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CLOSURE THEOREMS FOR AFFINE
TRANSFORMATION GROUPS

R. P. GOSSELIN

Let W be a closed subgroup of the group of linear transfor-
mations of Rn onto itself. Let hx denote the image of the point x
under the transformation Λ, and let $ be the transpose group of
W: i.e. its elements are associated with matrices which are the
transposes of those in 2?. For/in L2(RΛ)9 let Cl{f;2P XRH}
denote the closure in the V norm of the linear span of functions of
the form/(Ax + t) where Λ is in %f, and t is in Rn. Since this
space is translation-invariant, it is of the form L2(S): i.e. the set of
V functions r(x) such that the nonzero set of r, the Fourier
transform of r, is, except for a set of measure zero, included in 5. In
the first theorem a precise description of 5 is given, and in the
second, a function is constructed in a natural way whose translates
alone generate the given space.

S is roughly the orbit oίN(f), the nonzero set of/ under the group

However a difficulty arises in that N(f) is determined only to within a set of
measure zero, and $ may transform sets of measure zero into nonmea-
surable sets. For example, when the rotation group of the plane acts on a
nonmeasurable linear set (of the x-axis, say), a nonmeasurable planar set
results. Hence some care is required in defining S. Let Ef denote the set of
points of density (one) of N(f). Since the exceptional set of N(f) has
measure zero, every point of Ef has density one with respect to Ef. The
orbit of the set Ef under the group & will be used as S, and as part of our
first theorem, it will be shown that S is measurable.*

The fact that closed translation-invariant subspaces of L2 are of the
form L2 ($) is due to L. Schwartz [3]. The characterization of Cl{f; Zf X
Rn} in Theorem 1 reduces to the familiar Wiener theorem when W
consists only of the identity and has been proved by S. R. Harasymiv for If
spaces and for general distribution spaces [1, 2] when %f is the diagonal
group. The second theorem involves the construction of a function p9

arising naturally from/by an integration over $ , such that the translates
of/? generate the same space: i.e. such that Cl{ρ; Rn} — Cl{f; %f X Rn }•
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2. The closure theorem.

THEOREM 1. Let 2? be a closed group of linear transformations ofRn

onto itself with transpose group $ . For fin L2 (Rn), let Efbe the set of points
of density ofN(f). Then
(i) S = $ (Ef) is measurable, and
(ii) Cl{f;3P χRn}=L2(S).

For x in & (Ef), let g = g(x) be any element of ζf such that x is in
g(Ef). For such a point, there exists δ = 8(g) > 0 such that, if Br(x) is the
ball of radius r about x as center, then

m{Br(x) Π £(2^)} > 2δm{Br(x)}

for sufficiently small r. Here m denotes Lebesgue measure. Hence Br(x) Π
g(Ej) contains a closed set Ar (x) such that

m{Ar(x)}>δm{Br(x)}.

It may be assumed that x itself belongs to Ar(x). The sets Ar{x), r < r(x\ x
ine^ {Ef), constitute a family of closed sets covering^ (Ef) in the sense of
Vitali. Thus there exists a countable subfamily covering $ (Ef) except for
a set of measure zero. But since each set^4r(jc) is contained in $ (Ef), then
$ (Ef) is measurable. This completes the proof of part (i).

For reference below, let A(

r

n)(x), n = 1, 2, ... denote the countable
subcover, and let {gn} denote the corresponding sequence in $ . Thus the
difference set

(1) S(Ef) ~ KJ gH(Ef)

is of measure zero.
Now the proof of part (ii) of the theorem follows standard lines. In

particular, if A: is orthogonal to the space C/{/; 3^ x Rn}, then
k(x)f(gn x) = 0 for every gn of the sequence in (1). Hence k must vanish for
almost every point of & (Ef) = S.

