90 A. HEDAYAT AND E. SEIDEN

a
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4. Fundamental lemmas in sum composition. Let Σx = GF(nx). Let
B(x) be a square of order nL with xat + αy in its (i,j) entry, x E GF(«!), x Φ
0, α/, oLj E GF(«!). It is well known that B[x] is a Latin square of order nx on
Σi, and moreover,

B(x)±B(y),xΦy.

In particular J?(l), £(.*) and B(y) form an 00* i, 3). Note that the n, entries
in B(x) and 5(y) corresponding to the nx entries equal to k, in 5(1), i.e., α, +
aj = k E GF(«!), form a common transversal for B(x) and B(y). Call this
transversal /:. As k runs over all the elements of GF(ΛO, ΠI common
transversals are obtained for B(x) and B(y). Moreover, two common
transversals k and /, k Φ /, are parallel. Thus nx common parallel trans-
versals in B(x) and B(γ) have been located and named.

Consider the following two n x n, n = «i + n2, n2 < «i squares

Project the transversal s in £(jt) vertically and horizontally on an arbitrary
row and column of C(x). Call the resulting square C'(x). Also project the
transversal t in B(γ) vertically and horizontally on the same row and
column numbers of C(y). Call the resulting square C'(y). The following two
lemmas characterize the 2nx ordered pairs obtained upon superposition of
C(x) on C'(γ) corresponding to the projected transversals s and t.

LEMMA 4.1. The set ofn x ordered pairs resulted from the superposition
of the vertical projection of the transversal s in B(x) and transversal t in B(y)
forms the same set of ordered pairs as obtained by superposition of the
transversal kv (x, y, s, t) in B{x) and in B(y)for
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(4.1) kv{x,y, s, t) = [sx(l -y)-ty(\- x)]/(x -y\xΦ y.

Proof The entries of the transversal s in B(x) and the transversal / in
B(y) respectively read

XCLi + Cίj, Oίi + dj = S

ya* + CLJ, α + αy = t.

Upon vertical projection of these transversals the nx entries respectively
read as

x(s - CLJ) + oίj and y(t - OLJ) + ctj.

Therefore upon superposition of these projected transversals the following
nx pairs are obtained

(4.2) (x(s - cίj) + ajyy{t - αy) + aj)J = 1, X ... , nx.

Now let a\ and aj be such that

kv(x,y,s,t) = a'i + αj.

Upon superposition of transversal kv(x, y, s, i) in B(x) and B(y) one obtains
the following nx pairs

(4.3) ; ;

Equating (4.2) to (4.3) results in

x(s - aj) + ctj = x«; + a}

which yields the following solution for kv (x, y, s, t).

kv(x,y, s, t) = [sx(l -y)- ty{\ - x)]/(x - 7)

Note that if in particular x = y 1 the following simple expression for

*vOΓ"I>βM>0 holds:
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(4.4) K(y-\y, s, t) = (ty + s)/(l + y),

which will be denoted by kv (y, s, t) for simplicity.

LEMMA 4.2. The set ofn x ordered pairs resulted from the superposition
of the horizontal projection of the transversal s in B{x) and transversal t in
B(y) forms the same set of ordered pairs as obtained by superposition of the
transversal kh (x, y, s, t) in B(x) and in B(y)for

(4.5) kh(x,y, s, t) = [t(x - 1) - s(y - l)]/(x -y),xΦy.

The proof is analogous to the proof of Lemma 4.1.
If, in particular, x = y~x the expression (4.5) reduces to the following

simple expression

(4.6) kh(y-\y, s, t) = (sy + 0/(1 + y),

which will be denoted by kh (y, s, t) for simplicity.

REMARK 4.1.

(4.7) /

s + t if x = y~K

REMARK 4.2. To simplify the detailed descriptions of Lemmas 4.1
and 4.2, they are referred to in the following forms:

(i) The vertical projection of the transversal s in B(x) and the trans-
versal t in B(y) will jointly capture the transversal kv(x, y, s, t) as given in
(4.1).

(ii) The horizontal projection of the transversal s in B(x) and the
transversal t in B(y) will jointly capture the transversal kh (JC, y, s, t) as given
in (4.5).

5. An application of sum composition for the construction of sets of
orthogonal Latin squares. In order to construct an O(«, 2) for n = nx +
n2, we require that nx > 2n2 and there should exist an O(n2,2) and an O(nx,
2) with 2n2 common parallel transversals. In this section, due to some
combinatorial difficulties, the case n2 = 1 is excluded even though an O(l,
2) exists. The above requirements eliminate the arbitrary decomposition of
n into nx and n2,for instance, exclude n2 = 2 or 6. Thus the range of n2 is 3 <
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n2 < [nx /2\. The following lemma guarantees that for any n > 10 there is at
least one decomposition of n which fulfills the preceding requirements.

LEMMA 5.1. For any n > 10 there exists a decomposition n = nx + n2

with the property that the existence of an O(n2, 2) and an O(nx, 2) with at
least 2n2 common parallel transversals is guaranteed.

Proof. It is a well known fact in number theory that any n > 10 can
be decomposed into nx + n2,nx = pa->p& prime and a a positive integer, nx

>: 2n2, n2 >Ί,n2Φ 6. It is also well known that for any nx = ρa there is an
O(nx, nx — 1). These together with the fact that for any n2 Φ 2, 6 there is an
O(n2, 2), complete the proof.

Now let n ~nx + n2,n> \0,nx —ρa,n2> %n2 Φ όandflj > 2n2. Let
B(x) and B(y), x Φ l,y Φ 1, x Φ y, be two Latin squares of order nx on Σx

= GF(«i). Also let {Ax, A2} be an O(n2, 2) on Σ 2 of cardinality n2 such
that Σx Π Σ 2 = 0. Let Ω be a set of 2n2 parallel transversals for {B(x),
B(y)}. Note that Ω can be constructed in (n

2

!

rt ) different ways. Decompose Ω
into two nonintersecting sets S and Γeach of cardinality n2. Let Lx be any
Latin square of order nx + n2 constructed by sum composition of B{x) and
Ax, using the transversals in S (see §3). Let L2 be any Latin square of order
nx \- n2 constructed by sum composition of B{y) and A2y using the trans-
versals in T. The following lemma constitutes the backbone of the re-
mainder of this section.

