LINEAR GCD EQUATIONS

DAVID JACOBSON

Let R be a GCD domain. Let A be an $m \times n$ matrix and B an $m \times 1$ matrix with entries in R. Let $c \neq 0$, $d \in R$. We consider the linear GCD equation GCD(AX + B, c) = d. Let S denote its set of solutions. We prove necessary and sufficient conditions that S be nonempty. An element t in R is called a solution modulus if $X + tR^n \subseteq S$ whenever $X \in S$. We show that if c/d is a product of prime elements of R, then the ideal of solution moduli is a principal ideal of R and its generator t_0 is determined. When R/t_0R is a finite ring, we derive an explicit formula for the number of distinct solutions (mod t_0) of GCD (AX + B, c) = d.

1. Introduction. Let R be a GCD domain. As usual GCD (a_1, \dots, a_m) will denote a greatest common divisor of the finite sequence of elements a_1, \dots, a_m of R.

Let A be an $m \times n$ matrix with entries a_{ij} in R and let B be an $m \times 1$ matrix with entries b_i in R for $i = 1, \dots, m$; $j = 1, \dots, n$. Let $c \neq 0$, d be elements of R. In this paper we consider the "linear GCD equation"

(1.1)
$$GCD(a_{11}x_1 + \cdots + a_{1n}x_n + b_1, \cdots, a_{m1}x_1 + \cdots + a_{mn}x_n + b_m, c) = d.$$

Letting X denote the column of unknows x_1, \dots, x_n in (1.1), we shall find it convenient to abbreviate the equation (1.1) in matrix notation by

$$GCD(AX + B, c) = d.$$

Of course we allow a slight ambiguity in viewing (1.1) as an equation, since the GCD is unique only up to a unit.

Let R^n denote the set of $n \times 1$ matrices with entries in R. We let $S \equiv S(A, B, c, d)$ denote the set of all solutions of (1.1), that is

$$S = \{X \in \mathbb{R}^n \mid GCD(AX + B, c) = d\}.$$

If S is nonempty, we say that (1.1) or (1.2) is solvable. Note that X satisfies GCD(AX + B, d) = d if and only if X is a solution of the linear congruence system $AX + B \equiv 0 \pmod{d}$.

We show in Proposition 1 that if (1.1) is solvable, then $d \mid c$, $AX + B \equiv 0 \pmod{d}$ has a solution and GCD(A, d) = GCD(A, B, c). Here $GCD(A, d) = GCD(a_{11}, \dots, a_{1n}, \dots, a_{m1}, \dots, a_{mn}, d)$ and $GCD(A, B, c) = GCD(A, b_1, \dots, b_m, c)$. Conversely we show in Proposition 3 that if

the above conditions hold and e = c/d is atomic, that is e is a product of prime elements of R, then (1.1) is solvable. (Also see Proposition 4).

Let the solution set S of (1.1) be nonempty. We say that t in R is a solution modulus of (1.1) if given X in S and $X \equiv X' \pmod{t}$, then X' is in S. We let $M \equiv M(A, B, c, d)$ denote the set of all solution moduli of (1.1). We show in Theorem 2 that M is an ideal of R and if e = c/d is atomic, then M is actually a principal ideal generated by $d/g(p_1 \cdots p_k)$, where g = GCD(A, d) and $\{p_1, \cdots, p_k\}$ is a maximal set of nonassociated prime divisors of e such that for each p_i , the system $AX + B \equiv 0 \pmod{dp_i}$ is solvable. This generator $d/g(p_1 \cdots p_k)$ denoted by t_0 is called the minimum modulus of (1.1).

In § 4 we assume that R/t_0R is a finite ring and we derive an explicit formula for the number of distinct equivalence classes of $R^n \pmod{t_0}$ comprising S. We denote this number by $N_{t_0} \equiv N_{t_0}(A, B, c, d)$. Let A' = A/g and d' = d/g. Let $L = \{X + d'R^n \mid A'X \equiv 0 \pmod{d'}\}$ and $L_i = \{X + d'R^n \mid A'X \equiv 0 \pmod{d'}p_i\}$ for $i = 1, \dots, k$. In Theorem 3 we show that

(1.3)
$$N_{t_0} = |L| \prod_{i=1}^k (|R/p_i R|^n - |R/p_i R|^{n-(r_i+s_i)})$$

where r_i is rank $A' \pmod{p_i}$ and s_i is the dimension of the R/p_iR vector space L/L_i .

The formula (1.3) is applied in some important cases. For example in Corollary 6 we determine N_{t_0} when R is a principal ideal domain.

This paper is an extension and generalization to GCD domains, of the results obtained over the ring of integers Z in [2].

2. Solvability of GCD (AX + B, c) = d.

PROPOSITION 1. If GCD (AX + B, c) = d is solvable, then the following conditions hold.

- (2.1) (i) $d \mid c$,
 - (ii) $AX + B \equiv 0 \pmod{d}$ is solvable,
 - (iii) GCD(A, d) = GCD(A, B, c).

Proof. Let X satisfy GCD(AX + B, c) = d. Then clearly (i) $d \mid c$ and (ii) $AX + B \equiv 0 \pmod{d}$. Let AX + B = dU where U is an $m \times 1$ matrix with entries u_i for $i = 1, \dots, m$. Then $GCD(dU, c) = GCD(du_1, \dots, du_m, c) = d$. Let g = GCD(A, d) and h = GCD(A, B, c). Then $B \equiv 0 \pmod{g}$ as AX - dU = B and $g \mid c$ as $d \mid c$, which shows that $g \mid h$. Also $dU \equiv 0 \pmod{h}$, so that $h \mid GCD(dU, c)$, that is $h \mid d$. Thus $h \mid g$, which proves (iii).

Proposition 2. Let e in R have the following property

(I) GCD(AX + B, e) = 1 is solvable whenever GCD(A, B, e) = 1. Suppose that c = de, $AX + B \equiv 0 \pmod{d}$ is solvable and GCD(A, d) = GCD(A, B, c). Then GCD(AX + B, c) = d is solvable.

Proof. There exist X' in R^n and V in R^m such that AX' + B = dV. Let g = GCD(A, d) and let A' denote the matrix with entries a_{ij}/g and B' the matrix with entries b_i/g for $i = 1, \dots, m$; $j = 1, \dots, n$. Then A'X' + B' = d'V where d' = d/g. We claim that GCD(A', V, e) = 1. For let h be any divisor of GCD(A', V, e). Then $B' \equiv 0 \pmod{h}$ and $h \mid GCD(A', B', c')$ where c' = d'e. However, GCD(A', B', c') = 1 as g = GCD(A, B, c). Hence h is a unit, that is GCD(A', V, e) = 1. So by property (I), there is a Y in R^n such that GCD(A'Y + V, e) = 1. Thus GCD(A(d'Y) + dV, de) = d and if we set X = X' + d'Y, then GCD(AX + B, c) = d, establishing the proposition.

We show in Proposition 3 that if e is atomic, then e satisfies property (I).

We require the following useful lemmas.

LEMMA 1. Let $e = p_1 \cdots p_k$ be a product of nonassociated prime elements p_1, \cdots, p_k in R. If GCD(A, B, e) = 1, then GCD(AX + B, e) = 1 is solvable.

