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MORE ON PHRAGMfiN-LINDELϋF
FOR FUNCTION ALGEBRAS

I. GLICKSBERG

Earlier Phragmέn-Lindelόf-like results for a function algebra
A are extended to deal with possible unbounded behavior of an
Λ-holomorphic function near a zero set rather than a peak set.

The present note is intended to supplement an earlier one [21 in which
Phragmέn-Lindelof arguments were applied to a uniform algebra A, with
the usual behavior near oo replaced by behavior near a peak set. Here we
shall exploit the fact that an arbitrary zero set can be converted to a peak set
for a related algebra by slitting the spectrum along the inverse of an arc,
imitating familiar techniques in the plane. We assume the reader is familiar
with [2] and use much of the same notation.

Let A be a uniform algebra with spectrum MA and l e t l C M C MA be
two closed boundaries for A (closed sets containing the Silov boundary 3^
then). We shall say local maximum modulus holds (for A) on M relative to
X (or simply, that (M, X) satisfies l.m.m.) if each m G M \X has a compact
neighborhood U C M\X for which \a\ < sup |α(31/)| on t/, all a E A. A
fundamental observation about [2] that we shall need is that
its results hold with MA and 9̂  replaced by such a pair M, X. (There is one
point in the proof of [2, Th. 3] where M seemingly must be MA: that X there
maps into M (p. 404, 1.21). But in fact this follows trivially from the fact
that X is just the closure of M in MBo.)

In all that follows we shall let Jo be a simple closed arc joining 0 to oo in
the Riemann sphere, with / = Jo\{O) > a n d shall assume1

(1) βj = sup {arg w — arg W\ w, w' E /} < oo.

βj plays the role of determining the allowable order of growth in our
Phragmen-Lindelδf-like results. Note that our initial hypothesis on l.m.m.
is automatically satisfied if M — MA in all our results.

THEOREM 1. Suppose local maximum modulus holds on M relative to
X, f E ^X^l" 1 , g is continuous on M\f~\θ)y A-holomorphic on
M\(ΓXΦ) U JQ, and, for some k>0 and β, 0 < β < π(2π + βj)'\ we
have

(2) gQxpl —) bounded on M\f~l(0) .



26 I. GLICKSBERG

If\g\ < Kon{X Uf-\J))\f-lW), then \g\ < KonM\f~\0).
THEOREM 2. Suppose (M, X) satisfies l.m.m., f E A\A~\ g

is bounded and continuous on M\f~l(0), A'holomorphic on
M\(f-ι(0)UX),and

(3) c = lim g(m)
f(m)-0

mef-](J)uX

exists. Then g has an extension in C(M) constant onf~l(0), which, if A is
X-relatively maximal, lies in A,

Here "^-relatively maximal" means no properly larger subalgebra of
C{M) can have X as a boundary. More generally, the boundedness ofg can
be replaced by the hypothesis of Theorem 1. Of more interest in applica-
tions is the following result.

THEOREM 3. Suppose (M, X) satisfies l.m.m.,/ G A\A~\ g is con-
tinuous on M\f~\0), A-holomorphic on M\(f~l(0) U X), bounded on
X\f-\Q), and satisfies (2). If

(4) \g(m)\ < K |log|/(m)||, m G / ̂ J),

then g is bounded and^sup \g{M\f~\0)) \ = sap\g(X\f'ι(0))\.
Finally, if we have a finite limit

(4') c = lim g(m)
()

then g has a continuous extension to M, ss c on f~\0), which lies in A if A is
X-relatively maximal.

As an application we have2

COROLLARY 4. Suppose f and g are holomorphic on an open set U in
Cn, and

I < tf|log|/|| on Γ\J).

Then g/fhas an extension holomorphic on U.

Thus, in particular, boundedness along the one parameter family of
varieties defined by/and / implies the boundedness of g/fi
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Our choice of the right side of (4) is somewhat arbitrary; the really

relevant condition is simply that

(4") \g(m)\\f(m)\<-+0 as /(/*)-0,/w in f~ι(J)

for every ε > 0, as will be seen in the proof.