LEMMA 5.2. {Lx, L2] is an O(n, 2) if Kv U Kh = Ω, where Kv and

Kh denote the sets of captured transversals on rows and columns respectively.

Proof Upon superposition of Lx on L2 the following is true:
(i) Every element of Σ 2 in Lx appears with every other element of Σ 2

in L2, due to the fact that A x J_ A2 in the lower right corner.
(ii) Every element of Σ 2 in Lx appears with every element of Σx in L2

because the entries of the transversals in S have been replaced by the
elements of Σ 2 .

(iii) Every element of Σ x in L x appears with every element of Σ2 in L2

because the entries of the transversals in T have been replaced by the
elements of Σ 2 .

Therefore, all that has to be shown is that every element of
Σj in Lj appears with every other element of Σx in L2. To prove this, recall
that B(x) _L B( y). However, after removal of the n2 transversals in B(x)
determined by the n2 elements of S, and n2 transversals in B(y) determined
by the n2 elements of Γ, the following 2n2nx pairs have been lost:
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(xα, + aj,ya.i + o7) with α, + ctj = γ ε Ω.

But the condition of the lemma guarantees the capture of these lost pairs by
the 2/i2«i border cells.

The following example elucidates Lemma 5.1.

EXAMPLE 5.1. Let n = 10 = 7 + 3 with

Σ, = GF(7) = {0, 1, 2, 3, 4, 5, 6} and Σ 2 = { 7 , 8 , 9}.

Set* = 2,y = 5. Then

0 1 2 3 4 5 6 0 1 2 3 4 5 6

2 3 4 5 6 0 1 5 6 0 1 2 3 4
4 5 6 0 1 2 3 3 4 5 6 0 1 2

B(2) = 6 0 1 2 3 4 5, B(5) = 1 2 3 4 5 6 0 .
1 2 3 4 5 6 0 6 0 1 2 3 4 5
3 4 5 6 0 1 2 4 5 6 0 1 2 3
5 6 0 1 2 3 4 2 3 4 5 6 0 1

In order to locate the common parallel transversals in B(x) and B(y) the
square 5(1) is exhibited below:

0 1 2 3 4 5 6

1 2 3 4 5 6 0
2 3 4 5 6 0 1

B{\) = 3 4 5 6 0 1 2 .

4 5 6 0 1 2 3
5 6 0 1 2 3 4
6 0 1 2 3 4 5

Let also

7 8 9 7 8 9
Λ , = 8 9 7 ,A2= 9 7 8 .

9 7 8 8 9 7

Select Ω = {0, 1, 2, 3, 4, 5} and Ω = S U T = {0, 1, 3} U {2, 4, 5}. Now
notice that for the following pairing of s's and /'s
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K{x,y, s, t) = 5, s, t) = 5 ίovs = 0, t = 4,
= 4for.s = 1, t = 2,
= 2 for* = 3,/ = 5,

and
**(*,;>, * 0 = khiλ 5, s, t) = 1 for 5 = 0, / = 4,

= 3 for 5 = 1, ί = 2,

= Ofor s = 3, / = 5.

Therefore for these pairings, Kv = {5,4, 2} and Kh = {1, 3,0}, and thus ΛΓV

U # Λ =• Ω. Here Kv = T and AΓA = 5. But in general there is no such

requirement.

Now assembling all the parts L{ and L2 become:

7
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9
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1
3
7
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4

9
5
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7
8
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4
6
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4
6
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7
8
0
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3
5
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5
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7
8
6
9
3
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4
1

6
7
8
5
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1
3
0
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1
2
3
4
5
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7
8
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1
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3
4
5
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0

8
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7
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4
5
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7
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and L-,

0
5
9
1
7
8
2
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3
4

1
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4
7
8
5
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2
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0

9
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7
8
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6
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5
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3
7
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0
9

1
5
6

7
8
0
5
3
9
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1
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3
1
6
9
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7

0
4
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6
4
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9
5
7
8
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1
5
2
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3
0

7
9
8

2
6
3
0
4
1
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8
7
9

5
2
6
3
0
4
1

9
8
7

The reader can satisfy his oμriosity by direct checking that Lx and L2 is

a pair of orthogonal Latin squares of order 10.

REMARK 5.2 The major problems with regard to the construction of

an O(n, 2) via sum composition are the following:

( i ) Choice of x and y. It is found that y = x~ι simplifies the cal-

culations considerably.

(ii) Selection of the set Ω from the ( ̂ ni) possible choices.

(iii) Splitting ofΩ into S U T.

(iv) Projection (vertically and horizontally) of the members of S and

T9 in the formation of Lι and L2, if possible, so that Kv U Kh = Ω.
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A backward solution of the problem, especially in the casey = x~\ is
easier, namely, devise any "admissible scheme" of capturing the members
of Ω via vertical or horizontal projections. By an "admissible scheme" it is
meant one should never let

kv(x,y,s,t) =
or

since it is impossible to capture 5 o r / through the pair (s, t). Then the
problem reduces to solving a system of 2n2 homogenous equations in 2n2

unknowns. The entries of the related matrix are in terms of JC and y. Now
the question is: for what x and y and in what finite field does this system
have a nontrivial solution with distinct components? Summing up the 2n2

equations, (Σst — Σί;)(l — xy)/(x — 1) = 0. This equation is independent
of either the value of n2 or the finite field in which the equations are
supposed to hold. Thus the system of equations has no trivial solutions
provided that either xy = 1 or Σst = Σtt. This justifies further the relation
xy = 1 used here to simplify the calculations. However xy = 1 does not yet
solve the problem because, in addition, the solution has to consist of
distinct components. In cases investigated this leads to the reduction of the
rank to 2n2 — 2 and consequently to a condition that y has to be a root of
some polynomial. Whenever the polynomial was of degree two the finite
fields in which the components of the solutions were distinct could be
characterized easily. The difficulties arose when y had to be a root of a
polynomial of degree higher than two since there are no readily available
tools to characterize such fields.

