
PACIFIC JOURNAL OF MATHEMATICS

Vol. 54, No. 2, 1974

FIXED POINT THEOREMS FOR MULTIVALUED
NONCOMPACT ACYCLIC MAPPINGS

P. M. FlTZPATRICK AND W. V. PETRYSHYN

Let X be a Frechet space, D a closed convex subset of X, and
T: D - * 2X an upper semicontinuous multivalued acyclic mapping.
Using the Eilenberg-Montgomery Theorem and the earlier results
of the authors, it is first shown that if W D T(D) and/: W-» D is
a single-valued continuous mapping such that fT:D-^2x\s
Φ-condensing, then/J has a fixed point. This result is then used to
obtain various fixed point theorems for acyclic Φ-condensing
mappings T: D —» 2*under the Leray-Schauder boundary condi-
tions in case D = lnt(D) and under the outward and /or inward
type conditions in case Int(D) = Φ.

Introduction. Let A" be a Frechet space and D an open or a closed

convex subset of X. It is our object in this paper to establish fixed point

theorems for not necessarily compact (e.g. condensing) multivalued acyclic

mappings T:D-*2X which need not satisfy the condition "T{D) C Z>" but

instead are required to satisfy weaker conditions of the Leray-Schauder

type. Our results are based upon the Eilenberg-Montgomery Theorem [4]

and upon our Lemma 1 in [16]. The fixed point theorems presented in this

paper for multivalued maps in infinite dimensional spaces strengthen and

extend certain fixed point theorems of Gόrniewicz-Granas [7] and Powers

[17] for acyclic compact maps, the results for star-shaped-valued maps of

Halpern [8] for compact maps and our own [16] for condensing maps, and a

number of fixed point theorems for convex-valued compact and noncom-

paet maps (see Ky Fan [5], Browder [1], Reich [18], Ma [12], Walt [20], and

[20,8,15] for related results and further references).

1. Let X be a Frechet space. If D C X, then we will denote by D and

3D the closure and boundary of D, respectively.

DEFINITION 1. If C is a lattice with a minimal element, which we will

denote by 0, then a mapping Φ: 2X —• C is called a measure ofnoncorn-

pactness provided that the following conditions hold for any A, B in 2 x :
(1) Φ(A) = 0 if and only if A is precompact.

(2) Φ(co4) = Φ(A), where coA denotes the convex closure of A.

(3) Φ(A U B) = max {Φ(Λ), Φ(B)}.
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It follows that if A C B, then Φ(A) < Φ(B). The above notation has
been used in [16,19] and is a generalization of the set-measure [11] and the
ball-measure of noncompactness [6] defined either in terms of a family of
seminorms or of a single norm when A" is a Banach space. Specifically, if
{Pa \a E j / } is a family of seminorms which determines the topology on X,
then for each a Ex/ and Ω C X we define γα(Ω) = inϊ{d > 0|Ω can be
covered by a finite number of sets each of which has Pα-diameter less than
d), and ̂  (Ω) = inf{r > 0|Ω can be covered by a finite number of Pα-balls
each of which has Pα-radius less than r).

Then letting C = {/:J/ — [0, oo]}, with C ordered pointwise, we
define the set-measure of noncompactness y:2x-»C by (γ(Ω))(α) = γ«(Ω)
for each α G / a n d the ball-measure of noncompactness χ(Ω) by (χ(Ω))(α)
= χ^Ω) for each a E s/ (see[15] for more details and properties of γ and

The class of mappings considered here is given by the following.

DEFINITION 2. If Φ is a measure of noncompactness of X and P C I ,
an upper semicontinuous (u.s.c.) mapping T: D —* 2X is called Φ-
condensing provided that if Ω C D and Φ(Γ(Ω)) >: Φ(Ω), then Ω is relatively
compact.

It follows immediately that a compact mapping is Φ-condensing with
respect to any measure of noncompactness Φ. Classes of Φ-condensing
mappings which are not compact have been considered in [19,13,14,18].
In particular, if X is a Banach space, D C X is closed, C: D —» 2 x is
compact, and S: X-* 2 x is such that S(x) is compact for each x E X, and
d*(S(x), S(y)) < kd{x, y) for all x9 y E * and some fc E (0, 1), where d*
denotes the Hausdorff metric on the compact subsets of 2X generated by
the norm d, then S + C: D —* 2 x is γ-condensing.

By homology we mean Cech homology with rational coefficients, and
call a compact metric space Y acyclic if it has the same homology as a one
point space. In particular, any contractable space is acyclic and thus any
convex or star-shaped subset of X is acyclic. A mapping T: D —* 2X is called
acyclic if T(x) is compact and acyclic for each x E D.

The following theorem of Eilenberg and Montgomery [4] together
with the succeeding result from [16] will form the basis from which we will
deduce our results.