Let/be as in Theorems 1 -3. Replacing/ J by eiφf, eiφJ if necessary, we

can assume that a branch of arg w can be defined on C \ / o which varies

between TΓ + βj/2 and —π — βj/2 in C \ / o We use this branch of arg to

define powers/α(0 < a < 1) of/on M X / ' ^ J ) which are^Λiolomorphic

on M\f~](JQ), and we now let MΛ be the spectrum of the closed self-

adjoint subalgebra of C(M\f~ι(J)) generated by A and the/α, so that

each a G A (and each/") has an extension αin C(MA) while M\f~ι(J)

is dense in MΛ. In fact the dual p to A —> C(MA) maps MA into M (because

p(MΛ) must lie in the closure of M in MA), and provides an inverse to the

(trivially) continuous inclusion of M\f~ι (J) into MΛ. Thus M\f~ι (J)

is imbedded homeomorphically in MΛ, and in fact p is 1-1 over

MX/" 1 (J) (so that M X / " 1 (/0) = ρ~ι(M\f-χ(J0)) is an open subset

of MΛ): for if ρ(x) G M\f~](J) then our branch of z —* za is continuous

near/(p(x)), and so if xδ-» x, xδ G M^f~ι (J), then/(xδ)
α-*/(p(x)y\ or

fi(Xδ)—fi(p(x)), whence/(x) = f*<j>(x% and, since^(x) = φ(x)) -

)> n o element of C(MA) can distinguish x and p(x), and c = p(x) G

In particular, p is 1 — 1 overf~l(0) C M\f~ι(J); we can thus

identify/-^(0) and/" ] (0), for if x G MA and 0 = /(x), then since/ G Λ,

/(PW) = f(χ)> s o PW E / ~ l (0) and thus p(χ) = x Since /

fi-i(0) =/-H0) as well.
Now let JB be the closed subalgebra of C(MA) generated by A A and

the A For x G MA\p~\f~l ( Jo) U X) = p ^ M M J - ' ί / o ) U X)) =

M\(f~ι(J0) U X) we have a compact neighborhood ί/ of x in

M\(f~ι(J0) U I ) o n which all the /α are uniformly approximable by

elements of A (because the power series for za about/(x) — f(p(x)) has

radius of convergence \f(x)\). Hence \b(x)\ < sup |6(3ί/)| by local maxi-

mum modulus for A on M relative to X and thus local maximum modulus

holds for B on MA relative to ρ~ι (/ ~ \ Jo) U X); in fact we see the least set

forms a boundary for B. Because arg w varies between π + βj/2 and - π —

βj/2 on C\/, arg fa(m) lies between ±a(π + βj/2) for m G

MX/" 1 (Jo), and the same is thus true of arg fi on MA\f~l(0) =

M Λ \/- 1 (0) , which lies in the closure of M\f-](JQ) =

(MX/" 1 (J))\f~] (0) in MΛ. Consequently for α(ττ + β,/2) < I4w (or a



28 I. GLICKSBERG

< *τ(2τr + βj)~ι), b = 1 -fi/n peaks o n / " 1 ^ ) = φ)'ι(0) for n large;
choosing a larger than our β in Theorem 1, for γ = a~ι β < 1 we have

|1 - Zf = l/ιιγ|/T = l/ιιγ|/Γ = l/ny|/|',and(2)says

g expί ~^—-) is bounded on M\Γι(0),

in particular then on MA\p" 1(/~ 1(/ 0) U X). Consequently [2, Th. 1]
applies to the continuous function g ° p on MΛ \f~ι(0) (which is 2?-ho-
lomorphiconΛfΛ\p"1(/-1(/0) U JO and bounded on p'ι(f^ι(J0) U

to assert that g © p is bounded by suρ|g ° ρ(p~ι(f~ι(J) U Jf))| =
,̂/) U J0|, yielding the assertion of Theorem 1.

To obtain Theorem 2 we have to first note that our g, Λ-holomorphic
on M\(f~ι (0) U JO, is C + /4-holomorphic there: for m in that set we
have a compact neighborhood U with 0 ^ -€ (f(U)) (the closed convex
hull) and for which, for ε > 0, there is an a G A with \g — α| < έ/2 on C/.
But l//is uniformly approximable by polynomials in/on U since 0 0

4 (/(ί/)), and thus we have 6 G Λ with |(1//) - fc| < ε/2||/|| ||α|| on U9 so
that |g - abf\ <\g - a\ + \a - ab/\<e on C/.