Proof. Let GCD(A, B, e) = 1. We use induction on k. Let k = 1. If $GCD(B, p_1) = 1$, then X = 0 satisfies $GCD(AX + B, p_1) = 1$. Suppose that $B \equiv 0 \pmod{p_1}$. Then $GCD(A, p_1) = 1$. Hence there is a j such that $GCD(a_{1j}, \dots, a_{mj}, p_1) = 1$. Let X^j in R^n have a 1 in the jth position and o's elsewhere. Then $GCD(AX^j + B, p_1) = GCD(AX^j, p_1) = 1$. Thus $GCD(AX + B, p_1) = 1$ is solvable. Now let k > 1 and let $e' = p_1 \cdots p_{k-1}$. By the induction assumption there is X' in R^n such that GCD(AX' + B, e') = 1. Let B' = AX' + B. We claim that $GCD(Ae', B', p_k) = 1$. If $GCD(A, p_k) = 1$, then $GCD(Ae', B', p_k) = 1$. Suppose that $A \equiv 0 \pmod{p_k}$. If $B' \equiv 0 \pmod{p_k}$, then $B \equiv 0 \pmod{p_k}$, contradicting the hypothesis that GCD(A, B, e) = 1. Hence $GCD(B', p_k) = 1$, establishing the claim. So there exists a Y in R^n such that $GCD((Ae')Y + B', p_k) = 1$. Let X = X' + e'Y. Then $X \equiv X' \pmod{e'}$ yields that $AX + B \equiv B' \pmod{e'}$. Thus GCD(AX + B, e') = 1 since GCD(B', e') = 1. Also

$$GCD(AX + B, p_k) = GCD((Ae')Y + B', p_k) = 1$$
,

so that $GCD(AX + B, e'p_k) = 1$, completing the proof.

LEMMA 2. Suppose that e is an atomic element of R.

Let $\{p_i, \dots, p_k\}$ be a maximal set of nonassociated (*) prime divisors of e such that for each p_i , the system $AX + B \equiv 0 \pmod{dp_i}$ is solvable.

Then X is a solution of GCD(AX + B, c) = d if and only if $GCD(AX + B, de_0) = d$, where c = de and $e_0 = p_1 \cdots p_k$.

Proof. Since e is atomic, it is clear that we may select a set $\{p_1, \dots, p_k\}$ as defined in (*). If this set is empty, we let $e_0 = 1$. Suppose that X satisfies GCD(AX + B, c) = d. Then there is U in R^m such that AX + B = dU and GCD(U, e) = 1. Since $e_0 \mid e$, $GCD(U, e_0) = 1$ and thus $GCD(dU, de_0) = d$, that is, $GCD(AX + B, de_0) = d$.

Conversely let X satisfy $GCD(AX + B, de_0) = d$. Then AX + B = dU and $GCD(U, e_0) = 1$. Suppose there is a prime $p \mid e$ and $U \equiv 0 \pmod{p}$. Then $AX + B \equiv 0 \pmod{dp}$ and the maximal property of the set $\{p_1, \dots, p_k\}$ shows that p is an associate of some p_i . So $U \equiv 0 \pmod{p_i}$, contradicting that $GCD(U, e_0) = 1$. Hence GCD(U, p) = 1 for all primes $p \mid e$ and thus GCD(U, e) = 1, that is GCD(AX + B, e) = d.

PROPOSITION 3. Suppose that c = de, $AX + B \equiv 0 \pmod{d}$ is solvable and GCD(A, d) = GCD(A, B, c). If e is atomic, then GCD(AX + B, c) = d is solvable.

Proof. Let e be atomic. By Proposition 2 it suffices to show that e satisfies property (I). Thus let $GCD(A_0, B_0, e) = 1$ where A_0 is an $m \times n$ matrix and B_0 is an $m \times 1$ matrix. By Lemma 2, $GCD(A_0X + B_0, e) = 1$ is solvable if and only if $GCD(A_0X + B_0, e_0) = 1$ is solvable where $e_0 = p_1 \cdots p_k$ is a product of nonassociated prime divisors of e. However by Lemma 1, $GCD(A_0X + B_0, e_0) = 1$ is solvable since $GCD(A_0, B_0, e_0) = 1$. Thus (I) holds and $GCD(AX + B_0, e_0) = d$ is solvable.

Theorem 1. Let R be a GCD domain. Consider the following condition

(II)
$$GCD(a_1x + b_1, \dots, a_mx + b_m, c) = 1$$
 is solvable if $GCD(a_1, \dots, a_m, b_1, \dots, b_m, c) = 1$;

- (i) If R satisfies (II), then GCD(AX + B, c) = 1 is solvable whenever GCD(A, B, c) = 1.
- (ii) If R is a Bezout domain such that GCD(ax + b, c) = 1 is solvable whenever GCD(a, b, c) = 1, then R satisfies (II).
 - *Proof.* (i) Let R satisfy (II). Let GCD(A, B, c) = 1 where A

is an $m \times n$ matrix. We prove that GCD(AX + B, c) = 1 is solvable by induction of n. For n = 1, solvability is granted by the supposition (II). Let n > 1 and let A' denote the $m \times (n-1)$ matrix with entries $a_{i,j+1}$ for $i = 1, \dots, m$; $j = 1, \dots, n-1$. If $c' = GCD(a_{11}, \dots, a_{1m}, c)$, then GCD(A', B, c') = 1. Hence by the induction assumption, there exist x_2, \dots, x_n in R such that $GCD(a_{12}x_2 + \dots + a_{1n}x_n + b_1, \dots, a_{m1}x_2 + \dots + a_{mn}x_n + b_m, c') = 1$. If $b'_i = a_{i2}x_2 + \dots + a_{in}x_n + b_i$ for $i = 1, \dots, m$, then $GCD(a_{11}, \dots, a_{m1}, b'_1, \dots, b'_m, c) = 1$. Thus by (II), there exists x_1 in R such that $GCD(a_{11}x_1 + b'_1, \dots, a_{m1}x_1 + b'_m, c) = 1$. So if X in R^n has entries x_1, x_2, \dots, x_n , then GCD(AX + B, c) = 1, completing the proof of (i).

(ii) Let R be a Bezout domain, that is a domain in which every finitely generated ideal is principal. Suppose that R has the property that GCD(ax + b, c) = 1 is solvable if GCD(a, b, c) = 1. Let

$$GCD(a_1, \cdots, a_m, b_1, \cdots, b_m, c) = 1$$
.

Let A and B denote the $m \times 1$ matrices with entries a_1, \dots, a_m and b_1, \dots, b_m respectively. Then by [3, Theorem 3.5], there exists an invertible $m \times m$ matrix P such that PA has entries $a, 0, \dots, 0$. Also it is clear that GCD(PA, PB, c) = 1. Let PB have entries b, b'_2, \dots, b'_m . Thus by hypothesis, GCD(ax + b, c') = 1 is solvable where $c' = GCD(b'_2, \dots, b'_m, c)$. Hence GCD(Ax + B, c) = 1 is solvable, that is R satisfies (II).

As an immediate consequence of the preceding propositions and Theorem 1, we state

PROPOSITION 4. Let R be a UFD or a Bezout domain such that GCD(ax+b,c)=1 is solvable if GCD(a,b,c)=1. Then GCD(AX+B,c)=d is solvable if and only if $d \mid c$, $AX+B\equiv 0 \pmod{d}$ is solvable and GCD(A,d)=GCD(A,B,c).

We remark that we do not know whether there exists a *GCD* domain in which (II) is not valid. Any Bezout domain satisfying (II) is an elementary divisor domain [3, Theorem 5.2].

