CHARACTERISTIC IDEALS IN GROUP ALGEBRAS

I. SINHA

If $\Im G$ is the group-algebra of a group G over a field \Im , and \mathfrak{A} is any subgroup of the automorphism group of the \Im -algebra $\Im G$, then an ideal I of $\Im G$, is called \mathfrak{A} -characteristic if $I^{\alpha} \subseteq I$, $\forall^{\alpha} \in A$. If A is the whole automorphism group itself, then we merely say that I is characteristic. Then D.S. Passman has proved the following result:

"Let $H \leq G$ such that G/H is \mathfrak{F} -complete. Then for each characteristic ideal I of $\mathfrak{F}G$, $I = (I \cap \mathfrak{F}H)\mathfrak{F}G$."

The main concern in this paper is to consider the converse of this result.

2. Some preliminaries. For a given ideal $I \subseteq \mathfrak{F}G$, let $\mathscr{R}(I)$ be the set of all $H \leq G$ such that $I = (I \cap \mathfrak{F}H)\mathfrak{F}G$. Let C(I) be the set of all H in G such that if for some right $\mathfrak{F}H$ -module $\mathfrak{M}, I \cap \mathfrak{F}H \cong$ Ann \mathfrak{M} , then $I \subseteq \operatorname{Ann} \mathfrak{M}^{d}$, the induced $\mathfrak{F}G$ -module. We first of all have:

THEOREM 1. (i) For any $I \leq \Im G$, $C(I) \subseteq \mathscr{R}(I)$. (ii) If $H \leq G$, then $H \in \mathscr{R}(I)$ if and only if $H \in C(I)$.

Proof. (i) Let $I \cap \mathfrak{F}H \subseteq \operatorname{Ann} \mathfrak{M}$ imply that $I \subseteq \operatorname{Ann} \mathfrak{M}^{\mathcal{G}}$. Let $\sum p_i x_i \in I$ with $p_i \in \mathfrak{F}H$, where $G = \bigcup Hx_i$ is a coset-decomposition. We have $(\sum \mathfrak{M} \otimes x_i)(\sum p_i x_i) = 0$ if $I \cap \mathfrak{F}H \subseteq \operatorname{Ann} \mathfrak{M}$. In particular $(\mathfrak{m} \otimes I)(\sum p_i x_i) = 0, \forall \mathfrak{m} \in \mathfrak{M}, \text{ i.e., } \sum \mathfrak{m}p_i \otimes x_i = 0, \forall \mathfrak{m} \in \mathfrak{M}.$ So $\mathfrak{M} \cdot p_i = 0$ for each *i*. Thus $p_i \in \operatorname{Ann} \mathfrak{M}$. Since \mathfrak{M} is arbitrary with the property that $I \cap \mathfrak{F}H \subseteq \operatorname{Ann} \mathfrak{M}$, so we may take $\mathfrak{M} = \mathfrak{F}H/I \cap \mathfrak{F}H$, and conclude that each $p_i \in \operatorname{Ann} \mathfrak{M} = I \cap \mathfrak{F}H$. Thus $\sum p_i x_i \in (I \cap \mathfrak{F}H)\mathfrak{F}G$.

(ii) Suppose $I = \Im G(I \cap \Im H)$ and $I \cap \Im H \subseteq \operatorname{Ann} \mathfrak{M}$, for some $\Im H$ module \mathfrak{M} . Note that $H \leq G$ implies that $\Im G(I \cap \Im H) = (I \cap \Im H) \Im G$. Let $a = \sum x_i p_i \in I$ where $p_i \in I \cap \Im H$. So $a \mathfrak{M}^{\sigma} = (\sum x_i p_i)(\sum x_j \otimes \mathfrak{M}) =$ $\sum x_i x_j \otimes p_i^{x_j} \mathfrak{M} = 0$ since $p_i^{x_j} \in I \cap \Im H \subseteq \operatorname{Ann} \mathfrak{M}$. Thus $a \mathfrak{M}^{\sigma} = 0$ and $I \subseteq \operatorname{Ann} \mathfrak{M}^{\sigma}$.

Theorem 17.4 of [1] then gives us:

COROLLARY 1. Let $H \leq G$ such that G/H is \mathcal{F} -complete. Then $H \in C(I)$ for every characteristic ideal I of $\mathcal{F}G$.