As a consequence we can replace A by its closed subalgebra of all
elements constant o n / " 1 (0), and in effect reduce/~ ! (0) to a point; doing
this first and constructing our algebra B on MΛ as before we have/ " ] (0) =
f~ι(0) a peak point for B, and thus a zero set lying in the Choquet
boundary. By (3), if we extend g ° p by giving it the value c on/" 1 (0), its
restriction to the boundary p~ ! (/" ι(J 0) U X) for Z? is continuous, and the
resulting function is 5-holomorρhic on MA\ρ~ι(f~ι(J0) U JO and
continuous on ΛfΛ\/""1(0); thus3 [2, Th. 3] applies to assert g° p, as
extended, is continuous on M Λ , which of course means g, extended to be c
o n / " ! (0), is also continuous on M with/" ι (0) reduced to a point, hence on
M, as asserted.

The final assertion follows from the extension [1, Th. 3.2] of Radό's
theorem since g is ̂ 4-holomorρhic on M\(X U g~ι (c)) (noting that 3^ can
be replaced by a larger boundary there, with the interpretation of
"relatively maximal" made in Theorem 2).

As mentioned, we can combine Theorems 1 and 2 to obtain

COROLLARY 5. Suppose (M9 X) satisfies Lm.m.,f G A \A " \ and g is
continuous on M\f~l(0), A-holomorphic on M\(f~ι(ϋ) U X) and (2)
and (3) hold. Then g has an extension in C(M) constant onf ~ ι (0), which, if A
is X-relatively maximal, lies in A.
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Our proof of Theorem 3 depends on Theorem 2. We can assume | | / | |
< 1, and will let \\g\\x = suρ|g(Jir\/-1(0))|. Because of (4) and the
boundedness of g on X\f~ι (0) we have that

(5) \f(m)\'\g(m)\-*0 as l/WHO^G/Λ^UI,

and thus Corollary 5 applies t o / G B\B~\ MA, p " 1 (X U / - 1 (/<>)) and
the function (g ° p) for which (2) holds on MA X / " 1 (0) while (3) holds
because of (5); and of course it is IMiolomorphic on MA \[f~ι(0) U
p" 1 (/- 1 (/o) U X)]. We conclude that

(6) f(g° P) is bounded by its bound on the ^-boundary

(7) has a continuous extension to MΛ.

Because of (6) it suffices to know

(8) \Γ\\g\^\\f\\χ\\g\\χ on f-\j)

for a sequence of ε —» 0. For then fε(g° p) is bounded by 11/|ft ||g|\x on M Λ ,
and letting ε -> 0 we get \g(ρ(x))\ < | |g| ̂  for all x in M Λ with^x) Φ 0, i.e.
for x in M Λ X / " 1 (0), which yields the first conclusion of Theorem 3; the
second then follows from Theorem 2.

It remains then to show (8) holds for a sequence of ε—* 0. From the fact
((7) above) that fε - (g ° p) has a continuous extension to MA, 0 o n / " 1 (0),
we conclude that | f (g ° p)|(x) — 0 asf(;c)-^ 0, x G / " 1 (e/ φR+), R+ = (0,
oo), and thus that \βm)\ε \g(m)\ -* 0 as/m) -* 0, m G Z " 1 (e/φR+ ). Now
replacing / in our considerations by an arc such as eiψ R+ will change our/6

(and our M Λ ) but does not of course change | / ε | = | / | ε thus it suffices to
know (8) with / replaced by some one arc e/φR+ for ε = εy -• 0, and if (8)
holds for one such arc it holds for all others, by Corollary 5 again, or, in
effect by (6).

Now suppose (8) fails for all positive ε < ε0. Then for each such ε and
each φ G R,

(9) Q φ = sup{|/(m)Πg(m)| :βm) E e*R+ } > | |/ | |^ | |g |U,

and in fact Q ψ is independent of φ, since it is also sup{|/(m)|e \g(m)\: m G
M\f-\ΰ)}.
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We next observe that Ίϊh-p°f. where/? is a polynomial with/>(0) =

0, then \h(m)\ε\g(m)\ — 0 as/(m)-» 0,/(m) E e/ίrR+ (since \f(m)\°'\g(m)\

— 0 for all ε' > 0). In particular if we choose/? monotone on (-1,0) so that

/ r V R + ) =/- 1 (e*R + )Λen

|Λ(m)|β \g(m)\ — 0 as Λ(m) — 0, m ε A"1 (eftrR+);

this is the case if p(x) = χ2/2 + x for example, since x2/2 + x= - r < 0
and - 1 <x<0if f ;c = - 1 + \Λ - 2 r a n d O < r < 1/2, so that (-1,0)
Π /r ' (-oo, 0) = (-1, 0), and thus h^i-oo, 0) = f~ιp~ι(-oo, 0) =