We conclude this section with the following result.

PROPOSITION 5. Let R be a Bezout domain. Suppose that (0) GCD(ax + b, c) = 1 is solvable whenever GCD(a, b) = 1 and $a \mid c$. Then GCD(ax + b, c) = 1 is solvable whenever GCD(a, b, c) = 1.

Proof. Let GCD(a,b,c)=1. If a'=GCD(a,c), then GCD(a',b)=1 and $a' \mid c$. By the assumption (0), there is x' in R such that GCD(a'x'+b,c)=1. If u=a'x'+b, then $a' \mid (u-b)$ and since R is a Bezout domain, there is an x in R such that $ax+b\equiv u \pmod{c}$.

Thus GCD(ax + b, c) = 1 since GCD(u, c) = 1.

Let $a \mid c$ and let $\nu: R/cR \to R/aR$ be the epimorphism given by $\nu(r+cR) = r + aR$ for all r in R. Let G(resp. G') denote the group of units of R/cR(resp. R/aR). If $\nu': G \to G'$ is the induced homomorphism, then note that (0) is equivalent to the condition that $\nu'(G) = G'$. (See [5].)

3. The minimum modulus. Let the solution set S of GCD(AX + B, c) = d be nonempty. Then

$$M = \{t \in R \mid X + tR^n \subseteq S \text{ for all } X \in S\}$$

is the set of solution moduli of GCD(AX + B, c) = d.

Note that $c \in M$ for if $X \in S$ and $X \equiv X' \pmod{c}$, then $AX + B \equiv AX' + B \pmod{c}$, so that d = GCD(AX' + B, c).

It is obvious that M=R, that is $S=R^n$ if and only if d=GCD(A, d)=GCD(A, B, c) and GCD(A/d(X)+B/d, c/d)=1 for all X in R^n .

THEOREM 2. Let R be a GCD domain. Let GCD(AX + B, c) = d be solvable. Let $e = c/d = \prod_{i=1}^k e_i$. Let $\hat{e}_i = e_1 \cdots e_{i-1} e_{i+1} \cdots e_k$ for $i = 1, \dots, k$.

- (1) M is an ideal of R,
- (2) $M \supseteq \bigcap_{i=1}^k M_i$ where M_i is the ideal of solution moduli for $GCD(AX + B, de_i) = d$.
- (3) If each \hat{e}_i satisfies property (I) of Proposition 2, then $M = \bigcap_{i=1}^k M_i$ and M is a principal ideal if each M_i is principal.
- (4) If e is atomic, then M is a principal ideal generated by $d/g(p_1 \cdots p_k)$ where g = GCD(A, d) and $\{p_i, \cdots, p_k\}$ is defined in (*) of Lemma 2.

Proof.

- (1) As S is nonempty, the set M is well-defined and o, c belong to M. Let t_1 , t_2 be in M and let $r \in R$. Let $X \in S$ and let $Y \in R^n$. Then $X + t_1 Y \in S$ and hence $(X + t_1 Y) + t_2 (-Y) \in S$, that is $X + (t_1 t_2) Y \in S$ which shows that $t_1 t_2 \in M$. Also $X + t_1(rY) \in S$, that is $X + (t_1 r) Y \in S$. So $t_1 r \in M$ and thus M is an ideal of R.
- (2) As $d \mid c$ we let c = de. Let S_i denote the solution set of $GCD(AX + B, de_i) = d$ where $e = \prod_{i=1}^k e_i$. Then clearly $S = \bigcap_{i=1}^k S_i$. Let $t \in \bigcap_{i=1}^k M_i$. Let $X \in S$ and let $Y \in R^n$. Then $X + tY \in \bigcap_{i=1}^k S_i$ since $X \in \bigcap_{i=1}^k S_i$. So $X + tY \in S$, that is $t \in M$, which proves that $M \supseteq \bigcap_{i=1}^k M_i$.
- (3) Assume that each \hat{e}_i satisfies property (I). We prove that $M \subseteq M_i$ for $i = 1, \dots, k$. As g = GCD(A, d) = GCD(A, B, c), let A' = A/g, B' = B/g, and d' = d/g. Let i be fixed and let $X_i \in S_i$.

Then $A'X_i + B' = d'U$ where $GCD(U, e_i) = 1$. We claim that $GCD(e_iA', U, \hat{e}_i) = 1$. For let h be a divisor of $GCD(e_iA', U, \hat{e}_i)$. Then $A' \equiv 0 \pmod{h}$ since $GCD(h, e_i) = 1$. Thus $h \mid GCD(A', B', d'e)$, that is $h \mid 1$. So by assumption there exists X' in R^n such that

$$GCD((e_iA')X' + U, \hat{e}_i) = 1$$
.

Let $X = X_i + d'e_iX'$. Then for $j = 1, \dots, k$,

$$GCD(A'X + B', d'e_j)$$

= $d'GCD((e_iA')X' + U, e_j) = d'$.

Hence $X \in \bigcap_{j=1}^k S_j$, that is $X \in S$. Now let $t \in M$ and let $Y \in R^n$. Then $X + tY \in S$ and so $X + tY \in S_i$. However, $X + tY \equiv X_i + tY \pmod{d'e_i}$ and thus $X_i + tY \in S_i$, that is $t \in M_i$, which proves that $M \subseteq M_i$. So by (2), $M = \bigcap_{i=1}^k M_i$. Moreover, if each M_i is a principal ideal, say $M_i = t_i R$, then $\bigcap_{i=1}^k M_i$ is a principal ideal generated by the $LCM(t_1, \dots, t_k)$.

(4) Let t be any element of M. We show that $d/g \mid t$ where g = GCD(A, d). First note that S is the solution set of GCD(A'X + B', d'e) = d' where A' = A/g, B' = B/g, and d' = d/g. Let $X \in S$ and let A'X + B' = d'U. Then GCD(A'(X + tY) + B', d'e) = d' for all Y in R^n . So GCD((A't)Y + d'U, d'e) = d' and thus $(A't)Y \equiv 0 \pmod{d'}$ for all Y in R^n . Hence $A't \equiv 0 \pmod{d'}$ and since GCD(A', d') = 1, it follows that $d' \mid t$.

Now suppose that e is atomic. By Lemma 2, S is also the solution set of $GCD(A'X + B', d'e_0) = d'$ where $e_0 = p_1 \cdots p_k$ and $\{p_1, \dots, p_k\}$ is defined in (*). Thus M is also the ideal of solution moduli of $GCD(A'X + B', d'e_0) = d'$. Let M'_i denote the ideal of solution moduli of $GCD(A'X + B', d'p_i) = d'$ for $i = 1, \dots, k$. Then Lemma 1 shows that (3) can be applied to yield that $M = \bigcap_{i=1}^k M'_i$. We prove that each M'_i is a principal ideal generated by $d'p_i$. Clearly $d'p_i \in M'_i$ for $i = 1, \dots, k$. Let i be fixed and let i be any element in i in i such that i in i such that i in i

Now assume that $GCD(t', p_i) = 1$. Let $X' = X + tE_j$. Then $GCD(A'(X'-X), d'p_i) = d'$ $GCD(t'A'E_j, p_i) = d'$ since $GCD(t'A'E_j, p_i) = 1$. So $GCD(A'X' - A'X, d'p_i) = d'$ and thus $GCD(A'X' + B', d'p_i) = d'$ as $B \equiv -A'X(\text{mod } d'p_i)$. Hence $GCD(A'(X' + t(-E_j)) + B', d'p_i) = d'$ since $t \in M_i'$. That is $GCD(A'X + B', d'p_i) = d'$ and thus $d'p_i \mid d'$, which contradicts that p_i is a nonunit. So the assumption that $GCD(t', p_i) = 1$ is untenable, that is $p_i \mid t'$. Thus $d'p_i \mid t$ proving that

 $M_i' = d'p_iR$. However $M = \bigcap_{i=1}^k M_i'$, so that M is a principal ideal generated by the $LCM(d'p_1, \dots, d'p_k)$, that is M is generated by $d'p_1 \dots p_k$.