6. Construction of families of 0(nx + n2,2) with the maximum value of
n2. As mentioned in §5 the maximum value that n2 can take is [nx /2]. A
family of 0(«, 2), n = nx + n2 where n2 takes its maximum value is
presented below.

THEOREM 6.1. For any prime p and any positive integer a such that n x

= pa>Ί,nx Φ 13, one can construct an O(n, 2) with the sum composition of
an O(nx, 2) based on G¥(nx) and any O(n2, 2) where n2 = [nx /2],

Proof. (By construction.) Let Σx = GF(nx) and Σ 2 be any set of
cardinality n2 such that Σ, Π Σ2 = Φ. Let {B(x), B(y)} be an 0(nx, 2) based
on GF(«j) and {A x, A2} any 0(n2, 2) based on Σ 2 . Let λ G GF(w,), λ Φ 0
if nx is even. Let also Ω = G¥(nx) - {λ/2} = S U Γsuch that for any s G
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S there is t G Γsuch that s + t = λ. Construct a Latin square Lx by the sum
composition of B(x) and A x using any arbitrary vertical and horizontal
projections of the n2 parallel transversals determined by the elements of S.
Now construct the Latin square L2 by the sum composition of B(y\ and A2

using the n2 transversals in B(y) determined by the elements of T and the
following projection rules: Project transversal tt on the row (column)
which, upon superposition of L2 on Lx, falls on the row (column) stemming
from the transversal st = λ — tt. Now by (4.7)

kv(y, s, t) + kh(y, s, t) = (s + t) + (t - s)(xy - l)/(x - 7),

therefore if x = 7" 1 then for ^ 7̂  ̂ 2,

K(y> sx,\- sx)Φ kv(y, s2, λ - s2)
a n d

^ ^ ^1* λ - ^1) * kh(y, si, λ - ^2).

This implies that Kv U Kh has cardinality nx - 1 and Kv U Kh = Ω, and
thus by Lemma 5.2 the set (Li, L 2} is an O{n, 2) on Σ, U Σ 2 .

REMARK 6.1. The method of Theorem 6.1 fails for nx = 13 only
because there is no 0(6, 2). Otherwise, there will be no orthogonality
contradiction on the other parts of Lx and L2 with their 6 χ 6 lower right
corner missing.

COROLLARY 6.1. The method of Theorem 6.1 produces infinitely many
pairs of orthogonal Latin squares each of order At + 2.

Proof Let/? s 7(mod 8) and a odd, then/?α = (St + 5)/3 and thus nx

+ n2 = At + 2.

COROLLARY 6.2. If pa > Ί, then the composed orthogonal Latin
squares in Theorem 6.1 Λαve at least one common transversal if the corner
0(n2, 2) has a common transversal

Proof The original O(pa, 2) has/?α common parallel transversals.
Therefore after removing pa — 1 common parallel transversals there is still
one common transversal in the corresponding portion of 0(/Λ 2) in the
composed 0(n, 2). This common transversal together with the assumed
common transversal in the lower right corner 0(n2, 2) form a common
transversal for the composed 0(n, 2). The reason for the exclusion oίpa =
7 is the fact that no 0(3, 2) with a common transversal exists (see Lemma
2.2).
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REMARK 6.2 O(n, 2) with common parallel transversals have an
application for the construction of a family of designs for two successive
experiments (see Hedayat, Parker and Federer [7]).

The method of Theorem 6.1 will be clarified now by two examples, one
for n, odd and one for nx even.

EXAMPLE 6.1. Let/i, = 7,GF(7) = {0,1,... ,6}. Then for y = 3,x =

y~ι - 5 we have {B{\\ B(5), 5(3)} =

0
1

1 2 3 4 5 6
2 3 4 5 6 0

0 1 2 3 4 5 6
5 6 0 1 2 3 4

2 3 4 5 6 0 1 3 4 5 6 0 1 2
3 4 5 6 0 1 2 1 2 3 4 5 6 0
4 5 6 0 1 2 3 6 0 1 2 3 4 5
5 6 0 1 2 3 4
6 0 1 2 3 4 5

0 1 2 3 4 5 6
3 4 5
6 0 1
2 3 4
5 6 0

4 5 6 0 1 2 3 1 2 3 4 5 6 0
2 3 4 5 6 0 1 4 5 6 0 1 2 3

6 0 1 2
2 3 4 5

5 6 0 1
1 2 3 4

For «2 = («, - l)/2, let Σ2 = {7, 8, 9} and

7 8 9 7 8 9

{AX,A2} = 8 9 7 , 9 7 8 .

9 7 8 8 9 7

Finally for λ = 1, S = {1, 2, 3} and T = {0, 6, 5} we have {Lu L2} =

0
7
8
9
6
4
2

5
3
1

7
8
9
2
0
5
3

1
6
4

8
9
5
3
1
6
7

4
2
0

9
1
6
4
2
7
8

0
5
3

4
2
0
5
7
8
9

3
1
6

5
3
1
7
8
9
0

6
4
2

6
4
7
8
9
3
1

2
0
5

1
5
2
6
3
0
4

7
8
9

2
6
3
0
4
1
5

8
9
7

3
0
4
1
5
2
6

9
7
8

7
3
6
2
5
9
8

0
4
1

1
4
0
3
9
8
7

5
2
6

2
5
1
9
8
7
6

3
0
4

3
6
9
8
7
4
0

1
5
2

4
9
8
7
2
5
1

6
3
0

9
8
7
0
3
6
2

4
1
5

8
7
5
1
4
0
9

2
6
3

0
2
4
6
1
3
5

7
9
8

6
1
3
5
0
2
4

8
7
9

5
0
2
4
6
1
3

9
8
7

which is an 0(10, 2).
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EXAMPLE 6.2. Let nx = 8, GF(8) = {0, 1, ..., 7} with the following
addition ( + ) and multiplication ( x ) tables:

+

0
1
2
3
4
5
6
7

0

0
1
2
3
4
5
6
7

1

1
0
6
4
3
7
2
5

2

2
6
0
7
5
4
1
3

3

3
4
7
0
1
6
5
2

4

4
3
5
1
0
2
7
6

5

5
7
4
6
2
0
3
1

6

6
2
1
5
7
3
0
4

7

7
5
3
2
6
1
4
0

X

0
1
2
3
4
5
6
7

0

0
0
0
0
0
0
0
0

1

0
1
2
3
4
5
6
7

2

0
2
3
4
5
6
7
1

3

0
3
4
5
6
7
1
2

4

0
4
5
6
7
1
2
3

5

0
5
6
7
1
2
3
4

6

0
6
7
1
2
3
4
5

7

0
7
1
2
3
4
5
6

Then fory = 3, x = γ~
ι
 = 6,

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
1 0 6 4 3 7 2 5 6 2 1 5 7 3 0 4 3 4 7 0 1 6 5 2
2 6 0 7 5 4 1 3 7 5 3 2 6 1 4 0 4 3 5 1 0 2 7 6
3 4 7 0 1 6 5 2
4 3 5 1 0 2 7 6
5 7 4 6 2 0 3 1
6 2 1 5 7 3 0 4
7 5 3 2 6 1 4 0

1 0 6 4 3 7 2 5
2 6 0 7 5 4 1 3
3 4 7 0 1 6 5 2
4 3 5 1 0 2 7 6
5 7 4 6 2 0 3 1

5 7 4 6 2 0 3 1
6 2 1 5 7 3 0 4
7 5 3 2 6 1 4 0
1 0 6 4 3 7 2 5
2 6 0 7 5 4 13

For n2 = «i II - 4, let Σ2 = {A, B, C, D} and

A B C D
B A D C
C D A B
D C B A

A B C D
C D A B
D C B A
B A D C
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Finally for λ = 2, S = {0, 1, 3, 4}, and T = {2, 6, 7, 5} one obtains
{L,,L2} =

A
B
7
C
D
3
4
5

0
6
1
2

B
A
5
D
C
4
3
7

2
1
6
0

2
1

6
0
D
B
C

3
5
4
7

C
Z)
2

0
1
6

4
7
3
5

D
C
6

Λ
1
0
2

5
3
7
4

5
3
Z>
7
4

C

6
0
2
1

6
0
B
2
1
C
A
D

7
4
5
3

7
4
C
5
3
B
D
A

1
2
0
6

0
2
3
4
5
6
7
1

A
B
C
D

1
6
4
3
7
2
5
0

D
C

3
7
0
1
6
5
2
4

C
D
A
B

4
5
1
0
2
7
6
3

Z>
C

A

0
3

A 3
B 0

DB C
C A D

A B 5 C D2 7
5 Ί C6 2 B L
6 2 5 5 7
D C3 B A
B A 6
CPO

6
Z)Λ

5Λ 1 4 0
D C 7 2 5
Λ 54 1 3

4 0 2 7 6 3 5 1
13 7 2 5 0 6 4
2 5 4 13 6 0 7
7 6 14 0 5 3 2

2 6 7 5
5 7 6 2
4 3 10
10 4 3

3 4 0 1

6 2 5 7
1 3 4
5 2 6

A B CD
C DAB
DC B A
B AD C

which is an 0(12, 2).

7. Construction of families of 0(«i + nly 2) with the minimum value of

n2. Presently the problem of the construction of a set O(n, 2) for n = nx + 3,
nj = /Λ/J a prime greater than or equal to seven and a a positive integer
will be investigated. It is clearly sufficient to show that the construction can
be achieved for any/? > 7. The proof can then be carried over to any nx =

As before let B(X), B(x), and B(y) be three orthogonal Latin squares
with elements in GF(n{).

Let S = {s\, s2, s3}, T = {/i, /2J 3̂} denote sets of transversals
projected from J?(Λ;) and i?(y) respectively.

The problem faced now is, can one choose the sets S and Γin such a
manner that the ranges of the two functions kv (JC, y, si9 tj ) and kh (x, y, sh tj)
for i,j = 1, 2, 3 exhaust the sets S U Γ, and if so in what way, if any, does
the choice depend on x and/? This leads to the problem, how many distinct
systems of choices are possible? Reducing the problem to nonisomorphic
cases two cases are considered "distinct" if they cannot be obtained from
each other by interchanging the squares, transposing both squares, or
permuting the elements within each of the sets S or T. Thus it may be
assumed that i =zj for one of the functions, say kv(x,y, si9 tj), since this can
be achieved by permuting the elements of one of the sets S or Γ. Further-
more it is assumed that the range of the function kv(x, y, sh tj) consists of
either two or three elements of the set S. Cases in which the range includes
none or one element of 5 can be obtained from the above by interchang-
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ing the sets S and Γand the functions kv and kh. To facilitate the notation
the arguments x and y will be omitted in the present considerations.

In view of the above, there are just four distinct patterns for the range

v(s, t). They are:

II III IV
kv(sutι) = s2 kv(sl9t{) = s2 kv(sut{) = s2

kv(s2,t2) = s3 kv(s2,t2) = s3 kv(s2,t2) = sι

kv(s3, t3) = tx kv(s3, t3) = t2 kv(s3, t3) = h

For each of these patterns there are twelve distinct possibilities for the
range of kh(si9 tj). Thus there are a total of 48 cases to be considered.

In [8] it was assumed that xγ = 1. This seemed to simplify the calcu-
lations. Ruiz and Seiden [9] showed that a necessary and sufficient condi-
tion for obtaining nontrivial solutions for the systems of equations arising
in the method of sum composition is either Σsi = Σ/, or xγ = 1. They also
showed that for patterns II, III and IV the elements o f S U Γ cannot be
distinct unless xγ = 1.

It is shown here that under the assumption xγ = 1 one cannot con-
struct a set 0(«i + 3,2) for some primes, nλ, of the form 60m + 11 or 60m +
59. However using pattern I and another relation between x and/ this gap
can be bridged.

All 48 distinct systems of equations will be investigated below under
the assumption xγ = 1. This assumption, as mentioned before, reduces the
rank of the system to at most five. However imposing the additional
condition that the solutions must be distinct reduces the rank in all cases to
at most four and yields a condition that y must be a root of certain
equations. There are cases in which y has to satisfy either the equation y =
0 ory = 1. Clearly this is incompatible with the condition xγ — 1, x Φ γ. In
other cases the problem reduces to solving either a quadratic or a fourth
degree equation in γ in a Galois field. The cases of quadratic equations,
however, can be easily analyzed. The latter helps in establishing that if xγ
= 1, there are primes for which a set O(πι + 3, 2) cannot be constructed.