Also Theorem 17. 7 of [1] implies:

COROLLARY 2. If $H \leq G \ni G/H$ is abelian and has no elements of order $p = \text{Char.} \mathscr{T}$, then $H \in C(J(G))$, where J denotes the Jacobson-radical of &G.

3. Main result. We will prove:

THEOREM 2. For $I = [\Im G, \Im G]$, the commutator ideal and for J = J(G), if $H \leq G$ such that $H \in \mathscr{R}(I)$ and $H \in \mathscr{R}(J)$ then $H \leq G$, G/H is abelian with no elements of order p. In particular, $\Im(G/H)$ is semi-simple.

Further, if \mathfrak{F} is algebraically closed then G/H is \mathfrak{F} -complete.

We observe that the last two statements in the theorem follows from 17.8 and 17.1 (i) respectively of [1]. The rest of the theorem will be proved by a series of results proved below.

LEMMA 1. Let $H \leq G$, $I \leq \Im G$ and $H \in \mathscr{R}(I)$. Then $H \supseteq \mathfrak{A}^{-1}(I) = \{g \in G \mid g - 1 \in I\}.$

Proof. Let $G = \bigcup Hx_i$ be a coset-decomposition, and $g \in \mathfrak{A}^{-1}(I)$ such that $g \notin H$. Then $g = hx_i$ for some *i*, where $x_i \neq 1$, and $h \in H$; and $hx_i - 1 \in (I \cap \mathfrak{F}H)\mathfrak{F}G = \sum (I \cap \mathfrak{F}H)x_i$. Since $\{x_i\}$ are linearly independent over $\mathfrak{F}H$, $h \in I \cap \mathfrak{F}H$, and $x_i \neq 1$, so $g \in I$ which implies that $1 \in I$, a contradiction.

LEMMA 2. If $I = [\Im G, \Im G]$, and $H \in \mathscr{R}(I)$ then $H \leq G$ and G/H is abelian.

Proof. Observe that I is a proper ideal in $\Im G$, since $\mathfrak{A}(I) = 0$. Also by Lemma 1, $H \supseteq \mathfrak{A}^{-1}(I)$. Since $(ghg^{-1}h^{-1} - 1)hg = gh - hg \in I$, for all $g, h \in G$, so $(ghg^{-1}h^{-1} - 1) \in I$. Hence $ghg^{-1}h^{-1} \in \mathfrak{A}^{-1}(I) \subseteq H$; i.e., G', the commutator-subgroup is in H. Hence $H \leq G$ and G/H is abelian.

Now let H satisfy the hypothesis of Lemma 2. Then we have:

LEMMA 3. Let I = J(G) and $H \in \mathscr{R}(I)$. Then $\mathfrak{F}(G/H)$ is semisimple and G/H has no elements of order $p = \text{Char. } \mathfrak{F}$.

Proof. $J(G) = (J(G) \cap \mathfrak{F}H)\mathfrak{F}G \subseteq J(H) \mathfrak{F}G$ by 16.9 of [1]. Now $\mathfrak{F}H[\mathfrak{A}_{H}(H) \cong \mathfrak{F}$ where $\mathfrak{A}_{H}(H)$ is the ideal of $\mathfrak{F}H$, generated by $\{h-1 \mid h \in H\}$. So $\mathfrak{A}_{H}(H) \supseteq J(H)$. Hence $\mathfrak{A}_{H}(H)\mathfrak{F}G = \mathfrak{A}_{G}(H) \supseteq J(H) \mathfrak{F}G \supseteq J(G)$, where $\mathfrak{A}_{G}(H)$ is the ideal in $\mathfrak{F}G$, generated by $\{h-1 \mid h \in H\}$. Now $\mathfrak{A}_{G}(H)$ is the kernel of the natural map of $\mathfrak{F}G$ onto $\mathfrak{F}(G/H)$; {see for example proof of Theorem 1 in [2]}. Thus $\mathfrak{F}(G/H) \cong \mathfrak{F}G/\mathfrak{A}_{G}(H)$ is semi-simple. Since G/H is abelian by Lemma

286

2, so it is clear that it has no elements of order p, as $\mathfrak{F}(G/H)$ is semi-simple.

This also completes the proof of Theorem 2.

References

1. D. S. Passman, Infinite Group Rings, Marcel Dekkar Inc., N.Y., 1971.

2. I. Sinha, On the augmentation-maps of subgroups of a group, Math. Zeitschs., 94 (1966), 193-206.

Received April 18, 1973.

MICHIGAN STATE UNIVERSITY