The generator $d'p_1 \cdots p_k$ of M is called the minimum modulus of GCD(AX + B, de) = d.

4. The number of solutions with respect to a modulus. Let GCD(AX + B, c) = d be solvable where e = c/d is atomic. If t in R is a solution modulus of GCD(AX + B, c) = d, then S consists of equivalence classes of $R^n \pmod{t}$. If R/tR is also a finite ring, we let $N_t \equiv N_t(A, B, c, d)$ denote the number of distinct equivalence classes of $R^n \pmod{t}$ comprising S.

For R/tR finite, let |t|=|R/tR| denote the number of elements in R/tR. Note that if $t_0 \mid t$, then each equivalence class of $R^n \pmod{t_0}$ consists of $|t/t_0|^n = (|t|/|t_0|)^n$ classes of $R^n \pmod{t}$. Thus if t is a solution modulus and t_0 denotes the minimum modulus of GCD(AX+B,c)=d, then $N_t=|t/t_0|^n N_{t_0}$. In Theorem 3, we explicitly determine N_{t_0} .

The following lemma is also of independent interest.

LEMMA 3. Let R be a GCD domain and suppose that R/dR is a finite ring. Let $p_1, \, \cdots, \, p_k$ be nonassociated elements such that R/p_iR is a finite field for $i=1,\, \cdots,\, k$. Let A be an $m\times n$ matrix and let r_i denote the rank of $A(\text{mod }p_i)$ for $i=1,\, \cdots,\, k$. Let $\mathscr{L}=\{X\in R^n\mid AX\equiv 0(\text{mod }d)\}$ and $L=\{X+dR^n\mid X\in\mathscr{L}\}$. Let $e_0=\prod_{i=1}^k p_i$ and let $\mathscr{L}'=\{X\in R^n\mid AX\equiv 0(\text{mod }de_0)\}$ and $L'=\{X+de_0R^n\mid X\in\mathscr{L}'\}$. Let $\mathscr{L}_i=\{X\in R^n\mid AX\equiv 0(\text{mod }dp_i)\}$ and $L_i=\{X+dR^n\mid X\in\mathscr{L}_i\}$ for $i=1,\, \cdots,\, k$. Let $H=\{X+e_0R^n\mid X\in\mathscr{L}'\}$ and $H_i=\{X+p_iR^n\mid X\in\mathscr{L}_i\}$ for $i=1,\, \cdots,\, k$. Then

$$|L'| = |L||H|$$

and

$$|H|=\prod\limits_{i=1}^{k}|H_i|$$
 .

- $(2) \hspace{0.5cm} egin{array}{ll} L/L_i \hspace{0.1cm} is \hspace{0.1cm} an \hspace{0.1cm} R/p_iR \hspace{0.1cm} vector \hspace{0.1cm} space \hspace{0.1cm} of \hspace{0.1cm} dimension \hspace{0.1cm} s_i \hspace{0.1cm} and \hspace{0.1cm} |H_i| = |R/p_iR|^{n-(r_i+s_i)} \hspace{0.1cm} for \hspace{0.1cm} i=1,\hspace{0.1cm} \cdots,\hspace{0.1cm} k \hspace{0.1cm} . \end{array}$
- (3) $s_i = 0$ if and only if for each X in $\mathscr L$ there exists X' in $\mathscr L_i$ such that $X' \equiv X \pmod{d}$.
- (4) If $GCD(d, p_i) = 1$, then $s_i = 0$.
- $(5) egin{array}{c} |L|=1 \; ext{ if } \; ext{and } \; ext{only } \; ext{if } \; n= ext{rank } A(ext{mod } p) \; ext{for } each \ prime \; p \mid d \; . \end{array}$

Proof.

- (1) In the obvious way, L, L', and H are R-modules. Let $\sigma: L' \to H$ denote the R-homomorphism defined by $\sigma(X + de_0R^n) =$ $X + e_0 R^n$ for all X in \mathscr{L}' . Then clearly $\operatorname{Ker} \sigma = \{e_0 Y + de_0 R^n \mid Y \in \mathscr{L}\}$ so that $L \cong \operatorname{Ker} \sigma$ under the R-isomorphism $\tau: L \to \operatorname{Ker} \sigma$ defined by $au(Y+dR^n)=e_0Y+de_0R^n ext{ for all } Y ext{ in } \mathscr{L}. ext{ Thus } |L'|=|L||H|$ since Im $\sigma = H$. We now show that H is isomorphic to $\bigoplus_{i=1}^k H_i$, the direct sum of the R-modules H_i . Let $\gamma: H \to \bigoplus_{i=1}^k H_i$ denote the R-homomorphism defined by $\gamma(X + e_0R^n) = (X + p_1R^n, \dots, X + p_kR^n)$ for all X in \mathcal{L}' . If $X + e_0 R^n \in \text{Ker } \gamma$, then $X \equiv 0 \pmod{p_i}$ for $i=1, \dots, k$, that is $X\equiv 0 \pmod{e_0}$, which shows that γ is 1-1. To show that $\operatorname{Im} \gamma = \bigoplus_{i=1}^k H_i$, let $X_i \in \mathscr{L}_i$ for $i = 1, \dots, k$. Since R/dRis finite, it is easy to verify that d is atomic. Thus let $d = d_0 \prod_{i=1}^k p_i^{m_i}$ where $m_i \geq 0$ and $GCD(d_0, p_i) = 1$. By the Chinese remainder theorem there exists X in R^n such that $X \equiv 0 \pmod{d_0}$ and $X \equiv X_i \pmod{p_i^{m_i+1}}$ for $i=1,\;\cdots,\;k.$ However, $AX_i\equiv 0 (\mathrm{mod}\;p_i^{\scriptscriptstyle m_i+1})$ for $i=1,\;\cdots,\;k,\;$ so that $AX \equiv 0 \mod (d_0 \prod_{i=1}^k p_i^{m_i+1})$, that is $AX \equiv 0 \pmod{de_0}$. Thus $X + 1 \pmod{de_0}$ $e_0R^n\in H$ and $\gamma(X+e_0R^n)=(X_1+p_1R^n,\cdots,X_k+p_kR^n)$. Hence γ is an isomorphism and $|H| = \prod_{i=1}^k |H_i|$.
- (2) Let $L_i' = \{X + dp_i R^n \mid X \in \mathscr{L}_i\}$ for $i = 1, \dots, k$. Let i be fixed. Let $\nu \colon L_i' \to L_i$ denote the R-homomorphism defined by $\nu(X + dp_i R^n) = X + dR^n$ for all X in \mathscr{L}_i . Then clearly Ker $\nu = \{dY + dp_i R^n \mid AY \equiv 0 \pmod{p_i}\}$ and it follows that