THEOREM A. [4] Let M be an acyclic absolute neighborhood re-
tract (ANR), N a compact metric space, r: N —• M a continuous single-
valued mapping and T: M-*2N a u.s.c. acyclic mapping. Then the mapping
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rT\ M-+ 2M has a fixed point, i.e., there exist x G M such thatx G r{T{x)\

LEMMA A. [16] LetD C X be closed and convex and T: D -* 2X. Then
for each Ω C D there exists a closed convex set K, depending on Γ, D, and Ω,
withQ C Kandcδ{T(D Π K) U Ω} = K.

Our first result is the following fixed point theorem.

THEOREM 1. Let Xbea Frechet space with D C X closed and convex.
Suppose T: D —* 2X is u.s.c. and acyclic andf: W-+ D is single-valued and
continuous, where W D T(D). IffT:Ό-+2x is Φ-condensing, then fT has a
fixed point. In particular, ifT(D) C D and T is Φ -condensing, then Thas a
fixedpoint.

Proof. Choose x0 G D. By Lemma A, we obtain a closed convex set
Ksuch that x0 G Ksindco{f{T(K Π D)) U {xQ}} = K. Sincef{T(D)) C D,
we see that K Π D = K and so cδ{f{T(K)) U {x0}} = #• By the defining
properties of the measure of noncompactness Φ, and, since/Γ is Φ-con-
densing, AT must be compact. In view of the results in [3,10], every compact
convex subset of a Frechet space is an ANR, and is acyclic. Consequently,
letting M = K,N = T(K), and/= r we may invoke Theorem A to conclude
that/Γhas a fixed point. The last part of the theorem follows by letting/=
identity.

REMARK 1. Using the above result, it is clear that a theorem analo-
gous to Theorem 3.4 in [15] is valid for acyclic 1-set and 1-ball contractive
mappings.

The second part of Theorem 1 has been obtained in [7,17] for the case
when Γis compact and X is a Banach space.

THEOREM 2. Let X be a Frechet space and D C X open and convex
with 0 G D.IfT:D—*2xisa Φ-condensing and acyclic mapping such that

(4) T(x) Π {λx\λ > 1} = 0 for x G dD,

then Thas a fixed point. In particular, ifT(dD) C I), Thas a fixed point.

Proof. Let p: X-*D be the single-valued mapping defiined by: ρ(x)
= x if x G A and p(x) = x//?(x) if Λ: G X\D, where /? is the support
function of D. Since 0 G D, it follows that p is continuous. Furthermore, for
each ,4 c * , p(Λ) C co{Λ U {0}}, so that, by the defining properties of Φ,
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Φ(p(A)) < Φ(A). Hence, pT is a Φ-condensing mapping of D into 25
because if Ω C D and Φ(p(T(A))) > Φ(Ω), Ω must be relatively compact.
Thus, by Theorem 1, we may choose x G 25, with x = ρ(z) and z G Γ(x),
i.e., x G ρΓ(x). It follows from (4) that x G Γ(JC). Indeed, if z ED, then p(z)
= z -x and so x G Γ(x), and if z £25, then p(z) = j3z for some β < 1 and
so (l/β)x G Γ(JC), in contradiction to (4). The last assertion follows from
the fact that, for each^ G 3D and β<l,βyED and so T(dD) C D implies

(4).
In case T(x) is convex for each x G 25, the above result has been

obtained in [15] by use of a topological degree argument, without the
assumption that D is convex.

1. In case X is a Banach space, whose norm has certain additional
properties, we will now prove some results for acyclic mappings T: D—»
2*, where D is closed and convex, without the assumption that T(D) C D.
In particular, we strengthen the results of [8,16] for mappings satisfying the
so-called "nowhere normal outward" condition and without the assump-
tions (as in [8,16]) that D contains a set with a nonempty core and that X is
equipped with a collection of approximation maps (see [8] for definitions of
these concepts).

We recall that a Banach space X is said to have Property (H) if X is
strictly convex and whenever <xn ) CXis such that <||JCΛ ||> -»||x|| and (xn >
converges weakly to JC, then (xn) -* x. Every locally uniformly convex
Banach space has this property. We will use the following lemma con-
cerning such spaces, and use the notation (xn) —* x to denote the weak
convergence of the sequence (xn) to x.

LEMMA 1. Let X be a reflexive Banach space with Property (H), and
suppose D C X is closed and convex. Then to each x G X there exists a
unique point N(x) in D such that \\x - N(x)\\ = inf^eZ) | |7 - JC||. Further-
more, the mapping x —» N(x) is continuous.

