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ON THE INNER APERTURE AND INTERSECTIONS
OF CONVEX SETS

D. G. LARMAN

If Cu , Cn are n convex surfaces or sets in d-dimensional
Euclidean space Ed, then it is of some interest to study the invariance
properties of Π?=i (Q + «*) for all choices of vectors α, in E*. Such
considerations occur naturally in identifying an object irrespective of
the direction in which it approaches the observer.

For example, Melzak [2] and Lewis [1] have investigated the
conditions under which the intersection Πi=i (Ct + a%) of certain convex
surfaces always is a single point. These surfaces arise from the work
of Ratcliίf and Hartline [3] concerning varying light intensities upon
different visual elements of the eye.

In this article we study such intersections and in Theorem 1, we
show that the result of Melzak [1] has an associated Helly number in
E2 but not in E3. In Theorem 2 we give a necessary and sufficient
condition for Π?=iC< + at to be nonempty, whenever Cu •••, Cn are
convex sets, in terms of the outward normals. This condition is not
easy to apply in that it involves the outward normals to intersections
of d-membered subsets. So in Theorem 3 we give a sufficient condition
in terms of inner and outer apertures which is widely applicable.
Finally, in Theorem 4, we give a characterization of the sets which
can arise as inner apertures. I am indebted to Z. A. Melzak for
suggesting these problems to me.

To define the inner and outer aperture, let D be a convex subset
of Ed. If I = l(u, Ό),

I - [u + Xv, X ^ 0}

is a typical ray in Ed, u, v e Ed, v Φ O, define

0(λ, D) = dist. {u + Xv, Ed\D)

and

Θ(D) = sup Θ(X)

where

dist. {A, B} = inf \\a - 6||
αei
beB

when A, B are nonempty subsets of Ed. The inner aperture
of D is the union of those rays l(u, v) — u emanating from the origin
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o such that θ(l(u, v), D) = + ©o. So, if D contains o, <J^(D) is the
union of those rays I = l(o, u) in D such that λw can be made an
arbitrarily large distance from the boundary of D for λ sufficiently
large. The outer cone 0{D) of D is what is usually known as the
characteristic cone namely the set of all rays l(u, v) — u emanating
from o with l(u, v) contained in D. Both O(D) and J^{D) are convex
cones and 0{D) is closed whenever D is closed. In general, of course,
O(D) can be any convex cone in Ed but this is not the case for ^(Ό).
It will follow from Theorem 4 that <J^(D) is a Gδ-convex cone with
the property that whenever a ray I e cl. {J^(Ό)\\J^(Ό) then the smallest
exposed face F(l) of cl. {^(D)} containing I also is contained in
{cl.

THEOREM 1. Let Cf, « , C ί be n convex sets in Ed whose d-
dίmensional interiors are nonempty and do not contain a line. Let Clf

• , Cn be the convex surfaces bounding C*, , C* respectively. Then
Γ\]=ι (Cj + dj) is at most a single point for all choices al9 , an of
points in Ed if and only if there does not exist n parallel lines of
support llf " ,ln to C*, •••,£* respectively. In E2 this is true if
and only if some four membered subset Cflf , C*4 do not have parallel
lines of support. However, in EB and for every n^S there exist
convex sets Cf, , C*, whose relative interiors do not contain a line,
such that every n — 1 membered subset have parallel lines of support
but this is not so for C*9 , C£.

LEMMA 1. Let Al9 , An be spherically convex subsets (possibly
open, half-open or closed semicircles) of the unit circle S1 such that

Π (K U - K) * 0 , 1 ^ i * ^ w, x> = 1, , 4 .