1

So let/?(x). = x + x2/2, h=p°f. Since p~' (0) meets the unit disc in C
at precisely 0 (and | | / | | < 1), /r ! (0) = / " ! ( 0 ) as well, and thus if (8) holds
for h in place of/for ε = ε; —»0 we again could conclude that g is bounded
on M\h~ι (0) = M\f~ι (0), which yields Theorem 3 as before. So now
for h we must have, as in (9)

(10) q - Q φ = suV{\h(m)\ε\g(m)\: h(m)
where Ce>φ = Cε is independent of φ for all positive ε < e{. But in fact Q φ =
Cε for ε < ε0 in (9) implies Ce,v Φ Q0forε < m ^ 0 , e ! ) : for/?(x) = x + *2/2
has the property that |/?(x)| > |JC| for x.> 0, |/?(JC)| < |JC| for - 2 < x < 0,
and thus, since the suprema in (9) and (10) must be assumed for/(m) and
h(m) in eiψ (8ε, 2), for 8ε > 0, we have

so that (10) must fail, and (8) holds for h in place of/for some εy —• 0
completing our proof of Theorem 3.

One case in which (2) holds automatically is that dealing with the ratio
of elements/ g of A: that \g/f\ < c exp ( l/ | / | ε ) is a trivial consequence of
the boundedness of txlze~l for t > 0. Thus from Theorem 3 we obtain

COROLLARY 6. Suppose (M, X) satisfies Lm.m.,/ G A\A~\ g is
continuous on M\f~ι (0) and A -holomorphic on M\(f~ι (0) U X), while
g/fis bounded on X\fι (0). Then

(11) | | | < t f | l o g | / | | OΛ/^CT)

implies \g/f \ is bounded by its bound over X\ f " ι (0). Moreover, if instead of
(\\)we have a finite limit
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c- lim p-
/(«)-o Am)

meXκjf~\j)

then g/fhas an extension in C{M), s c onf~l(0), which lies in A if A is
X-relatively maximal

Corollary 4 is one consequence. Indeed suppose/ g are holomorphic
on an open set U C C\ \g/f\ < #|log|/| | onf~l(J). For z° E / - ! ( 0 ) we
choose coordinates so that on a neighborhood V of z°, f = /?</, where 9
doesn't vanish on Fand/? is a Weierstrass polynomial, regular in zn9 say.
Then as usual for ε > 0 we have an δ > 0 for which \zj — Zj | < δ,y < w —
1, implyp(zly ... , zπ_i, z) = 0 only if |z| < ε/2, where we can assume the
polycylinder Δ = {z : |z7 — z° | < δ,y < w - 1, |zπ - z° | < ε} lies in F. We
now let yί = i^Δ), the uniform algebra of functions continuous on A and
analytic on Δ°, so that MA = Δ, and 9̂  is the torus (z : |zy — z] \ = δ,y < «
— 1, \zn — z°n I = ε}, which we take as our X. Since local maximum modulus
holds for (MA, dA), and 3^ Π/" 1 (0) = Φ so we have g/f bounded on 3^,
Corollary 6 applies to show g/f is bounded on Δ, and so has a unique
holomorphic extension to Δ° thus g//has an extension holomorphic on U.

In the context of Corollary 4 it is rather obvious (from the fact that/is
an open mapping) that our bound over the set/"* (J) implies that/" ι (0)
C g~ι (0), which the conclusion obviously also implies. (And of course in
Corollary 6 it also follows that/" 1 (0) C g 71 (0), but this does not seem
quite so obvious.)

COROLLARY 7. Suppose (M, X) satisfies l.m.m.,/ e A \A " \ and F =
/- ι(0) ΓΊ [X Uf-ι(J)]~. ThengG A, g{F) = 0 imply g(f-\θ)) = 0.

For g(F) - 0 says (4') holds for g, so that, by Theorem 3,
g\{M\f~x(0)) has an extension in C(M), 0 o n / " 1 (0), and thusg(df~ι (0))
= 0. Butg = Oon/" 1 ^) Π X C Fas well, and since 3/" *(()) U (/" !(0) Π
X) is a boundary for 4̂1 / ~ι (0) by local maximum modulus, g(f ~ι (0)) = 0.

Along somewhat similar lines, we note the following extension of the
basic lemma of [1], which follows from it and our construction of MΛ.

THEOREM 8. Suppose (M, X) satisfies l.m.m. for A andfE: A. For each
neighborhood V off~l(0) in X U f~ι(Jo) there is a neighborhood U of
f~ι (0) in Mfor which g G A andg — QonV imply g — QonU.

