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STIELTJES DIFFERENTIAL-BOUNDARY
OPERATORS, II

A L L A N M. KRALL

The differential boundary system

Ly = (y + H[Cy(0) + Dy(l)] + H,Ψ)' + Py ,

Ay (0) + By(l) + V dK(t)y(t) = 0 ,
Jo

= 0 ,

and its adjoint system are written as Stieltjes integral equa-
tion systems with end point boundary conditions. Fundamental
matrices are exhibited and, from these, a spectral analysis
and a Green's matrix are produced. These are used to achieve
spectral resolutions in both self-adjoint and nonself-adjoint
situations.

1* Introduction* This article is a continuation of [2] and [6]
which showed the density of the domain of L in £fn

p[0f 1], 1 <: p < oo,
when the boundary functionals satisfied certain conditions, and which
derived the dual operator in £fn

q[0, 1], 1/p + 1/q = 1, in those circum-
stances. Rather than repeat those results, we prefer to refer the
reader to the articles mentioned. For our purposes here it is suf-
ficient to state that y is an n dimensional vector in J*fn

p[0, 1]; A and
B are m x n matrices, m ̂  2n, such that rank (A: B) — m; C and

D are (2n — m) x n matrices such that L n is nonsingular; K is

an m x n matrix valued function of bounded variation such that the
measure it generates satisfies dK(0) = A, dK(l) = B; Kx is an r x n
matrix valued function of bounded variation which is not absolutely
continuous, satisfying dKλ(0) = 0, dK^l) = 0; H and JHi are, respec-
tively, n x (2n — m) and n x s matrix valued functions of bounded
variation, Hx not absolutely continuous; P is a continuous n x n
matrix; and, finally, Ψ is an s dimensional constant vector.

Because we wish to exhibit the contributions of K, Kl9 H, H^ at
0 and 1 separately, integrals involving their resulting measures will
not include contributions at 0 or 1. At all other points, however, we
do assume that these functions are regular as defined by Hildebrandt
[4]. This results in considerable simplification throughout. Of course,
all integrals are Lebesgue or Lebesgue-Stieltjes integrals.

It is convenient to note that the adjoint system has the form

L*z = -(z + K*[λz{0) +
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208 ALLAN M. KRALL

Cz(0) + Dz(ΐ) + [dH*(t)z(t) = 0 ,
Jo

[dHf(t)z(t) = 0 ,
Jo

where φ is an r dimensional constant vector, and A, B, C, D satisfy

(A B\(-Ά* -C*\ I-A* -C*\IA B'
C D B* 7> B* D* \C D

— T
— * 2<w.

2. Integral equation representation* Let us make the follow-
ing definitions. Let

f i = y ,

ξ2 = Ay(0) + \tdK(x)y(x) ,
Jo

ξ, = Cyφ) + Dy(ϊ) ,

Then the equation Ly = 0, together with the boundary conditions is
equivalent to the system

/fi\
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Us/
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If M(t) represents the Stieltjes measure in the integral equation,
then Hildebrandt's AM±(t) has zero entries along the diagonal. Hence
I ± AM± is always nonsingular.

The adjoint system L*z = 0, together with the boundary condi-
tions is
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These representations should be compared to those found in [5]
which they generalize under certain conditions.

In addition we note that the problem Ly = Xy has a similar
representation. The only change necessary is to replace Q(t) =

I P(x)dx by Q(t) — λί. The nonhomogeneous problem Ly = f has a
Jo
representation as a nonhomogeneous integral equation with an addi-
tional term

F(t) - Γ
JO

o
0

vo;

(x)dx

on the right side.

3. Fundamental matrices. We can express the homogeneous
integral problem generated by (L — Xl)y — 0 together with the bo-
undary conditions in a more compact way by the expressions

ξ{t) = 5(0)

Bξφ) + Sξ(l) = 0

likewise the adjoint system by

V(t) = VΦ) ~ [dM?(x)y(x) ,
JO

Sη(l) = 0 .

We shall assume in addition that Mλ(t) is regular:
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Mλ(t) = l/2[Mλ(t + ) + Mλ{t-)\ ,

M(0) = ΛΓ(0 + ) , ikf(l) = Af(l—) .

Hildebrandt [4] and Vejvoda and Tvrdy [8] have shown that under
these conditions the first integral equation has a solution given by
ξ(t) = Uλ(0, ί)f(0), where Ufa t) is the uniform limit of Picard-like
approximations beginning with I (hence Uλ is analytic in λ) satisfying

Ufat) = I

Uλ has the additional properties Uλ(t, t) = /, and Uλ(r, t) Ux(s, r) =
Ux(s, t). Uλ is therefore a fundamental matrix when Mλ is absolutely
continuous.