Then

Γl (4i U -AX)Φ 0 .
* = 1

Proof. We parametrise S1 in terms of the angle θ made with
some fixed line through the origin and consider the semicircular
interval [0, π]. The intersection At U — At with [0, π] is either

(i) an interval (cu d^ not containing either 0 or π,
or (ii) [0, π],
or (iii) two intervals [0, αz >, < bu π], the first containing 0 and

the second containing π.
The classification yields a corresponding subdivision Iu J 2,1 3 of

{1, •-.,%}. Let
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[0, α(l> = Π [0, α<>
iel3

<K> π\ = Π <K A .
If <c, , c?4 > and <c, , d/>, i, j e ii both meet [0, α^) and

1 i ) <cif dty n <cif di> n [o, αiχ> - 0

then at least one of these intervals is contained in [0, ah). But then

(At U - A<) Π (Ay U - As) n (A<1 U - Ah) n (A,2 U - Ai2)

is contained in [0, ah} U — [0, αH> and consequently, by (1), is empty,
which is contradiction. So, if

I,1 = {i e I,: (clf d,} Π [0, ah} Φ 0}

we have, from Helly's theorem, that

( 2 ) [o, α<1> n n<c« d<y Φ 0 .

Similarly, if

€ Λ: <co d,> n <bh, π] Φ 0}

% π] n Π <c<f d*> * 0

If there exists i^el^H and i 4elA/i then

Π ^ , v U - A ί v = 0 ,

so either Jί = Jx or /ί = Jx and, using (2) and (3),

n A< u - A, Φ 0 .
4 = 1

REMARK. This is the best possible result for if A, = [0, ττ/2], A, =
[ττ/4, 3τr/4], 4 3 = [π/2, π], A, = [3ττ4, 5τr/4] then

f | i f > U - A<p Ψ 0, 1 ^ ix < % < it ^ 4

but

h At U - A, = 0 .
i=i

LEMMA 2. TΛere exist n closed spherically convex two dimensional
subsets Dl9 , Dn on S2, none of which contain antipodal points^
such that for every n — 1 membered subset Dh, , Di%_x there exists



222 D. G. LARMAN

a great circle of S2 which meets each Diu, but there does not exist a
great circle meeting each of Dlf , Dn.

Proof. In [4], Santalo constructs, for each n ^ 3, a family of
n compact convex two dimensional sets Fu , Fn in E2 so that each
n — 1 members of the family admit a common transversal but the
entire family does not have a common transversal. We mention that
such an example is the family of n circular discs whose centers have
polar coordinates p = 1 and θ — 2kπ/n, k = 1, , n and whose radii
are all equal to cos2 π/n or cos2 π/n + cos2 π/2n — 1 according as whether
n is even or odd.

Now, if we place the configuration Fu , Fn into a plane tangent
to S2, let Dl9 , Dn be the corresponding closed spherically convex
subsets of S2 obtained by the projection of Fu , F% into S2 from
the origin. Clearly D19 , Dn satisfy the requirements of the lemma.

Proof of Theorem 1. The proof of the first part is essentially
due to Melzak [1] but as he makes the restriction that d = n we
repeat the details.

If there exist n parallel lines of support ll9 , ln to C*9 , C£
respectively then by translating the line lό into the relative interior
of Cj if necessary, j = 1, , n we obtain n nondegenerate similarly
orientated chords [p3 , qj] of C* parallel to ls such that

Hence, if aό = pt - p3, j = 1, , n

PIC; + asz>{pl9 gj

and so contains at least two points.
On the other hand, if there exist vectors ajf j = 1, •••, w such

that Π*=i Q + α i contains at least two points say p, q then, by
considering two dimensional sections of Ch C3 has a line of support
lj parallel to [p, q] and hence ll9 , ln are parallel lines of support
to Cl9 , Cn respectively which completes the proof of the first part.

In E2 we may select a set At of unit tangent vectors u to C*
by ensuring that the outward normal lies on the left hand side of
u when viewed from the point of contact on C, in a clockwise direction.
Then At is a spherically convex subset of S1 which is either S1 or is
contained in semicircle according to whether or not Ct is bounded.
Now Cf9 •••, d do not have parallel lines of support if and only if

n Ui u - At) = 0 .
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This, by Lemma 1, is true if and only if there exists some four
membered subset of C*, , C* which do not possess parallel lines of
support which completes the proof of the second part of the theorem.