3. An equivalent space of translates. Since L2(§) is translation-in-

variant, it is generated by φe translates of any function/? such that the sets
N(ρ) and S differ by a set of measure zero. Such a function arises naturally
from an integration with respect to Haar measure on $. Consider f(gx) =
f(g, x) as a function on the product space $ x R where the measure
associated with $ is μ, the right invariant Haar measure, and the measure
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associated with Rn is m, Lebesgue measure. It is shown below thatf(gx) is
measurable on this product space. Now let β be a strictly positive measur-
able function of & such that \g~ι \x/2β(g) is in L1 ( & ). Here \g~11 denotes
the absolute value of the determinant associated with g~\ Assuming the
measurability of the function/(gx), let us consider the function

(2) P(χ) =S9\Άgχ)\β{g)φ(g).

In view of Minkowski's inequality,^ is in L2(Rn), and its inverse Fourier
transform,/?, is the one we wish to consider in our second theorem.

THEOREM 2. Let f be in I? (Rn) and S the orbit under $ of the set of
points of density ofN(f). Then
(i) f(gx) is measurable on$ X Rn, and
(ii) the function p, with Fourier transform p defined by (2), is in L2 (Rn), and

2

Let 0 be an open set in the complex plane. Then (f)~ι(#) is
measurable in Rn and can be expressed as B U C, where B is a Borel set and
C has measure zero. Let a be the map from ζf x Rn defined as a(g, x) = gx.
We have

Since a is continuous, a~~λ (B) is a Borel set in & x Rn. It is thus enough to
prove that a~x(C) is of measure zero: i.e. that a"1 is absolutely continuous
as a set function. Let K be a compact set in & , and let D be an open set
containing C such that m(D) < e = e(K). A routine calculation shows that

(μxm){cc-ι(D)n(KxRn)} < j

Thus the outer measure of a~\C) Π (K x Rn) is zero. Since K is an
arbitrary compact set of &, a~ι(Q is measurable and of measure zero.
This completes the proof of (i).

It has already been noted that p, and hence p9 are in L2(Rn). To
complete the proof of part (ii), it is enough to show that N(p), the nonzero
set of/?, and S differ by a set of measure zero. Let D be the set of points x
such that, for any neighbourhood of x, JV {X\

The sets D and N(p) differ by a set of measure zero so that it is enough to
show the same for D and S.
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Our first step is to show that D is invariant with respect to $ : i.e.

(3) gD CDforallgof^.

Since $ is a group, this is equivalent to saying that gD = D for all gof^.
It is clear that S is invariant in this same sense. Since the complement of an
invariant set is also invariant, and since the intersection of two invariant
sets is invariant, it will follow from (3) that both difference sets, S ~ D and
D ~ S, are invariant. The proof is then completed by integration of/? over
these sets.

Let x be in D9 g0 in $, and c > 0. Since μ is right invariant Haar
measure, it follows that

By the continuity of g0, there is a δ > 0 such that if |JC — z\ < δ, then
\go(x — z)\ < € so that the above integral exceeds

<4> l*ol

Since β(ggfι) > 0 for all g of & , and since

0

the integral of (4) must be positive. Thus g 0* is also in D, and so D is
invariant in the sense of (3).

Let A = D ~ 5, which, in view of (3), is invariant. Let q be a strictly
positive function of L2(Rn). Then

fAP(x)q(x)dm(x) = i9β(g)4μ(8)iA\Άgx)\9(x)dm(x).

If this integral is positive, then for some g of $ , g/1 Π fy has positive
measure. Since gA = A, and since Ef C & then Λί (Ί S has positive
measure. Since the latter is impossible, the integral is zero. Since #(JC) > 0
for all JC, and since p(x) > 0 for almost every x of A this implies that A = D
~ S has zero measure.

Let B = 5 — D. Then

o =
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Since β is a strictly positive function, then for almost every g of $ ,

(5) ίgB\f(x)\dm(x) = 0.

Since B is invariant, (5) is true for all g of & , with g£ = A If m(5) > 0,
then for some gn of the sequence in (1), m(B Π gnE/) > 0. By the
invariance of B, m{B Π Ef) > 0. But this contadicts (5) with g taken as the
identity.
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