Proof. Let x G l a n d let d = ir£yEiD\\y - x\\. Choose (un) C D such
that (\\un — x\\) —» d. Then (un) is a bounded subset of D and since X is
reflexive and D is weakly complete we may choose a subsequence (unk) of
(un) with (unk) — zED. Since (unk - x) — z - x,

d=lim\\unk-x\\ = liminf \\uHk- x\\ > \\z - *| |.
K k

But \\z - x\\ > d, and so (\\un/c - * | |) _* | | z - χ||. Since Xhas Property (H)

we must have (unk > -»z. The point z with z E D and ||z — JC|| = dis unique
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because X is strictly convex, and since, by the above argument, any subse-
quence of < un) will in turn have a subsequence which converges to z, we see

()
We now show that N is continuous. Lety G X with (yn) C X such

that (yn) - y. For each n we have \\yn - N(yn)\\ < 1^ - N(y)\\, so that
lim sup \\yn — # 0 O | | < | |/ — #0011. Since (N(yn)) is a bounded subset
of D we may choose (N(ynk)) such that (N(ynk)) — z G D. Then

< |ly - z|| < liminf |

< lim sup \\ynk -

Consequently, lim |[yΠΛ — N(ynk)\\ = \\y — N(y)\\9 and so by the first part
of the proof, (N(ynfc)) —»iV(^). This argument shows that any subsequence
of (N(yn)) in turn has a subsequence which converges to N(y), so that

We point out that any uniformly convex Banach space is reflexive and
has Property (H).

Following Halpern [8], for a subset D of a Banach space X, we define
the outward set of a point x E D, denoted by nD (x), to be

nD(x) = { j G X|7 * x9 \\y - x|| < \\y - z\\ for all z G D}.

We add in passing that, as was shown in [9], if ID(x) is the inward set
of x G X, i.e., /D(JC) = { jG X|λ;c + (I -λ)y E D for some λ G [0, 1)},

Π ID(x) = Φ.

THEOREM 3. Le/ X be a Banach space with D C X closed and convex.
Suppose that T: D—*2X is acyclic and "nowhere normal outward,"i.e.,

(5) T(x) Π nD(x) = Φ forx G D.

Furthermore, suppose that one of the following conditions holds:
(i) X is strictly convex and D is compact.
(ii) X is reflexive, satisfies condition (H), and T{D) is compact
Then T has a fixed point

Proof (i) Since X is strictly convex and D is compact, the mapping
N: X-* D defined by the inequality \\N(x) - JC|| < || y - x\\ for all/ G D,
is well defined and continuous [8]. Since D is an acyclic ANR, we use



22 P. M. FITZPATRICK AND W. V. PETRYSHYN

Theorem A to conclude that iVThas a fixed point in D. Since Tsatisfies (5),
the fixed point of NT must also be a fixed point of Γ.

(ii) By Lemma 1, the above mapping N is continuous. Since T(D) is

relatively compact, NT is condensing, and so NT has a fixed point by
Theorem 1. Again, using (1), this fixed point must also be a fixed point of Γ.

COROLLARY 1. Theorem 3 holds with the hypothesis "Tis nowhere nor-

mal outward" replaced by either of the stronger conditions, "T(x) C ID (x)for

allx G D"or ('T(x) C ID{x)forallx G D."

In case T(x) is star-shaped for each x G ΰ , Theorem 3 has been proved
in [8, Theorem 20] under the additional condition that X is equipped with a
collection of approximation maps and that the core (D) Φ Φ.

THEOREM 4. Let Xbea Banach space with D C X closed and convex.
Suppose T: D-*2X is acyclic and Φ-condensing. Furthermore, assume that
one of the following conditions holds:

(i) X is strictly convex and T(x) C ID(x)for x in D.
(ii) X is a Hubert space, T(x) Π nD(x) = Φ for each x G D, and Φ is

either the ball-measure or the set-measure of noncompactness defined in §1.
Then T has a fixed point

Proof (i) Let x0 G D. By Lemma A, we may choose a closed convex
set K which contains x0 and such that co{Γ(Z> Γ) K) U {x0}} = K. By
previously used arguments, AT must be compact. Let x G K Π D with z G
Γ(x). Then z G ID (x), so that for some λ G [0, 1), λx + (1 - λ)z G D Π K.
This shows that T(x) C IDnκ(x) for each J C G D Π K Hence, by Corollary
1, Γhas a fixed point.

(ii) Let N: X-» D be defined by | \N(x) - JC| | = inf{ | \z - JC| | for each
x G D}. Now, AT is a Hubert space, and Cheney and Goldstein [2] have
shown that \\N(x) — N(y)\\ < ||x — y\\ for each x andy in X. It is not hard
to show that this implies that for each A C X, Φ(N(A)) < Φ(Λί). Conse-
quently, NT: D-+2Dis Φ-condensing, and hence, by Theorem 1, iVThas a
fixed point. Since T(x) Π nD(x) = Φ, this fixed point must also be a fixed
point of T

Under hypothesis (i) the above result strengthens Theorem 3 in [16]
and, in particular, Theorem 24 in [8].

REMARK 2. If X is a Hubert space and D = £(θΠ), then for x G 3 A
rtz> (*) = {λx|λ > 1}. Hence for a mapping Γ: D -* 2 * the Leray-Schauder



ΈΊXED POINT THEOREMS 23

condition (4) of Theorem 2 coincides with the requirement that T(x) Π
nD{x) = Φ for all x E D.
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