$$|\operatorname{Ker} \mathbf{v}| = |R/p_i R|^{n-r_i} \equiv |p_i|^{n-r_i}$$

where $r_i = \operatorname{rank} A(\operatorname{mod} p_i)$. Thus $|L_i'| = |p_i|^{n-r_i} |L_i|$ since Im $\nu = L_i$. However by (1), $|L'_i| = |L| |H_i|$. Also since L_i is an R-submodule of L, the quotient module L/L_i is defined and $|L| = |L_i| |L/L_i|$. Thus we obtain that $|H_i| |L/L_i| = |p_i|^{n-r_i}$. We now show that L/L_i is an R/p_iR vector space. Let $\langle X \rangle = X + dR^n$ for X in R^n . Then $L/L_i = \{\langle X \rangle + L_i \mid X \in \mathscr{L}\}.$ For r in R, let $\bar{r} = r + p_i R$ in $R/p_i R$. We define $\overline{r}(\langle X \rangle + L_i) = \langle rX \rangle + L_i$ for all r in R and X in \mathscr{L} . We claim that this is a well-defined R/p_iR multiplication on L/L_i . For let $\bar{r}=\bar{r}'$ and $\langle X \rangle + L_i = \langle X' \rangle + L_i$, where $r,\,r' \in R$ and $X, X' \in \mathcal{L}$. Then $r - r' \equiv o \pmod{p_i}$ and $\langle X \rangle - \langle X' \rangle \in L_i$, that is $\langle X-X'\rangle\in L_i$. Thus there exists Y in \mathscr{L}_i such that $\langle X-X'\rangle=$ $\langle Y \rangle$. We must show that $\langle rX \rangle + L_i = \langle r'X' \rangle + L_i$, that is We write rX - r'X' = (r - r')X + r'(X - X'). $\langle rX - r'X' \rangle \in L_i$. However, $X - X' \equiv Y \pmod{d}$ and thus $r(X - X') \equiv r Y \pmod{d}$. So $rX - r'X' \equiv (r - r')X + rY \pmod{d}$ and $(r - r')X + rY \in \mathscr{L}_i$. Hence $\langle rX - r'X' \rangle \in L_i$, which establishes the claim. It follows immediately that L/L_i is an R/p_iR vector space since L/L_i is an R-module.

Let s_i denote the dimension of the R/p_iR vector space L/L_i .

Then $|L/L_i| = |p_i|^{s_i}$ and as $|H_i| |L/L_i| = |p_i|^{n-r_i}$, we obtain that $|H_i| |p_i|^{s_i} = |p_i|^{n-r_i}$. Thus $0 \le s_i \le n - r_i$ and $|H_i| = |p_i|^{n-(r_i+s_i)}$, which completes the proof of (2).

- (3) As $|L| = |L_i| |p_i|^{s_i}$, it is immediate that $s_i = 0$ if and only if $L = L_i$, that is if and only if for each X in \mathcal{L} there exists X' in \mathcal{L}_i such that $X' \equiv X \pmod{d}$.
- (4) Suppose that $GCD(d, p_i) = 1$. Let $X \in \mathscr{L}$. By the Chinese remainder theorem there exists X' in R^n such that $X' \equiv X \pmod{d}$ and $X' \equiv 0 \pmod{p_i}$. Thus $AX' \equiv 0 \pmod{dp_i}$, so that $s_i = 0$ by (3).
- (5) Let p be a prime dividing d and let $d=d_1p$. Then $L=\{X+d_1pR^n\mid X\in\mathscr{L}\}$. However as shown in the proof of (2), $|L|=|p|^{n-r_0}|L_0|$ where $r_0=\operatorname{rank} A(\operatorname{mod} p)$ and $L_0=\{X+d_1R^n\mid X\in\mathscr{L}\}$. Thus if |L|=1, then $n=\operatorname{rank} A(\operatorname{mod} p)$ for any prime $p\mid d$. The converse is trivial.

THEOREM 3. Let R be a GCD domain. Let GCD(AX+B,c)=d be solvable and suppose that e=c/d is atomic. Let A'=A/g and d'=d/g where g=GCD(A,d). Let $t_0=d'\prod_{i=1}^k p_i$ denote the minimum modulus of GCD(AX+B,c)=d where $\{p_1,\cdots,p_k\}$ is defined in (*) of Lemma 2. Suppose that R/t_0R is a finite ring. Let $L=\{X+d'R^n\mid A'X\equiv 0 \pmod{d'}\}$ and $L_i=\{X+d'R^n\mid A'X\equiv 0 \pmod{d'}\}$ for $i=1,\cdots,k$. Then

$$(4.1) \hspace{1cm} N_{t_0} = \|L\|_{1=1}^k \left(\|p_i\|^n - \|p_i\|^{n-(r_i+s_i)}\right)$$

where r_i denotes rank $A' \pmod{p_i}$ and s_i denotes the dimension of the R/p_iR vector space L/L_i .

Proof. Let S denote the solution set of GCD(AX+B,c)=d. As g=GCD(A,B,c), let B'=B/g. Then by Lemma 2, S is also the solution set of $GCD(A'X+B,d'e_0)=d'$ where $e_0=\prod_{i=1}^k p_i$. Let $\mathscr S$ denote the set of X in R^n such that $A'X+B'\equiv 0 \pmod{d'}$. Let $\mathscr S_i$ denote the set of X in R^n such that $A'X+B'\equiv 0 \pmod{d'}$, for $i=1,\cdots,k$. It is clear that $S=\mathscr S\setminus\bigcup_{i=1}^k\mathscr S_i$. Let $T_0=\{X+t_0R^n\mid X\in S\}$. Then $|T_0|$ is what we have denoted by N_{t_0} . Also let $T=\{X+t_0R^n\mid X\in \mathscr S_i\}$ and $T_i=\{X+t_0R^n\mid X\in \mathscr S_i\}$ for $i=1,\cdots,k$. Hence $T_0=T\setminus\bigcup_{i=1}^k T_i$ and by the method of inclusion and exclusion

(4.2)
$$N_{t_0} = |T_0| = \sum_{I} (-1)^{|I|} |T_I|$$

where the summation is over all subsets I of

$$I_k = \{1, \dots, k\}$$
 and $T_I = \bigcap_{i=1}^{n} T_i$.

Now let $\mathscr{S}_I = \bigcap_{i \in I} \mathscr{S}_i$ and $d'_I = d' \prod_{i \in I} p_i$ for each subset I of

 I_k . Then it is easy to see that \mathscr{S}_I is the set of X in R^n such that $A'X + B' \equiv 0 \pmod{d_I'}$ and $T_I = \{X + t_0R^n \mid X \in \mathscr{S}_I\}$. Let $T'_I = \{X + d'_IR^n \mid X \in \mathscr{S}_I\}$ and let $I' = I_k \setminus I$. Then $|T_I| = |T'_I| \prod_{i \in I'} |p_i|^n$, since $X + d'_IR^n$ consists of $|t_0/d'_I|^n = \prod_{i \in I'} |p_i|^n$ distinct classes of $R^n \pmod{t_0}$.