Constructing our algebra B on MΛ, there is a fixed neighborhood VA
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of our peak setf~l(0) =f~ι(0) in the boundary p" 1 (/-'(/<>) U l ) o n
which ^vanishes for each such g G A, whence by [1, 2.1] there is a
neighborhood Woΐf~ι{Q) in MA on which each ^vanishes. But since
ρ(MA\W°) is a compact set disjoint from/" 1 (0) in M we have a neigh-
borhood Uof/"1 (0) in AT with t/ D p(Af Λ \ W°) = Φ, and since

p(Λ/Λ) = p ( M Λ \ ^ ° ) U

and

Finally, since all our g's vanish on a fixed neighborhood K Π / ~ ! (/0) of
/^(O) in f'ι(J0) and g(p(W0)) =&JF°) = 0, we can shrink our U to
obtain a neighborhood of/"1 (0) in Af for which g{U) = 0 for all g E 4̂
satisfying g(F) = 0.

In particular, Theorem 8 says certain sets in M cannot be zero sets: if/
is a closed nondegenerate arc in C andf~ι(Γ) Φ Φ and misses 3^ , then
/ ~ι (I) Φ g~ι (0) for any g G A. Any g<ΞA vanishing on/ " x (I) necessarily
vanishes on an open neighborhood of that set by Theorem 8, whence
g-ι (0) -f~ι(I) implies/" ι (/) is open and closed, and so necessarilv meets

Remarks (Added June, 1974)

1. We can improve this last observation and Theorem 8: Suppose (M,
X) satisfy Lm.m. for A. For a closed non-degenerate arc I in C andf g G A
with Φ Φf~\l) C g~ I(0)\9 / ί we haveg s 0onf~\W), where Wis the
component of I in C\f(dA\g-{(0)°).

For convenience take 0 E /,/ " ι (0) Φ Φ. We have g = 0 near/ " * (/)
in M by Theorem 8 (applied to subarcs), and so we can form the closed
subalgebra B of C(M\g~x (0)°) generated by A and 1// Moreover since
the elements of B are yί-holomorphic, by local maximum modulus we
know

as in [1]. Because any point of Θ A ^ V W ) would thus lie in the
boundary of g~ι(0) in MXg-^O)0, which is impossible by [1, 2.2], we
conclude that dB C dA\g~ι (0)°.

Now if W Π f{M\g~x (0)°) φ Φ (so Wmeets the spectrum spβ/of/
relative to B) then since 0 £ sp^/ *F must meet the boundary of
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which lies iaf(dB). Since this implies W Π f(dA\g'ι(ΰf) Φ Φ which
contradicts the definition of W, we conclude that W Π f(M\g~ι (0)°) = Φ
so that/" 1 (W) C g~ι (0)°, yielding our assertion.

Note that the same argument applies if we suppose instead that Φ Φ
f~ι(0) C g~ι(0)°\dA moreover the role of g~~ι(0) can equally well be
assumed by [m G M : lim tfrt(m) = 0} where {an } is a bounded sequence
in A, if one uses [1,2.5] in place of [1,2.1] to provide the analogue of [1,2.2].

Actually the fact that Theorem 8 provides a fixed neighborhood U of
f~x (I) in M on which all g = 0 o n / " 1 (/) must vanish provides a further
strengthening in case M — MA, by a very similar argument.

THEOREM 8'. Suppose K is nondegenerate compact connected set in C,
/ E^A, and H =f~ι(K) is a hull-kernal closed subset ofMA. Then f t ι (K)
—/(//) contains any component WofC\f(dA) which it meets.

Since MA is the spectrum of A and 3 sp / C f(dA), we know W C
hMA\dA). So if W\ff~ι(K) = W\K Φ Φ then its boundary in Wis
nondegenerate, and so has a nondegenerate component which, necessarily,
is arcwise connected. The component lies in dK of course, so dK contains a
closed nondegenerate arc /, / C W. By Theorem 8 (applied to subarcs) we
have a neighborhood U of f'1 (/) in MA for which g G A, S = 0 on f~ι

(Γ) implyj^ U) = 0, and thus U lies in the hull of the kernel ofH=f~ι (K),
i.e., in //.