Similarly the adjoint equation has a solution given by r]{t) =
^•(0, t)V(Q)> where F *̂(s, ί) satisfies

Vλfa t)=I-

Vi (ί, ί) = I, Vi.(r, 0 % r) = Vx.(8, t).
Since ikΓΛ is regular, it is possible to show that Uλ and Vλ* are

related through the formula

Ufa t) = F2(ίf β) .

Hence ί7̂ (s, ί)"1 = Fj(s, ί). Regularity, however, is not inherited
from Mλ unless {A+Mλ)

2 = 0. This occurs only when Δ+KA+H = 0,
A+K,A+H = 0, A+KA+H, = 0, A+KίA

+H1 = 0, and will not be necessary.
The fundamental matrices ί7; and Vλ may be easily calculated

in the same way as was done in [5]. If Y(t) is a fundamental
matrix for Y' + PY = 0 satisfying Γ(0) = 7, and

J
dK{z) [

o Jo
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and ^£{}), ^t<>ι{t), ^ΊQ{t), ^£1$) are defined by the same formulae
as £f(t), ,Sfol(t), £flo(t), £fn(t) with only the limits of integration
with respect to x changed to from z to t, then

and
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By applying the boundary condition of Ux the following theorem
immediately follows.

THEOREM 3.1. If Y{t) is a fundamental matrix for Y' + PY =
0 satisfying F(0) = I, then the system

Ly = Xy ,

Ayφ) + By(l) + [dK(t)y(t) = 0 ,
Jo

is compatible if and only if the rank of

A

Be*Y(l)

-7 0

7 - 5 e a J T ( l )

0 -7)e ; Jr( l ) - 7

0 0

0 -J^o(l)

0

0 -

0 -

7

- =5̂ (1)

is iess ίAα% Sn + r + s. If m = n, the system is compatible if and
only if the determinant of the matrix above is zero.

We shall assume throughout the remainder of this article that
m = n in order to derive eigenfunction expansions under various
conditions.
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4* The Green's matrix* Whenever the homogeneous problem
is not comparable, the nonhomogeneous problem possesses a unique
solution generated by a Green's matrix, just as is the case for the
regular Sturm-Liouville problem. Hildebrandt [4] shows that the
solution to

ζ(t) = \*dMx(8)S(8)
Jo

is given by

ξ(t) = ϋi(0, t)J^(0) + Γ Uλ(s, t)djr(s)
Jo

whenever Δ±^' = 0. Since in our situation ^~(t) = F(t) + <?(0), where
F(t) is absolutely continuous, F\t) = /0(ί) = (/(*λ 0 Of, we find
that the solution can be expressed by

ξ{t) == ϋi(ίf 0)2/(0) + Γ
Jo

If f(1) is calculated and Eζ(0) + Sξ(l) is set equal to 0, ί(0) is de-
termined, and the solution takes the form

?χ(8, t)fo(s)ds ,

where the Green's function <& is given by

Sf,(s, ί) = 17(0, ί)[22 + SC7;(0, lW^ϋiίO, s)~\ s <t,

- - 17(0, t ) [ Λ + S D i ( 0 , l ) ] - ι S U λ ( 0 , l)Uλ(0, s)~\ 8 > t .

This is the same formula as that encountered in the regular Sturm-
Liouville problem. The Green's function ^ possesses the properties,
including the adjoint properties, usually attributed to Green's func-
tions.

We note in particular that λ is in the spectrum of the operator
L if and only if

det [R + SUλ(0, 1)1 = 0 .

Since [R + SUλ(0, 1)] is analytic in λ, this implies that either the
entire complex plane is in the point spectrum of L, or else the
spectrum of L consists only of isolated eigenvalues, accumulating
only at oo.

5* Self-adjoint Stieltjes differential-boundary expansions* It
was shown earlier in [6] that the operator T = iL is self-adjoint in



STIELTJES DIFFERENTIAL-BOUNDARY OPERATORS, II 213

^fn

2[0, 1] if and only if
1. P* - - P
2. m = n, r = s.
3. JBΓ= [BD* - AC*]H* a.e.
4. AA* = BB*
5. #[CC* - DD*] = 0 a.e.
6. Kγ — MHt, where M is a nonsingular r x r matrix.