Let \mathscr{L}_I denote the set of X in R^n such that $A'X \equiv 0 \pmod{d_I}$. Let $L'_I = \{X + d'_I R^n \mid X \in \mathscr{L}_I\}$. As \mathscr{L}_i is nonempty for $i = 1, \cdots, k$, an argument involving the Chinese remainder theorem shows that each \mathscr{L}_I is nonempty. Hence it follows that $|T'_I| = |L'_I|$. Let $L = \{X + d'R^n \mid X \in \mathscr{L}_{\mathfrak{p}}\}$ and $L_i = \{X + d'R^n \mid X \in \mathscr{L}_{\mathfrak{p}}\}$ for $i = 1, \cdots, k$. Then (1) and (2) of Lemma 3 yield that $|L'_I| = |L| \prod_{i \in I} |p_i|^{n-(r_i+s_i)}$ where $r_i = \operatorname{rank} A' \pmod{p_i}$ and $s_i = \operatorname{dimension}$ of the $R/p_i R$ vector space L/L_i .

Hence by (4.2),

$$N_{t_0} = |\,L\,|\,\sum\limits_{I} \left(-1
ight)^{|I|} \prod\limits_{i \in I} |\,p_i\,|^{n-(r_i+s_i)} \prod\limits_{i \in I'} |\,p_i\,|^n$$

where the summation is over all subsets I of I_k and $I' = I_k \setminus I$. Thus we may write

$$N_{t_0} = |L|\prod_{i=1}^k |p_i|^n \sum_I (-1)^{|I|} \prod_{i \in I} |p_i|^{-(r_i+s_i)}$$

where the summation is over all subsets I of I_k . However,

$$\prod_{i=1}^k \left(1- \mid p_i\mid^{-(r_i+s_i)}
ight) = \sum_I \left(-1
ight)^{|I|} \prod_{i\in I} \mid p_i\mid^{-(r_i+s_i)}$$
 ,

which yields the formula (4.1) for N_{t_0} . This completes the proof of the theorem.

We remark that if $p_i^{m_i}$ is the highest power of p_i dividing d', then s_i is also the dimension of the R/p_iR vector space K_i^0/K_i where $K_i^0 = \{X + p_i^{m_i}R^n \mid A'X \equiv 0 \pmod{p_i^{m_i}}\}$ and

$$K_i = \{X + p_i^{m_i} R^n \mid A'X \equiv 0 (\text{mod } p_i^{m_i+1}) \}$$
 .

Also note that $r_i \ge 1$ for $i = 1, \dots, k$.

In Corollaries 1 and 2, the notation is the same as in Theorem 3.

COROLLARY 1. Let GCD(AX + B, c) = d be solvable and suppose that e = c/d is atomic. Let R/t_0R be finite where $t_0 = d' \prod_{i=1}^k p_i$ is the minimum modulus of GCD(AX + B, c) = d.

(i) If GCD(d', e) = 1, then

$$(4.3) N_{t_0} = |L| \prod_{i=1}^{k} (|p_i|^n - |p_i|^{n-r_i}).$$

(ii) If
$$|L| = 1$$
, then

$$N_{t_0} = \prod\limits_{i=1}^k \left(\mid p_i \mid^n - \mid p_i \mid^{n-r_i}
ight)$$
 ,

where $r_i = n$ if $p_i \mid d'$.

(iii) If $n' = \operatorname{rank} A'(\operatorname{mod} p_i)$ for $i = 1, \dots, k$, where n' denotes the smaller of m and n, then

(4.5)
$$N_{t_0} = |L| \prod_{i=1}^k (|p_i|^n - |p_i|^{n-n'}).$$

(iv) $N_{t_0} = 1$ if and only if (a) |L| = 1 and there exists no prime $p \mid e$ such that $AX + B \equiv 0 \pmod{dp}$ is solvable, or (b) n = 1 and |p| = 2 for any prime $p \mid e$ such that $AX + B \equiv 0 \pmod{dp}$ is solvable.

Proof.

- (i) If $GCD(d', p_i) = 1$, then (4) of Lemma 3 shows that $s_i = 0$ in (4.1). Hence if GCD(d', e) = 1, then $s_i = 0$ for $i = 1, \dots, k$, which yields (4.3).
- (ii) Suppose that |L|=1. If $p_i|d'$, then $n=r_i$ by (5) of Lemma 3 and thus $s_i=$ o since $s_i \leq n-r_i$. However if $GCD(d', p_i)=1$, then $s_i=$ o, so that (4.4) is immediate from (4.1).

In particular if d=1, then N_{t_0} is given by (4.4). If A' is invertible (mod d'), then (4.4) also applies.

- (iii) If $n = r_i$, then $s_i = 0$. If $m = r_i$, then the criterion in (3) shows that $s_i = 0$. Thus (4.5) follows from (4.1).
- (iv) Suppose that $N_{t_0}=1$. Then by (4.1), |L|=1 and thus $s_i=0$ for $i=1,\cdots,k$. If p_i is a prime dividing e such that $AX+B\equiv 0 (\text{mod } dp_i)$ is solvable, then $|p_i|^n-|p_i|^{n-r_i}=1$, so that $n=r_i=1$ and $|p_i|=2$. Thus either (a) or (b) holds. Conversely if (a) holds, then $N_{t_0}=1$. If n=1, then clearly |L|=1 and hence (b) implies that $N_{t_0}=1$.

COROLLARY 2. Let GCD(AX + B, c) = d be solvable and let e = c/d. Suppose that R/cR is a finite ring. Then

(4.6)
$$N_{c} = |L| |ge|^{n} \prod_{i=1}^{k} (1 - |p_{i}|^{-(r_{i}+s_{i})}).$$

Proof. Since R/cR is finite, e is atomic. Thus $t_0 = d' \prod_{i=1}^k p_i$ is the minimum modulus of GCD(AX + B, c) = d. Also R/t_0R is finite since $t_0 \mid c$, so that N_{t_0} is given by (4.1). However $N_c = |c/t_0|^n N_{t_0}$, which yields the result (4.6).

COROLLARY 3. Suppose that R/cR is a finite ring. Then $GCD(a_1x_1 + \cdots + a_nx_n + b, c) = d$ is solvable if and only if $d \mid c$ and $GCD(a_1, \dots, a_n, d) = GCD(a_1, \dots, a_n, b, c)$. Let $a'_j = a_j/g$ for $j = 1, \dots, n$

where $g = GCD(a_1, \dots, a_n, d)$. Let $\{p_1, \dots, p_k\}$ be a maximal set of nonassociated prime divisors of e = c/d such that $GCD(a'_1, \dots, a'_n, p_i) = 1$ for $i = 1, \dots, k$. Then

(4.7)
$$N_c = |c|^{n-1} |ge| \prod_{i=1}^k (1 - |p_i|^{-1}).$$

Proof. Suppose that c=de and $g=GCD(a_1,\cdots,a_n,b,c)$. Since R/cR is finite, d is atomic and R/pR is a finite field for any prime $p\mid d$. Hence as $g\mid b$, a standard argument shows that $a_1x_1+\cdots+a_nx_n+b\equiv o(\text{mod }d)$ is solvable and has $|g|\mid d\mid^{n-1}$ distinct solutions (mod d). Thus $GCD(a_1x_1+\cdots+a_nx_n+b,c)=d$ is solvable since e is atomic. Let d'=d/g and b'=b/g. Since $GCD(a'_1,\cdots,a'_n,d'p_i)=1$ and $R/d'p_iR$ is finite, $a'_1x_1+\cdots+a'_nx_n+b'\equiv 0(\text{mod }d'p_i)$ is solvable for $i=1,\cdots,k$. It follows that $t_0=d'\prod_{i=1}^k p_i$ is the minimum modulus of $GCD(a_1x_1+\cdots+a_nx_n+b,c)=d$. Let A' denote the $1\times n$ matrix (a'_1,\cdots,a'_n) . Then rank $A'(\text{mod }p_i)=1$ for $i=1,\cdots,k$. Also $a'_1x_1+\cdots+a'_nx_n\equiv o(\text{mod }d')$ has $|d'|^{n-1}$ distinct solutions (mod d'). Thus by (iii) of Corollary 1,

$$N_{t_0} = |\ d'\ |^{n-1} \prod\limits_{i=1}^k \left(|\ p_i\ |^n - |\ p_i\ |^{n-1}
ight)$$
 ,

which yields (4.7).