The cases in which γ has to be a root of a quadratic equation separate
the primes for which a set O(nx + 3, 2) can be constructed into four classes,
not necessarily disjoint. These are such that either — 1, — 2, — 3, or -15 are
quadratic residues in GF(rtι). A representative pattern for each of these
classes is presented.
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Case 1.

M Wi) = s2 kh(sl9t2) = h
kv(s2, t2) = 53 M ^ ί i ) = '3
fcv(y3, ί3) = ^ kh(s3,t3) = t2.

This system will be of rank four and will exhaust the elements of the set S
U Γ provided thaty is a root of the equation 2y2 + 3y + 3 = 0. Hence y =
(—3 ± V~ 15)/4, and the system will have solutions provided that either
—3 and 5 or —5 and 3 are quadratic residues mod/?.

A system of solutions is:

(/ + y+ !>2 - y(y
-ys2 + (y + l)ί2

^2/(7+ 1) +7^/(7+ 1)
y2 - l)/( j + 1).

kv{sutx) = 52 kh{sut2) = /3

kv(s2,t2) = ^3 fcΛ(52, ίO = ^
kv(si>h) = 1̂ kh(s3,t3) = ί2

For this system to be solvable and exhaust the set S U Γ j has to be a root
of the equation jμ2 + ^ + 1 — 0, i.e., —3 has to be quadratic residue, i.e./?
has to be of the form 6m + 1. The following forms a system of solutions:

sx = -*3/(j> + 1) + (y
*2 - (2/ + 1)^3/(7 + 1) - yh/{y + l)

Case 3.

fcv(*i,ίi) = 2̂ kh{sx,tx) = ί3

K{s2,t2) = s3 kh(s2,t2) = sx

kv(si,t3) = /Ϊ kh(s3,t3) = t2.

This system will be of rank four and the solutions will exhaust the set S U T
provided that y is a root of the equation 2j2 + 1 = 0, i.e., — 2 is a quadratic
residue of/7 = 8m + 1 or 8m + 3.

A system of solutions is:
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*3 =ysx + (1 -γ)s2

ί, = 2ysx - (ly - l)s2

h = 0 +y)s\ -ys2

t3 = (1

kv(s2,t2) = s3 kh(s2,t3) = sx

kv(s3,t3) = ί2 kh{s3,t2) = tx.

This system will be of rank four and exhaust the set S U Γ provided that/2

+ 1 = 0, i.e., — 1 has to be a quadratic residue or/? = Am + 1.
A system of solutions is:

h - -sx/{y +l)-(y2~y- l)tχ/(y
= sx/y(y + 1)

Since case 4 captures all primes of the form Am + 1 the problem is: Are
there primes of the form Am + 3 which are not captured by the remaining
three cases? Case 3 captures all primes of the form Am + 3 for m even. Case
2 captures primes of the form Am + 3 for m odd, provided that they are also
of the form 6m + 1. Hence cases 2, 3 and 4 omit primes of the form 12m +
11 for m odd. Case 1 captures two families of these primes, provided that
they are also of the form 60m + 23 = 12(5m + 1) + 11 or 60m + 47 =
12(5m + 3) + 11. Thus none of the four cases capture primes of the form
12(5m + 2) + 11 or 12(5m + 4) + 11.

The next question asked is whether the failure to capture the above
mentioned primes is due to the restriction xy = 1? Could one, assuming xy
Φ 1 but ΣSJ = Σti9 supplement the missing primes? The answer is in the
affirmative.

It is shown that keeping the assumption xy = 1, one may capture some
but not all of the missing primes. As mentioned before some of the 48 cases
lead to conditions that/ has to satisfy a fourth degree equation. There are
five equations of degree four as follows:

l.y

4 + 2/ + 3/+y+ 1 - 0
2. / + 2/ + 3/ + 3y + 2 = 0
3. / + 3/ + 6y2 + 5y + 2 = 0
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4. / + 2 / + 4 / + 4y + 2 = 0
5. / + 3 / + 6/ + 6γ + 3 = 0

Equations 4 and 5 cannot have a linear factor unless/? is of the form 6m +
1 or 4m + 1 respectively. Hence these patterns cannot yield primes not
obtainable otherwise. It can also be seen that the set of primes which can be
captured by equations 1 and 2 are identical. Hence the problem reduces to
investigating one of the first two equations and equation 3. Using the high
speed computer facilities at Michigan State University it was found that
some but not all of the missing primes of the form 60m + 11 and 60m + 59
can be captured by these equations.

The first 10 primes of the two missing types of primes were investi-
gated. It was found that in GF(191) and GF(1319) both equations did not
have a linear factor and each of these primes is the smallest in its class.

It may be worthwhile mentioning that the number of solutions in the
cases investigated was the same for both equations. It is suspected that this
holds for all finite fields but we lack the tools to investigate the problem. We
would like to have a method to characterize finite fields in which equations
of degree greater than two have roots. This would prove very useful for our
further research on sum composition.

Failing to construct a set of O(n i + 3,2) for n, of the form 60m + 11 and
60m + 59 with the assumption xy = 1 it is natural to try to achieve, if
possible, this goal with the alternative Σst = Σt(. It will be shown that the
choice (1 — x)/(x — y) = 1 will prove sufficient to capture the missing
primes. Writing now case 1 in terms of x produces:

sx = 2xs3 — (2x — l)/3 t\ = 2$! — t2

s2 = 2xsx — (2x — \)t2 h = 2s2 — t\

si = 2xs2 - (2x - \)t2 t2 = 2 J 3 - t3.

This system will have rank four and yield distinct solutions for the un-

knowns provided that x satisfies the equation 4x2 — 6x + 1 = 0. Hence x =

(3 ± V5)/4. Thus this system will capture all primes nx such that 5 is a

quadratic residue in GΈ(nx), i.e., nx is of the form 5m + 1 or 5m + 4.

Primes of the form 5m + 1 and 5m + 4 include primes of the form 60m +

11 and 60m + 59 respectively.