This being the case, then the spectrum of T is contained in the real
axis. Every point with nonzero imaginary part lies in the resolvent.
This implies that det [R + Uλ(0, Ϊ)S] — 0 only at isolated real points
with oo their only limit. An application of the spectral resolution
theorem for self-adjoint operators on a Hubert space results in the
following.

THEOREM 5.1. // T is self-adjoint, then
1. The spectrum of T consists of a denumerable set of real

eigenvalues, accumulating only at oo.
2. Each eigenvalue corresponds to at most n eig en functions.

Eig en functions corresponding to different eigenvalues are orthogonal.
3. For each complex number λ, not an eigenvalue, {T — Xl)~ι

exists and can be represented by a unique linear integral operator

(T - λJΓTΌS) = [Gλ(s, t)f{s)ds .
Jo

4. The Green's function Gλ(s, t) satisfies
a. As a function of t, s Φ t,

(T- \I)Gλ(8,t) = 0 .

b. AGλ{8, 0) + BGλ(s, 1) + [dK(t)Gλ(s, t) = 0
Jo

a.e. in s.
c. \ dKι{t)Gλ{sJ t) = 0 a.e. in s.

Jo

d. Gλ(t, s) = G*(s, t) a.e. in s and t.
e. The eigenfunctions of T are complete in Jίfn

2[0, 1],
If those corresponding to the same eigenvalue have been made or-
thonormal {denote them by {yτ)7), then for all f in ^fn

2[0f 1]

/ = Σ (/, Vi)V*
1

Operators self-adjoint under a transformation are substantially
more complex and will be discussed in a subsequent paper. At this
point the existence of such a transformation except in trivial cases
is doubtful.
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6* Nonself-ad joint Stieltjes differential-boundary expansions*
Expansions for nonself-adjoint systems have been derived in certain
earlier circumstances. First, for the case where H = 0, 22i = 0,
Kλ = 0 or when H = 0, JEZi = 0, K = 0 (the adjoint of the former),
an expansion was derived in [2] using familiar techniques. Second,
when -Hi = 0, ^ = 0 (so r = 0, s = 0) and i ϊ and K are absolutely
continuous, an expansion was derived in [5].

In the present situation troubles arise. The bottom terms in
the matrix of Theorem 3.1 do not all asymptotically have nice
limits as Re(λ)—>oo, a necessary sort of condition previously. For
example, when

Km(t) = 0, 0 ^ t < jr ,
b

the system

Ly = (y + Kll6[y(0) - y(ί)] + KwΨ)'

2/(0) + 2/(1) + [dKmy = 0 ,
Jo

[d[Kilt + Ktlt]y = 0 ,
Jo

has eigenvalues which are zeros of the determinant of

1 - 1 0 0 0 "

0
eU/6 + e5.

0 _ ^ / 6 _ ^

0 0

Q

1

These are λ — (2Λ + ΐ)6πi; k = 0, ± 1 ,
the matrix has a singular limit.

However, the system

Ly = (y + K3lδψy

y(0) + y(l) = 0 ,

1 dKmy = 0 ,
Jo

has as its eigenvalue determining matrix

As Re λ —* — oo, however,
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" 1 1 0 0 0

-eλ 1 0 0 -eλ<2

l + eλ 0 - 1 0 -eλ'2

0 0 0 1 0

-2eλl2 0 0 1 - 1

The eigenvalues are easily seen to be λ = 2kπί, ^ = 0 , ± 1 , •••.
The limit of the matrix above as Re λ —> — oo is nonsingular. Frankly,
the author does not entirely understand what is going on.

It is possible to extend the results of [5] under some rather
severe restrictions. Let us assume that fli = 0 and Kt — 0 so that
a 3 dimensional vector representation (with ξ4 = 0 and ξδ = 0) is
possible. In addition assume that H is continuous (or by considering
the adjoint problem that K is continuous). One system has the form

= (y + H[Cy(0) + Dy(l)])' + Py

Ay(0) + By(l) + [dKy = 0 .
Jo

If y is replaced by y under the invertable transformation y = Yy
(Yf + PY'= 0), then we find the equations Ly = /, Ly~\y are
equivalent to

DY(l)y(l)]J = or -

The new equations are of the same form as the old, with the same
assumptions, with the absence in the second set of the term Py.
This results in an equivalent system in which the terms Y and F" 1

are missing, a considerable simplification in calculation. We shall
henceforth assume that P = 0.

The following lemma is the analog of Lemmas 6.4-6.8 of [5].