COROLLARY 4. Suppose that R/cR is a finite ring where c = de. Let $g = GCD(a_1, \dots, a_m, d)$ and $a'_i = a_i/g$ for $i = 1, \dots, m$. Then $GCD(a_1x + b_1, \dots, a_mx + b_m, c) = d$ is solvable if and only if

- (1) $GCD(a_i, d) \mid b_i \text{ for } i = 1, \dots, m,$
- (2) $a_i'b_j \equiv a_j'b_i \pmod{d}$ for $1 \leq i < j \leq m$,
- (3) $g = GCD(a_1, \dots, a_m, b_1, \dots, b_m, c).$

Let $\{p_1, \dots, p_k\}$ be a maximal set of nonassociated prime divisors of e such that for each p_h , $GCD(a_i, dp_h) \mid b_i$ for $i = 1, \dots, m$ and $a'_i \equiv a'_j b_i \pmod{dp_h}$ for $1 \leq i < j \leq m$. Then

$$N_c = |ge| \prod_{k=1}^k (1 - |p_k|^{-1})$$
.

Proof. Let A and B denote the $m \times 1$ matrices with entries a_1, \dots, a_m and b_1, \dots, b_m respectively. Since R/dR is finite, the reader may easily verify that the system $Ax + B \equiv 0 \pmod{d}$ is solvable if and only if (1) and (2) hold. Thus as e is atomic, GCD(Ax + B, c) = d is solvable if and only if (1), (2), and (3) hold. Let GCD(Ax + B, c) = d be solvable and let d' = d/g. Then it follows that $t_0 = d' \prod_{k=1}^k p_k$ is the minimum modulus of GCD(Ax + B, c) = d. Let A' denote the $m \times 1$ matrix with entries a'_1, \dots, a'_m . Then rank $A' \pmod{p_i} = 1$ for

 $i=1,\,\cdots,\,k$. Also the system $A'x\equiv 0\pmod{d'}$ has only the solution $x\equiv 0\pmod{d'}$. Thus by (iii) of Corollary 1, $N_{t_0}=\prod_{h=1}^k(\mid p_h\mid -1)$. Hence $N_c=\mid ge\mid \prod_{h=1}^k(1-\mid p_h\mid ^{-1})$.

COROLLARY 5. Let c = de where e is atomic. Let $g = GCD(a_1, \dots, a_n, d)$ and d' = d/g. Suppose that R/d'R is a finite ring. Then $GCD(a_1x_1 + b_1, \dots, a_nx_n + b_n, c) = d$ is solvable if and only if $GCD(a_j, d) \mid b_j$ for $j = 1, \dots, n$ and $g = GCD(a_1, \dots, a_n, b_1, \dots, b_n, c)$. Suppose that $R/(\prod_{i=1}^k p_i)R$ is finite where $\{p_1, \dots, p_k\}$ is a maximal set of nonassociated prime divisors of e such that for each p_i , $GCD(a_j, dp_i) \mid b_j$ for $j = 1, \dots, n$. Then $t_0 = d' \prod_{i=1}^k p_i$ is the minimum modulus of $GCD(a_1x_1 + b_1, \dots, a_nx_n + b_n, c) = d$. Let $d_j = GCD(a_j, d)$ and $d'_j = d_j/g$ for $j = 1, \dots, n$. Then

(4.8)
$$N_{t_0} = \prod_{j=1}^{n} |d'_j| \prod_{i=1}^{k} (|p_i|^n - |p_i|^{n-t_i})$$

where t_i denotes the number of j in $\{1, \dots, n\}$ for which

$$GCD\left(\frac{a_j}{d_i}, p_i\right) = 1$$
.

Proof. Suppose that $d_j \mid b_j$ for $j=1, \cdots, n$. Let $a'_j = a_j/g$ and $b'_j = b_j/g$ for $j=1, \cdots, n$. Let A and A' denote the $n \times n$ diagonal matrices with entries a_1, \cdots, a_n and a'_1, \cdots, a'_n respectively. Let B and B' denote the $n \times 1$ matrices with entries b_1, \cdots, b_n and b'_1, \cdots, b'_n respectively. Then the system $A'X + B' \equiv 0 \pmod{d'}$ is solvable since $GCD(a'_j, d') \mid b'_j$ for $j=1, \cdots, n$ and R/d'R is finite. Thus the system $AX + B \equiv 0 \pmod{d}$ is solvable. Hence if $g = GCD(a_1, \cdots, a_n, b_1, \cdots, b_n, c)$, then GCD(AX + B, c) = d is solvable.

Assume that GCD(AX+B,c)=d is solvable. It follows that $t_0=d'\prod_{i=1}^k p_i$ is the minimum modulus of GCD(AX+B,c)=d. Let $L=\{X+d'R^n\mid A'X\equiv 0 (\text{mod }d')\}$. Let

$$\mathscr{L}_i = \{X \in R^n \mid A'X \equiv 0 \pmod{d'p_i}\}$$

and $L_i = \{X + d'R^n \mid X \in \mathscr{L}_i\}$ for $i = 1, \dots, k$. Then by (4.1),

$$N_{t_0} = |\,L\,|\prod\limits_{i=1}^k \left(|\,p_i\,|^n - |\,p_i\,|^{n-(r_i+s_i)}
ight)$$

where $r_i = \operatorname{rank} A'(\operatorname{mod} p_i)$ and s_i is the dimension of the R/p_iR vector space L/L_i . Clearly $|L| = \prod_{j=1}^n |d_j'|$ since $d_j' = GCD(a_j', d')$ for $j = 1, \dots, n$. Let $L_i' = \{X + d'p_iR^n \mid X \in \mathscr{L}_i\}$ and $H_i = \{X + p_iR^n \mid X \in \mathscr{L}_i\}$ for $i = 1, \dots, k$. Then (1) and (2) of Lemma 3 show that $|L_i'| = |L| |H_i|$ where $|H_i| = |p_i|^{n-(r_i+s_i)}$ for $i = 1, \dots, k$. However, $GCD(a_i', d'p_i) = d_j' GCD(a_j/d_j, p_i)$ and thus

$$||L_i'| = |L|\prod_{j=1}^n \left| \mathit{GCD}\Big(rac{a_j}{d_i}, \; p_i \Big)
ight|$$

for $i=1, \dots, k$. Hence $|p_i|^{n-(r_i+s_i)} = \prod_{j=1}^n |GCD(a_j/d_j, p_i)|$ and thus $|p_i|^{n-(r_i+s_i)} = |p_i|^{n-t_i}$, since t_i is the number of j in $\{1, \dots, n\}$ for which $GCD(a_j/d_j, p_i) = 1$. So $t_i = r_i + s_i$ for $i=1, \dots, k$, which yields (4.8).