A system of solutions is:

$1 = 2xs3 — (2x — l)r3

t2 = 2*3 - H

tx = 2(2* - 1)*3 - (4x -

y2 = (2JC - 1)53 - 2(x -
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The result of the previous discussion can be summarized in the
following theorem.

THEOREM 7.1. Using the method of sum composition it is possible to
construct a set O(pa + 3, 2) for allp > 7.

It is emphasized that the method of construction depends on the form
of/? but not on its specific value.

COROLLARY 7.1. The method of Theorem 7.1 produces an infinite
family ofθ(n, 2) with n = At + 2.

EXAMPLE 7.1. The pattern of case 3 can be applied to O( 11,2) to yield
a set 0(14, 2). It will result in x = 3, y = 4 and S = {0, 1, 8}, T = {4, 7, 3}

A
B
6
9
1
4
7
10

c
5
8

0
3
2

β

4
7
10
2
5
8
C
3
6
Λ

9
1
0

2
5
8
0
3
6
C
1
4
Λ
β

7
10
9

3
6
9
1
4
C
10
2
Λ
B
0

5
8
7

4
7
10
2
C
8
0
A
B
9
1

3
6
5

5
8
0
C
6
9
A
B
7
10
2

1
4
3

6
9
C
4
7
Λ

5
8
0
3

10
2
1

7
C
2
5
A
B
3
6
9
1
4

8
0
10

C
0
3
Λ
B
1
4
7
10
2
5

6
9
8

9
1

10
2
5
8
0
3
C

4
7
6

10
A
B
8
0
3
6
9
1
C
7

2
5
4

0
2
4
6
8
10
1
3
5
7
9

B
C

1
3
5
7
9
0
2
4
6
8
10

β

C
A

8
10
1
3
5
7
9
0
2
4
6

C
Λ
β

0
4
8

β

9
2
C
10
3
7

5
6
1

1
5
A
B
6
10
C
7
0
4
8

2
3
9

2

β

3
7
C
4
8
1
5
9

10
0
6

β

0
4
C
1
5
9
2
6
10

7
8
3

β

8
1
C
9
2
6
10
3
7

4
5
0

5
9
C
6
10
3
7
0
4

β

1
2
8

6
C
3
7
0
4
8
1
A
B
2

9
10
5

C
0
4
8
1
5
9
A
B
10
3

6
7
2

8
1
5
9
2
6

β

7
0

c
3
4
10

9
2
6
10
3
A
B
4
8
C
5

0
1
7

10
3
7
0
Λ
β

1
5
C
2
6

8
9
4

4
7
10
2
5
8
0
3
6
9
1

A
C
B

7
10
2
5
8
0
3
6
9
1
4

β

A
C

3
6
9
1
4
7
10
2
5
8
0

C
B
A
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REMARK 7.1. For n < 100 of the form 4/ + 2 there are three instances
where one can utilize either Theorem 6.1 or 7.1 to produce an O(n, 2). These
orders are 34, 46 and 70 which can be decomposed as follows:

34 = 23 + I lor31 + 3
46 = 31 + 15 or 41 + 3
70 = 4 7 + 23 or 67 + 3.

The natural question to ask now is in what direction should we extend
the research on construction of orthogonal Latin squares using the method
of sum composition? One obvious direction would be to investigate the
problem of construction of a set 0(n, t) for t > 2. As a first step in this
direction it is necessary to extend the investigations beyond the extreme
values of n2 (see § 10). The next two smallest values are n2 = 4, 5. As will be
seen, the composed orthogonal Latin squares for these values of n2 have a
useful statistical application. These cases are considered in the following
two sections.

8. Construction of two families of O(nx + 4, 2) It is clear that an
exhaustive search for patterns, as was done for n2 — 3, would be very
tedious. Preliminary investigations indicate that one could find patterns
which would yield a set 0(nx + 4, 2) for any nx = pa as long as/? >: 11 and a
> 1. Here two families of 0(/?α + 4, 2) for which either — 1 or —2 are
quadratic residues in GF(pa) will be presented. For both families one has
to assume xy = 1 in order to obtain distinct solutions for the unknowns in
question.

Case 1.
K(s\,h) = h kh{sx,U) = t2

kv{s2,t2) = sx kh(s2,t3) = U
K(si>h) = h kh(s3,t2) = s4

kv(s4, U) = ^2 kh(s4, tx) = s3.

This system of equations will have distinct solutions provided that 3γ2 + 2γ
+ 1 = 0 , i.e., —2 has to be quadratic residue or/? has to be of the form 8m
+ 1 or*8m + 3. A system of solutions in terms of t\ and t3 is:

* = yt\ + (y + \)h *4 = (y + 2)tx - (γ +
*2 = - ( / - l)ίi + yh h = 2(γ + \)tx - (2γ

l)/i - lyh.
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Case 2.
K(s\,t\) = h kh(sutx) - s2

kv(s2, t2) = sx kh(s2, t2) = t\
kv(s3> h) = ί4 kh(s3, h) = s4

kv(s4, t4) = *3 ΛA(J 4, /4) = t3.

Notice that the four equations of either lines one and two or three and four
form a loop. These loops will yield distinct solutions provided thatj 2 + 1
= 0 or/; = Am + 1. A system of solutions is:

h = (si + ytx )/(y + 1 ) tA = fe + yh)/(y + 1)
2̂ = (ίi + ys\)/(y + 1 ) sA = (/3 + j53)/(); + 1).

The following distinct values for the unknowns may be chosen:

Sχ = 0, ίj = 1,53 = 1 - y and /3 = y.

Thus the following theorem is obtained.

THEOREM 8.1. Using the method of sum composition it is possible to
construct a set O(pa + 4, 2) for all primes p of the form Am + 1 or 8m + 3,p
> 11.

COROLLARY 8.1. The composed O(pa + 4, 2) Λαs α/ feαsί 3 common
parallel transversals ifp= 11 and at least A common parallel transversals ifp
> 11.