LEMMA 6.1. (a) limRe( )̂_0O <%?(t) = 0 a.e.
In particular limReα)-*oo <%?(ΐ) = 0.

(b) K m R e U ) _ ^ [ ^ ( l ) - ^ ( ί ) ] = 0 a.e.
(c) limBeU)^e-λtjr(t) = 0 a.e.

In particular lim^u)-^ e~λSΓ{l) = 0.
(d) limR e U )_ [SΓ(t) ^T(l) - £f(t)\ = 0 a.e.
(e) limR θ U )^ ^t(t) = 0 a.e.

In particular lim^u)-^ *^{X) = 0.

Proof. Let V£ stand for the total variation from a to β.
(a) If 0 < a < ί, then for an appropriate norm
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^vyil^iK
The first can be made less than half of any preassingned ε if a

is sufficiently close to 0. The second is less than ε/2 if Re (λ) is
sufficiently large.

(b) II i

t + δ

when ί <£ ί + 3 <; 1. The second term is less than Vt

t+δ\\ S(f ||. This
can be made less than any ε/2 by choosing δ small. The first is
bounded by e~λδVo\\ έ%f || which becomes small as Re(λ) —>oo.

(c) This is shown by the same technique as was used in (a).

(d)

^ I [
I J z+δ

The second term is bounded by Vϊ\\ 3ίT\\ sup, 7/+ί|| 3ίf \\. Since
£{f is continuous on [0, 1] this can be made uniformly small if δ is
sufficiently close to 0. The first term is then bounded by e~u Vf\\ J>t~ ||
Vl\\S$f\\ which has zero limit as Re(λ)—> oo.

(e) This is shown by the same technique as was used in (d).
It is now possible to determine the location of the eigenvalues

of L.

THEOREM 6.2.

minant of
The eigenvalues of L are the zeros of the deter-

A, =

W + C

- J 0

0 -Dex<Se?(l) - I

If A is nonsingular, they are bounded on the left in the complex
plane. If B is nonsingular, they are bounded on the right in the
complex plane. Hence when both A and B are nonsingular, the
eigenvalues of L be in a vertical strip.

Since det Δx is almost periodic in Im (λ), when A and B are
nonsingular, the number of zeros lying in a vertical strip | Re (λ) | <
h also satisfying ^ < Im (λ) < ά + 1 is bounded by some number
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independent of ^. For any δ > 0 there is a corresponding m(d) >
0 such that

I det Δλ I > m(d)

for λ lying in the strip | Re (λ) | < h and outside circles of radius d
with centers at the zeros of det Δλ.

Proof. An elementary calculation shows, when A is nonsingular,
that as Re (λ) —> — oo, det Δx = (det A + o(l)), which ultimately can-
not be zero. Similarly, using Lemma 6.1, when B is nonsingular, as
Re(λ)~> oo, det Δ1 = — e*(det I? + o(l)), which is also ultimately non-
zero. The final statements follow from [7, pp. 264-269].

We are now in a position to quote directly the results in §6 of
[5]. Please note that the phrases "uniformly in " appearing there
should be replaced by "for all x, ξ in (0, 1)". Actually a.e. will do
fine. Such is our present situation. Assuming A and B are non-
singular, we quote:

THEOREM 6.3. Let λ0 be in the resolvent set for L. Let {λjΓ be
the eigenvalues of L (which for convenience we assume to be simple).
Let {Yi}T and {Zt)T be the associated eig en functions and adjoint
eig en functions, assuming that \ ZfYidx = 1. Then the Green's func-

Jo
tion for L, GλQ(s, t) ~ ^n(sf t) satisfies

ψ- a.β.

The proof is by contour integration using the asymptotic esti-
mates established in this section as well as that in [5, §6], suitably
avoiding the zeros of det Δx as we know is possible.

By integrating GλQ(s, t) f(s) with respect to s before the contour
approaches oo and appealing to the Lebesgue dominated convergence
theorem, we find:

THEOREM 6.4. Let f in <£fn

p[0, 1] be in the domain of L, then

f(t) = ±Yi(t)\1Zt(s)f(s)ds.
i=i JO

COROLLARY 6.5. Iff in £fn

p[0, 1] is in the domain if L and g
in i5^[0, 1] is in the domain of Z,*, then (ParsevaΓs Equality)

\ΰ*(t)f(t)dt = Σ [g*(t)Y&)dt [Zf(s)f(s)ds .
Jo <=i Jo Jo

The problem of expansions in the general case remains open.
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