In E3 and for each n >̂ 2 consider the n closed spherically convex
subsets Dl9 , Dn of S2 afforded by Lemma 2. If <, > denotes scalar
product consider the set of closed half-spaces ^ such that H~~ e βέζ if

H~ — {x: <x, u) <̂  1} for some ue Di .

Let

Ct = ΠH- , i = l, ..,n.

Then Dt is the set of outward normals to C* and so as Dt is two
dimensional, Cf does not contain a line, i = 1, , n. Also for every
n — 1 membered subset C?., , C*n_1 of Cu , Cn the corresponding
set of outward normals Dh, , ΰ ^ all meet some great sphere S =
S(ilf •• ,ΐ»-i) Consequently, if ϊ is a line perpendicular to aff. S,
Ch> '' * 9 Cin-i e a c ^ Possess lines of support parallel to I.

On the other hand, if Clf , Cw possess parallel lines of support
then there would exist a great sphers S1 of S2 which meets each of
Dlf •••, Dn which, by Lemma 2, is not so. Hence Cl9 •••, Cn do not
possess parallel lines of support, which completes the proof of
Theorem 1.

We observe the following lemma which is easily established by
separating two disjoint convex sets by a hyperplane.

LEMMA 3. Two convex sets Cu C2 in Ed cannot he separated by
translation if and only if N(C^) Π ( — N(C2)) — o, where N(Ci) is the
convex cone of outward normals to Ci9 i = 1, 2.

Using Helly's theorem we readily verify the following lemma.

LEMMA 4. If Cu •••, Cn are convex sets in Ed, then Π?=i(^i +
«<) ̂  0 for att points au , an in Ed if and only if Π?ίί (Civ + at) Φ
0 for all points alf , an in Ed and for every d + 1 membered
subset {Ctχ±l of {C%)U.

Using Lemmas 3 and 4 we obtain

THEOREM 2. If Clf , Cn are convex sets in Ed then n?=i(C< +
«Ϊ) ^ 0 for all points aly an in Ed if and only if

d + l

{-N(Ch)}πN(\jcΛ= 0
\y=2 /
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for all d + 1 membered subcollections {Cy£ί} of

However, this condition is not completely satisfactory in that
N(\Jd

υ±\Ci) is a function of \JHlCiu rather than a combination of
functions of each C v We shall resolve this problem to a certain
extent in Theorem 3 by giving a widely applicable sufficient condition.

T H E O R E M 3. Let Cu •••, Cn be n convex sets in Ed. Then

( 4 ) ΓHCi + aJ* 0
ί = l

for all choices of au , an if there exists j such that

d+i

θ(ci. d) n Π ̂ (co Φ 0

for all d + 1 membered subcollections {Civ}tH of {CJ-U. Further, if

at least of cl. Clf , cl. Cn does not contain a line, each is unbounded

and Cu •••, CΛ cannot be separated by translation, i.e., (4) holds for

all au --, an then

Γl O(cl. Cs) Φ 0 .
5 = 1

Proof. Let I be a ray of O(cl. Cs) Π Π?=i ^(C7i) which, by Helly's
theorem, is nonempty. We may suppose, without loss of generality,
that oeC.f] n C r Then, if au , an are points of Ed,

I + ciiCiCi + at , i = 1, , w

If i = {λιι, λ ;> 0}, then, as ί c ^(Ct), i Φ j, there exists λέ such that
Xu + αy is in Ct9 λ ^ λt.

So, if λ* = max^i^ Xif

n

λ*% + aά e Π C* as required .
i=i

To prove the second part, let C? denote the closure of Ci9 i = 1,
• , w. We may assume that Cx and C* do not contain a line and
that for some n, ΓXl=l C* is unbounded, which is certainly true for
n = 2. As Π S 1 C* is convex closed and unbounded it follows that
0{f\i=lCf) is nonempty. Further, as Π & C * is contained in Cί,
Π?^!1 CT and O(Π?=i Cί) do not contain a line. Let I be a ray of
O(Πi=iι Cί), say I = {λw, λ ^ 0}. If O(Π?=i C?) is empty then, in par-
ticular, n?=iC? must be a compact convex set.