Proof. The original 0(pa

9 2) has pa common parallel transversals.
Sincepa > 11, after removing 8 common parallel transversals there remain
at least 3 common parallel transversals in the corresponding portion of
O(pa, 2) in the composed O(pa + 4,2). Now it is known that any 0(4,2) has
4 common parallel transversals. Thus any / < 4 common parallel trans-
versals of the corner 0(4, 2) in the composed set along with any / common
parallel transversals in the portion corresponding to O(pa, 2) form three
common parallel transversals for the entire set.

EXAMPLE 8.1. By letting/? = 11 one can construct an 0( 15,2) via sum
composition of an O(l 1,2) and an 0(4,2). Since/? = 11 falls in Case 1, then
y = 8, JC = 7, S = {9, 8, 3, 2} and T = {0, 5, 1, 6}. Utilizing the projection
rules given in Case 1 the following 0(15, 2) is obtained.
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0
7
D
C
6
2
9
5
B
A
4

8
1

10
3

1
D
C
0
7
3

10
B
A
9
5

2
6
4
8

D
C
5
1
8
4

3
10
6

7
0
9
2

C
10
6
2
9

8
4
0
D

1
5
3
7

4
0
7
3
B
A
2
9
5
D
C

6
10
8
1

5
1
8
B
A
7
3

10
D
C
9

0
4
2
6

6
2

Λ
1
8
4
Z>
C
3

10

5
9
7
0

7

6
2
9
Z>
C
8
4
0

10
3
1
5

B
A
0
7
3
D
C
2
9
5
1

4
8
6

10

A
5
1
8
D
C
7
3

10
6

9
2
0
4

10
6
2
Z>
C
1
8
4
0
B
A

3
7
5
9

9
4

10
5
0
6
1
7
2
8
3

A
B
C
D

8
3
9
4

10
5
0
6
1
7
2

Λ
Z>
C

3
9
4

10
5
0
6
1
7
2
8

C
Z>
Λ
B

2
8
3
9
4

10
5
0
6
1
7

C

A

D
C
5
2

10
B
A
1
9
6
3

0
7
8
4

C
9
6
3
B
A
5
2

10
7
£

4
0
1
8

2
10
7

A
9
6
3
0
D
C

8
4
5
1

3
0
B
A
2

10
7
4
Z>
C
6

1
8
9
5

4

6
3
0
8
D
C

10
7

5
1
2
9

10
7
4
1
Z>

c
3
0
8

9
5
6
2

3
0
8
5
D
C
7
4
1
B

2
9

10
6

7
4
1
9
D
C
0
8
5
B
A

6
2
3

10

8
5
2
Z)

c
4
1
9

A
0

10
6
7
3

9
6
Z)
C
8
5
2

Λ
4
1

3
10
0
7

10
Z>
C
1
9
6
5
Λ
8
5
2

7
3
4
0

6
2
9
5
1
8
4
0
7
3

10

A
D
B
C

1
8
4
0
7
3

10
6
2
9
5

C

D

5
1
8
4
0
7
3

10
6
2
9

C

Z>
A

0
7
3

10
6
2
9
5
1
8
4

Z>

C
B

EXAMPLE 8.2. Considering Case 2 and letting/? = 13 one can con-
struct an 0(17, 2) by sum composition of an O(13, 2) and an 0(4,2). In this
case/ = 5, x = 8, S = {0, 11, 9, 4}, and Γ = {1, 3, 5, 10}. The detail of
construction is left to the reader.

REMARK 8.1. Utilizing a different pattern than those considered here,
Ruiz and Seiden [9] have constructed a family of O(n{ + 4, 2), nx = 1, 2,
3(mod 7) using x = 2 and/ = 5 ± V ^ ) / 4 . One can show that the same
result can be obtained by starting with their pattern and assuming that xy
= 1.
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9. Construction of a family of O(w, + 5, 2). Consider the sum com-
position of O(pa, 2) based on GF(/?tt), p > 11 and on O(5, 2) based on a
system of projections and capturing of the lost transversals given by

kv(sutι) = t5 kh(sl9tx) = s2

kv(s2,t2) = t\ kh(s2,t2) = s3

kv(s3, t3) = t2 kh(s3, t3) = s4

kv(s4, U) = t3 kh(s4, t4) = j 5

*,(*5,ίs) = *i kh(s5,t5) = t4.

It can be shown that this system has a solution with distinct components
only if xy = 1. Otherwise Σst = Σί, implies s, = t4. Using the condition xy
= 1 this system will yield a solution with distinct components only if/2 + 4
= 0 in GF(p). This implies that — 1 has to be a quadratic residue in GF(/?),
i.e. p has to be of the form Am + 1. This system of equations yields the
values for 57 and ti9 i = 2, 3, 4, 5 in terms of s{ and t\ that may be expressed
as

s2 = [>*! + ^1/(7 + 1 ) ί2 = [(y + 2)ί, -
2tx]/(y + 1 ) r3

5̂ = [(;> - 3)5, + 4ί, ]/(/ + 1 ) ί5 = [jί, + 5, ]/(7 + 1).

For the choice of s\ = 0 and /, = 1 the remaining components become

s2 = \/{y +1) t2 - (y + 2)/(y + 1)
*3 = 2/(y + 1 ) t3 = (y + 3)/(y + 1)
54 = 3/(y + 1 ) /4 = (y + 4)/(y + 1)

1).

It is easy to check that the ten values for the unknowns are distinct except
for/? = 13, the smallest prime under consideration. Clearly the values of
the sets 5 and T separately are distinct. As to the differences between the
elements of the set S and T

S5 — t\ = s4 — t5 — s2 — s4 = 0

1= 9 or 13 = 0. For/? = 13 one may use the example given in [8]
with * = 2>j> = 7, S = {0, 1, 2, X 4} and T = {10, 11, 12, 13, 9}. In this
particular case the transvdrsal st should be projected on the (13 + /)th row
and column in the order written above, and similarly for the transversal /,-.
Thus the following theorem is established.
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THEOREM 9.1. Using the method of sum composition it is possible to
construct a set O(pa + 5, 2) for allp of the form Am + l,p> 13.

Note that the order of the composed Latin squares in Theorem 9.1 is of
the form At + 2.

COROLLARY 9.1. The composed O(p" + 5, 2) has at least 3 common
parallel transversals ifp= 13 and at least 5 common parallel transversals ifp

The proof is analogous to the proof of Corollary 8.1.