Note that if R/cR is finite, then

$$N_c = \prod_{j=1}^n |\, d_j e \, | \prod_{i=1}^k \left(1 - |\, p_i \, |^{-t_i}
ight)$$
 .

COROLLARY 6. Let R be a principal ideal domain. Let A be an $m \times n$ matrix of rank r and let $\alpha_1, \dots, \alpha_r$ be the invariant factors of A. Let B be an $m \times 1$ matrix and let (A:B) have rank r' and invariant factors $\beta_1, \dots, \beta_{r'}$. Then GCD(AX + B, c) = d is solvable if and only if (1) $d \mid c$, (2) $GCD(\alpha_1, d) = GCD(\beta_1, c)$, (3) $GCD(\alpha_j, d) = GCD(\beta_j, d)$ for $j = 1, \dots, r$ and $\beta_{r'} \equiv o(\text{mod } d)$ if r' = r + 1.

Let $\{p_1, \dots, p_k\}$ be a maximal set of nonassociated prime divisors of e = c/d such that each p_i satisfies (3') $GCD(\alpha_j, dp_i) = GCD(\beta_j, dp_i)$ for $j = 1, \dots, r$ and $\beta_{r'} \equiv o(\text{mod } dp_i)$ if r' = r + 1. Let $d_j = GCD(\alpha_j, d)$ for $j = 1, \dots, r$ and $d' = d/d_1$. Then $t_0 = d' \prod_{i=1}^k p_i$ is the minimum modulus of GCD(AX + B, c) = d. Suppose that R/t_0R is finite. Then

$$(4.9) N_{t_0} = |d'|^{n-r} \prod_{j=1}^r |d'_j| \prod_{i=1}^k (|p_i|^n - |p_i|^{n-t_i})$$

where $d'_j = d_j/d_1$ and t_i denotes the largest j in $\{1, \dots, r\}$ for which $GCD(\alpha_j/d_j, p_i) = 1$.

Proof. Since R is a principal ideal domain, it is well-known that there exist invertible matrices P and Q such that $PAQ = A_0$ where A_0 is an $m \times n$ matrix in "diagonal form", with nonzero entries $\alpha_1, \dots, \alpha_r$ and $\alpha_j \mid \alpha_{j'}$ if j < j'. The elements $\alpha_1, \dots, \alpha_r$ are called the invariant factors of A and $\alpha_j = D_j/D_{j-1}$ where D_j denotes the GCD of the determinants of all the $j \times j$ submatrices of A. Clearly $GCD(A, d) = GCD(\alpha_1, \dots, \alpha_r, d)$, that is $GCD(A, d) = GCD(\alpha_1, d)$ since $\alpha_1 \mid \alpha_j$ for $j = 1, \dots, r$. Similarly $GCD(A, B, c) = GCD(\beta_1, c)$. However, it is also well-known that the system $AX + B \equiv 0 \pmod{d}$ is solvable if and only if condition (3) holds (see [4]). Thus GCD(AX + B, c) = d is solvable if and only if (1), (2), and (3) hold.

Let GCD(AX + B, c) = d be solvable and let c = de. Then $t_0 = d' \prod_{i=1}^k p_i$ is the minimum modulus of GCD(AX + B, c) = d. Suppose that R/t_0R is finite. Let S denote the set of X in R^n such

that GCD(AX+B,c)=d. Let $PB=B_0$ and let S' denote the set of Y in R^* such that $GCD(A_0Y+B_0,c)=d$. Then clearly $X\in S$ if and only if $Y=Q^{-1}X\in S'$. Thus GCD(AX+B,c)=d and $GCD(A_0Y+B_0,c)=d$ have the same ideal of solution moduli. Let $T_0=\{X+t_0R^n\mid X\in S\}$ and $T_0'=\{Y+t_0R^n\mid Y\in S'\}$. Then the mapping $f\colon T_0\to T_0'$ is a bijection, where $f(X+t_0R^n)=Q^{-1}X+t_0R^n$ for all X in S. Hence $\mid T_0\mid =\mid T_0'\mid$, that is $N_{t_0}=\mid T_0'\mid$. Let B_0 have entries b_1^0,\cdots,b_m^0 and let $c_0=GCD(b_{r+1}^0,\cdots,b_m^0,c)$. Then S' is the set of solutions of the linear GCD equation

$$(4.10) \qquad \qquad GCD(\alpha_{1}y_{1}+b_{1}^{0},\,\cdots,\,\alpha_{r}y_{r}+b_{r}^{0},\,\circ\cdot y_{r+1}+\circ\,,\\ \cdots,\,\circ\cdot y_{n}+\circ,\,c_{0})=d\;.$$

Thus $t_0 = d' \prod_{i=1}^k p_i$ is also the minimum modulus of (4.10) and hence by (4.8) of Corollary 5,

$$N_{t_0} = |\,d'\,|^{n-r}\prod\limits_{j=1}^r|\,d'_j\,|\prod\limits_{i=1}^k\left(|\,p_i\,|^n\,-\,|\,p_i\,|^{n-t_i}
ight)$$

where $d'_j = d_j/d_1$ and t_i is the largest j in $\{1, \dots, r\}$ for which $GCD(\alpha_j/d_j, p_i) = 1$ since $\alpha_j/d_j \mid \alpha_{j'}/d_{j'}$ if j < j'.

If R/cR is finite, then

$$N_c = |c|^{n-r} \prod_{j=1}^r |d_j e| \prod_{i=1}^k (1 - |p_i|^{-t_i})$$
 .

Finally we remark that the formula for N_{t_0} in (4.1) applies to the class \mathscr{D} of GCD domains R which contain at least one element p such that R/pR is a finite field. Some immediate examples are the integers Z, the localizations $Z_{(p)}$ at primes p in Z and F[X] where F is a finite field.

However, an example of such a ring R in \mathscr{D} which is not a PID is the subring R of Q[X] consisting of all polynomials whose constant term is in Z. Indeed R is a Bezout domain which cannot be expressed as an ascending union of PID's [1]. Clearly if p is a prime in Z, then R/pR is isomorphic to the finite field Z/pZ.

We are also indebted to Professor W. Heinzer for the following construction of a ring R in $\mathscr D$ which is a UFD but not a PID. Let F be a finite field. Let Y be an element of the formal power series ring F[[X]] such that X and Y are algebraically independent over F. Let V denote the rank one discrete valuation ring $F[[X]] \cap F(X, Y)$ and let $R = F[X, Y][1/X] \cap V$. Then R/XR is isomorphic to F and R is a UFD.

REFERENCES

 P. M. Cohn, Bezout rings and their subrings, Proc. Camb. Phil. Soc., 64 (1968), 251-264.

- 2. D. Jacobson and K. S. Williams, On the solution of linear GCD equations, Pacific J. Math., 39 (1971), 187-206.
- 3. I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc., 66 (1949), 464-491.
- 4. H. J. S. Smith, On systems of linear indeterminate equations and congruences, Phil. Trans. London, **151** (1861), 293-326. (Collected Mathematical Papers Vol. **1**, Chelsea, N.Y.), (1965), 367-409.
- 5. R. Spira, Elementary problem no. E1730, Amer. Math. Monthly, 72 (1965), 907.

Received February 22, 1974 and in revised form September 3, 1974. This research was supported in part by NRC Grant-A8749.

University of New Brunswick