But / " ι (I) C Uimplies/ ^ι(I + εD)C Ufor all small ε > 0, where D
is the closed unit disc in C. Taking ε so small that / + εD C W C
f(MA\dA), we have

despite the fact that / C dK, our contradiction, showing W Cff'ι(K) =

Note that the result of course fails trivially if K is degenerate. As a
special case we have the fact that any connected hull kernel closed subset H
ofMA\dA is not the complete inverse of its image AT under any element/of
AA, unless/is constant on H. (The same applies to any continuous Λ-ho-
lomorphic function h on MA in place of/since the algebra generated by A
and h has the same Silov boundary and spectrum [3, 14.9].)

There are some interesting special cases. For example, since any in-
terpolation set H is hull kernel closed (as the spectrum of the quotient
algebra A\H = C(H)\ as all its closed sets must also be,/εΛ and/(#) Π
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f(MA\H) = Φ imply f (H)\ f(3) is totally disconnected. Indeed if K is a
nondegenerate compact connected subset of a component of/(//)\ /(3)
then/" * (X) is hull kernel closed, while/"/11 (K) misses /(3), and so contains
at least one component of C\f(3), by Theorem 8', which of course implies
the compact set K meets f(d), our contradiction. Thus in particular, no E
A can map an interpolation set Hinto a nondegenerate continuum K C C and
MA\H into C\K unless K C f(d).

2. As we observe in footnote 3, we only needed a very weak form of [2,
Th. 3] in proving our Theorem 2, and of course there are stronger results
which more fully utilize that earlier result. For example,

THEOREM 2'. Suppose (Λf, X) satisfies l.m.m., f E A\A"\ g is
bounded on M, continuous on M\/" ι (0 ) , and A-holomorphic on
M\(f~l(0) U X), while g\(f~ι(J0) U X) is continuous andf~ι (0) carries
unique Jensen measuresfor points in f~*(0). Theng E C{M),andg E A if A
is X-relativelγ maximal

Thus in effect we replace (3) by continuity of g on f~ι(J0) U X,
provided /~ !(0) is rather special. In this form we require a slight im-
provement of [2, Th. 3]; note [2, p. 405, next to last paragraph] that
uniqueness of Jensen measures is an adequate replacement for the
uniqueness used there. For the proof of 2' one constructs B as before but
without reducing/"1 (0) to a point. Then/" 1 (0) appears as a peak set for
2?, and any measure on X representing a point oΐf~ι(0) on B must be
carried by/" 1 (0); thus the points of/"1 (0) have unique Jensen measures
(since such measures are necessarily Jensen for A) and [2, Th. 3] applies to
assert g E C(M). Finally, our hypothesis implies f~{(Q)\X is all boun-
dary, since otherwise we have a nonvoid open U therein, and by l.m.m. for
m E (/we have a Jensen measure carried by 3U C /"* (0)\{m}, contra-
dicting our uniqueness hypothesis. Since /~1(0)\A r is all boundary the
arguments of [1] show the subalgebra of C(M) generated by A and g has X
as a boundary, whence g E A if A is X-relatively maximal.

Of course our hypothesis on/~ x (0) is quite strong, so it may be worth
noting that the result applies whenever g is continuous on a quotient of
/ " ! (J o ) U X obtained by injecting it in the spectrum of a subalgebra A 0 of
A, provided the image of/" '(0) carries unique Jensen measures for AQ. In
particular, forΛ0 the closure of C + / 4 , Theorem 2 reappears.

3 Next we want to point out a consequence of our construction which
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shows the range of/near certain subsets F of/~1(0)\A r cannot be too
small; for the special case of M = MA and F = f~] (0) C Aί\X it follows
directly from Theorem 8 and the Silov idempotent theorem.

THEOREM 9. Suppose (M, X) satisfies Lm.m., f G A\A~ι, F in
f-l(0)\X is a peak set for the uniform closure (A\f~l(0))- ofA\f'\0\
while FΠ df~ιφ) Φ Φ ifM Φ MA. Then for any e > 0 and neighborhood V
of Fin M\X, no curve joins 0 to {z: \z\ = ε} in 0 U (C\/(F)) .

In particular this applies to any peak point for (A \f~ι (0))~ lying off X
(and consequently in 3/"1 (0) by l.m.m.). In fact if M = MA it applies to
any component Foϊf ~1 (0) which misses X, since any neighborhood VoϊF
contains another, W9 with/ ~ * (0) Π W open and closed in/ ~x (0), and so a
peak set for (A\f-l(0)y by Silov's theorem (since/~ !(0) in MA is the
spectrum of this algebra). Thus our result applies to the neighborhood Fof
Fo =f~ι (0) Π Wto yield the conclusion.