If λ ^ 0,

w—l

+ n c« c n σ,,
i
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and consequently,

(5) (λii + Tic) ncm = (xu + mftct) n (n cλ .

If no matter how large X is taken, (Xu + ΠT^l1 C%) Π Cm contains a
point z(λ) say then, by (5), z(X) is confined to a compact set ΠΓ=i Gi

and z(λ) - λw € flί^1 Cif X ^ 0. It follows that - ί is a ray of Oίf lS 1 C*)
which is a contradiction to C* not containing a line. So f\ΐLiC* is
an unbounded closed convex set and hence O(f\T=i Cf) is nonempty. So
repeating this process for m = 1, 2, , n we conclude that O(Π?=i C?)
is nonempty as required.

DEFINITION. We say that a collection Sίf of closed half-spaces
in Ed is closed if whenever {iZrJli! is a sequence of closed half-spaces
in 2F, where

Hj — {x: <x, M,> ^ α j , u{ a unit vector ,

and ut —> M, oίi ~> α as i —> oo then the closed half-space

Jϊ- = {x: <x, M> ^ a}

is in ^ We say that a collection ^ of closed half-spaces is Fσ

if it is the countable union of closed collections.
If £tf is a closed collection of closed half-spaces notice that the

set Uπ-eat- H, where H is the bounding hyperplane of H~, is a closed
set and consequently C\H-ZW int H~ is a relatively open subset of

THEOREM 4. A seί C m Ed is the inner aperture of some convex
subset of Ed if and only if

C = o U Π int. Ήr

where Sff is an Fσ-collection of closed half-spaces and oe H, the
bounding hyperplane of H~, for all H~ e

REMARK. SO, in particular, C has to be a (-^-convex cone with
apex the origin such that if x e {cl. C}\C then the smallest exposed
face F(x) of cl. C that contains x is also contained in {cl. C}\C. In
Ez the converse is also true.

Proof. We shall assume that the theorem is true in d — 1 dimen-
sions, the theorem being trivial for d = 1.

(i) Necessity. Let C be the inner aperture of some convex set
D in Ed where, since ^{D) = _>^(cl. 2>) we may suppose that D is
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closed. If D = Ed then C = Ed and, by convention,

C = Γl int. I T - #<*

where Sίf is the empty set of closed half-spaces.
Otherwise D Φ Ed and so possesses at least one hyperplane of

support M say with D contained in the closed half-space M~. We
may suppose, without loss of generality, that oe M. If D contains
a (maximal) linear subspace L of dimension at least one then LaM
and

D= F+ L

where F is a closed convex subset of L1. By the inductive assumption
the inner aperture ^(F) of F can be written

oΌΠ int. if*~

where Jg^* is a closed subset of the closed half-spaces in L 1 . Then

C = oΌΠ int . Ήr

where Sίf is the closed collection of closed half-spaces in Ed formed
by taking H~ in J T if

H- = L + H*-

where JHΓ*" e <^*.
If D does not contain a line then the set of rays in D is a closed

convex cone K which has a hyperplane of support say {xd = 0} with

κn{xd = 0} = o .

Let τrv denote the hyperplane xd = v, v ^ 0. Let i be a typical ray
of K,

av(l) = dist. {(tav),

and

= sup av(l) .

By considering two dimensional sections through I it is easily verified
that aχi) increases with v. Also

laC if and only if a{ΐ) = + oo .

So, if

C< = {I: I is a ray in K, a(l) > %} ,
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then

(6) C=ΠCt.
i

Now CiK, i = 1, 2, and

( 7 ) K = o U Π int. Ήr

where Sff is the collection of closed half-spaces, whose bounding
hyperplanes contain o, such that K\o c i n t . H~. If K = Kf) Sd~\
let ^ * denote the closed set of the closed half-spaces H~,

H- = {x: (x, u} ^ 0}

where

<-iι, k) £ - 2~3' , for all k e K .

Then 3(f = JJ~=i ^ * and so, using (6), (7) it is enough to show that

Ct = iΓnpint. H-

where Sίf\ is a closed collection of closed half-spaces of Ed whose
bounding hyperplanes goes through o.