EXAMPLE 9.1. Using the method of Theorem 9.1 a pair of orthogonal
Latin squares of order 18=13 + 5 and a pair of order 22 = 17 + 5 can be
constructed. For/7 = 13, x,y, S and Tare as above. For/? = 17

9,S={0,12,7,2,14} and Γ = {1, 13,8,3,6}.

The exhibition of these squares is left to the reader.

REMARK 9.1. For n = n} + n2 < 100 and of the form At + 2 there are
two instances where we can construct an O(n, 2) by either Theorem 7.1 or
Theorem 9.1. They are 22 and 94, which can be decomposed in two
different ways,

22 = 19 + 3 or 17 + 5
94 = 91 + 3 or 89 + 5.

10. Continuation of research on the method of sum composition.
The results obtained in this paper suggest at least two directions for
the continuation of this research.

For the first direction the results of this paper are considered as a first
step in exploring the problem of construction of Latin squares and ortho-
gonal Latin squares via sum composition. It seems obvious that investi-
gating the problem of construction of orthogonal Latin squares for in-
creased values of n2 will become overwhelming and uninspiring unless a
new method of attack can be found. One possibility may be to choose an
especially symmetric pattern which could be generalized to some sets of
values of n2, say, of specific structure. It seems plausible that for a fixed n2,
one pattern could do for all primes conveniently changing the value of the
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function (1 — x)/(x — y). This amounts to giving up the assumption xy =
1. In fact that was done in order to complete the case O{nx + 3, 2) for all
primes.

There is another important reason to consider cases for which xy Φ 1.
O{n, i) sets with t > 2 must allow cases of O(n, 2) constructed under the
assumption xy Φ 1. In such cases the assumption Σsi = Σtt, = c must
substitute the equality xy — 1. It is possible that one could enumerate the
solutions of O(n, 2) as a function of c. This would enable an exhaustive
search for mutually orthogonal Latin squares with or without the assump-
tion xy = 1. It may be worthwhile to illustrate this idea by an example
considered in [8]. There an exhaustive search was made for all sets of 0(7 +
3,2) with S = {0, 1, 3} , T = {2,4, 5} with or without the condition xy = 1.
In this case Σsέ = Σ/, = 4 (mod 7). It is easy to show that for each of the
distinct elements of GF(7) there is just one available pair of {S, T] for
consideration. Hence, in total, consideration of seven pairs exhausts all
possible cases. For/? — 7 all the sets are difference sets. The question now
arises: for which fields does this property hold, which could reduce the
search even further?

Concerning the second direction the following remarks appear sug-
gestive. If B(x) and B(y), x — y~ι based on Galois field GF(n) form an
O(n, 2), then it is impossible to construct an O(n + 1, 2) by sum composi-
tion of this O(n, 2) and a trivial pair of orthogonal Latin squares of order
unity. This forces S to be equal to Γ, which can be seen by the fact that S
and Γeach contain only one element, say s and /, respectively. Now kv (s, t)
= (yt + s)(l + y)~~1 will be equal to s or / only if t = s, but we require S Π
T' = 0. However, with some modifications of the method of sum compo-
sition this can be done. Consider the following example:

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

1 3 6 8 7 2 0 5 4 2 5 7 6 1 8 4 3 0

2 6 7 5 1 4 8 3 0 5 6 4 0 3 7 2 8 1

3 8 5 4 0 6 2 1 7 7 4 3 8 5 1 0 6 2

4 7 1 0 2 3 5 8 6 6 0 8 1 2 4 7 5 3

5 2 4 6 3 8 7 0 1 1 3 5 2 7 6 8 0 4

6 0 8 2 5 7 1 4 3 8 7 1 4 6 0 3 2 5

7 5 3 1 8 0 4 62 4 2 0 7 8 3 5 1 6

8 4 0 7 6 1 3 2 5 3 8 6 5 0 2 1 4 7.

These two Latin squares of order 9 are obviously not orthogonal.
However, all the cells on the main diagonals, or parallel to the main
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diagonals, form common parallel transversals. Now project the underlined
transversal in each square on the tenth row and column and replace the
corresponding cells with 9. Finally, add a 1 x 1 Latin square in the lower
right corner to obtain

9
1
2
3
4
5
6
7
8

0

1
9
6
8
7
2
0
5
4

3

2
6
9
5
1
4
8
3
0

7

3
8
5
9
0
6
2
1
7

4

4
7
1
0
9
3
5
8
6

2

5
2
4
6
3
9
7
0
1

8

6
0
8
2
5
7
9
4
3

1

7
5
3
1
8
0
4
9
2

6

8
4
0
7
6
1
3
2
9

5

0
3
7
4
2
8
1
6
5

9

0
9
5
7
6
1
8
4
3

2

1
5
9
4
0
3
7
2
8

6

2
7
4
9
8
5
1
0
6

3

3
6
0
8
9
2
4
7
5

1

4
1
3
5
2
9
6
8
0

7

5
8
7
1
4
6
9
3
2

0

6
4
2
0
7
8
3
9
1

5

7
3
8
6
5
0
2
1
9

4

8
0
1
2
3
4
5
6
7

8

9
2
6
3
1
7
0
5
4

9

The reader can check for himself that these Latin squares of order 10 are
orthogonal. Note that these two orthogonal Latin squares have many
common transversals all sharing the lower right corner cell. These common
transversals can be located on the diagonals parallel to the main diagonal.
It is easy to show that this 0(10, 2) is not isomorphic with our previous
0(10, 2) derived by composition of an O(7, 2) and an O(3, 2).

The preceding example indicates a possible modification of sum
composition method, viz, starting with non-orthogonal Latin squares. But
of course they should have certain combinatorial properties and this matter
is under investigation.

Before closing this section note that sum composition with Latin
squares of order unity has two important consequences. First, there is no
bound on the number of mutually orthogonal Latin squares of order unity.
Second, in the process of sum composition only two common parallel
transversals get lost for each composition. These characteristics are very
important if one hopes to construct a set consisting of more than two
orthogonal Latin squares by the sum composition method.

We wish to thank Mr. W. Allard for searching, with the aid of a high
speed computer, for roots of fourth degree equations in some GF(p).
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