Now suppose our result fails. Then we can extend our curve to a Jo

joining 0 to oo, with/(F) Π {z : \z\ < ε} Π Jo = {0}, and then slit M and
construct our algebra B as before, making/"^(O) into a peak set for B. But
recall that p" 1 ( M X / " 1 (J)) = M\f~ι (J) so that p ( M Λ \ M ) Cf~ι(J).
As a consequence some neighborhood W C F Π / " * {z : |z| < ε} of Fin M
remains a neighborhood in M Λ : otherwise a net {mδ} in MΛ \M con-
verges t o i G F C / - 1 (0), whence ρ(rnδ)-» ρ(x) = x and/p(mδ))-^/(jc)
= 0, so that, since p(mδ) G / " 1 (J),/(p(mθ)) G/(F) Π {z : |z| < ε} Π 7 =
Φ for δ > δ0, our contradiction. Evidently WΓ\XCVΠX=Φ.

Now JSI/'^O) is closed in C(f~l(0)), and so contains the closure
(A\f-\0))- of A\f~xφ) in C(/- !(0)). On the other hand B\f-\ϋ) C
(^I/'^O))- since polynomials in the various fa with coefficients in A
are dense in B, and these restrict to elements of A\f~l(0). Thus
B\f-l(0) = (̂ ί I/-^O))", so that Fis a peak set within/" 1 ^) of B; since
f~λ (0) is a peak set for B, Fis itself a peak set for B by Bishop's lemma. But
in the boundary ρ~ι[X U f~ι(J0)] for B,/vanishes on the neighborhood

p-ι[W Π (X U f-ι(J0))] = p~ι[W nf~ι(J0)]

ι \ = wnf~ι(0)oΐF,

and thus/vanishes near Fin MΛ, hence near Fin M, exactly as in the proof
of Theorem 8.

Now F Cf~ι (0)° so we have clearly reached our final contradiction if
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F Π 3/ " * (0) Φ Φ, and it only remains to see this hypothesis is redundant if
M = MA. In that case we let Wbt the neighborhood/" ι(0)°\X of Fin M,
and note that we have a uniform limit h o n / " 1 (0) of elements in A, for
which h(F) = 1 and \h\ < 1 on/ ~ ! (0)\ I/, where t/ is a neighborhood of F
with I/" C PF. Thus swp\h(W\W)\ < 1 so that for some approximating
ainA andsomem G F, |α(m)| = 1 a n d s u p K ^ " \W)\ < 1,contradicting
Rossi's local maximum modulus theorem.

Evidently the distinction between our two cases arises from the fact
that we have chosen a weaker notion of local maximum modulus for a pair
(M, X) than actually obtains for (MA, dA ), in using "some" neighborhood,
rather than "all."

4. Finally we should note the applicability of Theorem 2 and Corol-
lary 6 to some relatives of the question of which functions operate on A.
Applied directly to that question the first yields only a very special case of
the result of de Leeuw and Katznelson [3]; it just shows that if A contains an
element a0 for which a0 (MA) Φ a0 (3) then any φ defined on an open subset
ί/of C for which a G A implies φ(a) G A must be analytic (while [3] shows
this for a general nonself-adjoint uniform algebra). Indeed if φ is not
analytic one has a nearby C(1) nonanalytic ψ which operates (using convo-
lution exactly as in [3]). Now for any z in the domain of ψ and m0 with
ao(mo) £ ao(d) we can replace a0 by a = ca0 + 4 c, d EC, so as to get
a(M0) = z £ <z(9), and since ψ is C(1)

ψ(a(m)) - ψ(z)

Λ(/W)-Z-O a(m) - z

a(m)-zeR+

exists; since the ratio is ,4-holomorphic oSa~ι (z) = (a - z)~ι (0), the limit
exists without the second restriction by Theorem 2, and since a neighbor-
hood of z lies in the spectrum of a, that implies ψ satisfies the Cauchy-Rie-
mann equations at z, yielding our contradiction.