Suppose now that I is a ray of K\Ct. Then

a(l) ^ i .

For j = 1, 2, , there exist points α1? α2, , with α, e πά Π bdy. D
such that

(8) \\a — {π f) l}\\ < ί

Let JSy denote a hyperplane of support to D at α̂  , with D c ίfj". As
we may suppose that KΦ o, fl, is not parallel to the hyperplane ττx.
So fly ΓΊ τιι is a line in 7rle If we consider the two plane σά through I
and dj then fly meets σβ in a line lj. As Zy supports ŷ Π A it follows,
using (8), that

( 9 ) |U π ^ " - " Z Π ^ I I ^ i

Consequently the (d — 2) affine space π1 f] H3 lies within a distance ί
of I Π 7Γ1# So we may suppose, by picking subsequences if necessary,
that π1 n Hj —>π1C\H0 as j —> oo and lά f] πγ tends to a point which,
with a view to later developments, we denote by l0 Π Ki. Let the line
through the points aά and 13 Π ̂ i be ϊ/, j" = 1, 2, . As (8), (9) hold,
If converges to a line l0 through lQ n ^x and parallel to I. Consequently
Hj —• fl0 as i ~> oo. So JD c ίZo" and
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(10) i l ^ n ί o - ^ n ϊ l l = β ^ i 9 ΐ f v ^ o f

β a constant. We claim that

H^ + {πj, - πj,o} = Ho~ say ,

contains K and HI supports K and passes through o. Certainly

(11) I a Ή

and so Hi passes through o. If there exists a ray ϊ* in K\Hί>~, then
Z* meets Ho which contradicts DczH^.

Now let <%t denote those closed half-spaces H~ such that the
bounding hyperplane H supports K and there exists a closed half-
space H*- containing H" such that H* supports D; H* is parallel to
H and a distance, in the hyperplane πl9 at most i from H.

By (11),

(12) C^Kf] flint. fί~ ,

where ^ is a closed set of closed half-spaces.
Conversely, if I is a ray of

K\{K n Π int. H-)
2?

then there exists H~ in ^gt such that laH. Then there exists a
closed half-space ί P ~ which contains D such that H* is parallel to
i ϊ and the distance between H and H* is at most i. Consequently

and so I ςt Ct. Hence

(13) C.c i fΠ Π int. H- .

Combining (12) and (3),

C^KnΠίnt.H-

which completes the proof of the necessity of the conditions.

(ii) Sufficiency. Suppose now that

C = o U Π int. H~

where Sίf is an ^-collection of closed half-spaces and o e H for all
R- e Sίf. So we may write Sίf = UΓ=i ̂ t where the Sίft form an
increasing sequence of closed collections.

Consider the closed convex cone
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Co = cl. C = Π H- .

If Co = Ed then C = Ed and C is its own inner aperture. Otherwise
Co possesses one hyperplane of support M through o with Co contained
in the closed half-space M~. If Mf]C0 contains a maximal linear
subspace L of dimension at least 1 then we may write Co = F + L
where F is a proper closed convex cone in L, Notice that LaHfor
each H~ e 3ίf and consequently we may write

Ή- = L + H*- for each H~ e SίT,

where H*~ is a closed half-space in L whose bounding hyperplane H*
passes through o. Consequently

C-oU{{Π int. #*-} + L) .

By the inductive assumption, there exists a closed convex set D* in
L such that

o U Q int. H*-

is the inner aperture of ί>* in L. Let

D = D* + L

and then C is the inner aperture of D.
Henceforth therefore we may suppose that Co is a proper closed

convex cone in Ed i.e., Co does not contain a line and we can also
suppose that the ray

is in Co and that the hyperplane π0 = {xd = 0} supports Co with 7Γ0 n Co =
o. Then, as for K in the proof of necessity,

Co = o U Π int. if-

where Sίf* is a closed set of closed half-spaces whose bounding hyper-
planes pass through o. We may suppose that

and let

Ci = o U Π int. H~ , £ = 0, 1, 2, .

We shall produce inductively a nested sequence of closed convex sets
{C*}i=o such that C< is the inner aperture of C* and indeed
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(14) c,*+ι = c? n n H*-, % ^ o

where, if H~ e Sffi then H*~ is that closed half-space containing Ήr
such that H* and i ϊ are parallel and at a distance i apart in the
hyperplane πλ.

We begin the induction by taking

Co* = {JC = (xl9 , xd), xd^0 and dist. (AT, CO Π πXd) ^ α#2} .

Clearly Co* is closed and it is convex since, from above, Co* ΓΊ π v is
convex, v ^ 0 and so Co* cannot possess a point of concavity. We
shall show that

(15) ^ ( C * ) - Co .

First notice that if u = (uu , ud) is a unit vector in Co then ud >
0. So, if I — {Xu: λ ^ 0} is the corresponding ray in Co

0λ = aλ%i(ΐ) ^ l / λ ^ 7 > 0 .

So, if m is a positive number

(16) θλ^ m

provided m2/ud ^ λ. It is an almost immediate consequence of (16)
that I c ^(C o *) and hence Co c ^ ( C o * ) .

Suppose next that the ray

V = {λr, λ ^ 0}

is not in Co. If vd g 0 then Xv $ C* for all λ > 0 and then certainly
V <£ ^(Q). If vd > 0 then V Π ̂  is a single point for each v ^ 0
and there exists rj > 0 such that

dist. (r, Co n πVd) > η .

So

(17) dist. (λi;, Coπλυd) > Xη .

But, if V c ^(C*) then, in particular, λi; e Co* for each X ^ 0. So

(18) dist. (λι>, CoTΓ,̂ ) ^ (λi;,)1/2, λ ^ 0 .

However, provided X > vd\rf it follows from (17) that (18) is false.
Consequently V (£ ^(C o *) which establishes (15).

Suppose inductively that for some m ^ 1 we have constructed m
closed convex sets Co*, , C£_i in Ed with C< being the inner aperture
of Cf, i = 0, , m — 1. Indeed,
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(19) Cf+ί = Cϊ Π Π H*- , i = 0, 1, . , m - 2 ,

where, if H~ e ^ + 1 then ϋP~ is that closed half-space containing H~
such that i ϊ* and if are parallel and at a distance i + 1 apart in
the plane πlm

For each H~ e £ί?m, let iϊ*~ be that closed half-space containing
Ήr such that H* and if are parallel and at a distance m apart in
the plane πx. Define

(20) C* - C*^ Π Π ίf*~

We claim that the inner aperture of C* is Cm i.e.,

(21) ^ ( C * ) - CM .

If 2 is a ray of Co not in Cm then I is in some hyperplane H where
Ήr e β^m. Consequently, by considering the corresponding closed half-
space if*", we deduce that a (I) <£ m, and so I qL ̂ (Ci). Hence

On the other hand, suppose that I e Cm. That the set

\JH* = Hm say

is a closed set and does not meet the ray l\o. As each hyperplane
H, with Ήr e 3ίfmy passes through o, it follows that

(22) dist. (I n πv, £Γm) > + oo as v > + oo .

Also I G ̂ (Cϊ^j.) and so

(23) dist. (I n πV9 Ed\Ct_x) > + oo as v > + oo .

Consequently using (20), (22), (23),

dist. (I n πv, Ed\Ct) • + oo as v > + oo .

Therefore, I c ^(C*) and so Cm c ^ ( C * ) which completes the verifica-
tion of (21).

The results (20), (21) verify (19) for m and we can now suppose
that the C* have been defined so that (20), (21) hold for m = 0, 1, 2,
• . Define

and we shall show that ^F(C*) = C.
Suppose that I is a ray of CQ not in ^(C*). Then there exists

m such that au(l) ^m,v^Q. So I is not in ^ ( C * + ι ) = Cm+1. Con-
sequently I is not in C. So
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On the other hand, suppose that I is a ray of Co which is not in
C. Then I is not in Cm for some m ^ 0. So

Hence ^(C*) c C and this finally establishes that

which completes the proof of Theorem 4.
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