4.1. As a variant, suppose φ is C(1) on an open set U C a(MA)\a(d),
while for each z EL U we have φ{a), on a~x(z + [-ε2, εz] + i[-εz, εz]\ a
uniform limit of a bounded sequence in A (εz > 0 of course). Then φ is
analytic on U. This follows from the argument below for our next remark,
but is easily seen when φ(a) coincides with an element b = bz of A on a~ι (z
+ [-ε2,ε2] + /[-ε2, εj) for each z G U; takingz = 0, ifa(m0) = z = Owe
have
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b - b{m0) _ b - b(m0)

a - a(m0) a

Λ-holomorphic off a~λ (0), and bounded onα" 1 (R + ) where it has a limit
as a(m) --> 0. Thus by the second half of Corollary 6 there is an unrestricted
limit as a(m) -» 0, so since U lies in the spectrum of a this says

φ(z + h) - φ(z) b(m) - b(mn)lim — l i m ί ^ u

Λ-0ini? n rtrwuπin » aim)

hm

φ(z + ih) -
= lim — —

so that φ satisfies the C-i?. equations at z = 0.
The more general assertion follows from the same argument as our

final, remark Where again M = MA:ifa~l(0) Π 3 = Φ ί/zβw tf"1 ([—ε, ε] +
/[—ε,ε]) = Fhas the property thatfor any <j> which is C(I) near 0 and does not
satisfy the C.-R. equations at 0, φ(ά) is not the uniform limit on F of a
bounded sequence {an} in A. (Since P(a(F)) — C(a(F))y φ(a) is in the
uniform closure (A \F)~ofA \F, and so (A \F)~ Φ AF, the uniform limits on
F of bounded sequences in A.)

Indeed otherwise, by the argument of the latter half of [1, 2.5] {an}
converges uniformly on a neighborhood V of a~λ (0) to some function Z>,
and we can assume V Π 3 = Φ, in fact, that V = a~ι(rD), where D is the
closed unit disc and r > 0 is small, and then Fis precisely the spectrum of
(A\V)~. So since 3Vcontains the Silov boundary oϊ(A\V)~9 b G (A\V)~,
a~l(0) (Ί dV = Φ while 6 = φ(α), on α^f l-e, ε] + i[-ε, ε]) Π V =
(α| F) " * ([—ε, ε] + /[—ε, ε]), we now have precisely, for {A \ V)", the situation
in the already treated special case of 4.1, so the C. — i?. equations for φ at 0
follows as there, our contradiction.

(In the same vein, if φ is C(1) and nowhere analytic (φ(z) = |z|2 z + z
for example), a G A and φ(α) G ,4 then a(MA) = Λ(3): otherwise for m
with α(m) ^ α(3), (φ(α) - φ(a(m))/(a - α(m)) has a limit as a -* α(m), so
that φ satisfies the C — R. equations at a{m).)
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FOOTNOTES

]As will be seen, / 0 can always be replaced by a neighborhood of 0 in Jo

extended by part of a ray through the origin; thus βj really depends on /
near 0. In fact (1) is not needed in Theorems 2 and 8.

2 This much weaker than what can be obtained if one is willing to use
more of the theory of several complex variables, as was pointed out to me
by H. Alexander: it suffices to assume our bound only o n / " ! ( { z Λ } ) , for
some sequence zn —• 0 in C. (For this impl ies/ ~ι (0) C g~ι (0), and at each
point off~\0) the unique factorization of germs and the nullstellensatz
imply t h a t / m u s t divide g locally.)

3 After this was written I noted that a much simpler argument applies
here since we are dealing with a peak set. Indeed, just the classical argu-
ment [5, p. 179] with z replaced by 1//applies: for suppose g is a bounded
Λ-holomorphic function off/" 1 (0) which -* 0 a s / - * 0 in X, w h e r e / E A
has | a r g / | < π/4, and \g\ < K. Choose 8 > 0 so |g| < ε o n f ~ l ( S D ) Π X
and set G = gf'ι/(fι + λ) = g/(l + λ/). λ > 0, so |G| < \g\ < Kznd
on/"1 (δD) Π X9 \G\ < \g\ < e. On X\f~l(8D), \G\ < K/λ]f\, and so will
be < ε if we set λ = K/ε inf\f(X\f"l(8D)\(which is < K/eS). But now
\G\ < e on X\f~l(0), and so on MA\f~l(0) by [1, 4.8]. So \g\ < (1 +
λ|/|) \G\ < ε on {m : 1 + λ|/(m)| < 2}.

In fact this argument does not apply in the setting of [2, Th. 3], since a
zero set in the Choquet boundary need not be a peak set; for example, if A
is Basener's algebra [4, p. 202] built over a compact E C C for which R(E) is
regular, and F C E is a zero set for R(E) which is not a peak set, then the
points of MA over F cannot form a peak set for A, but do form a zero set.
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