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LINEAR GCD EQUATIONS

DAVID JACOBSON

Let R be a GCD domain. Let A be an m X n matrix
and B an m X 1 matrix with entries in B. Let c+#0, deR.
We consider the linear GCD equation GCD(AX + B, ¢) =d.
Let S denote its set of solutions. We prove necessary and
sufficient conditions that S be nonempty. An element ¢ in
R is called a solution modulus if X + tR®" &S whenever
XeS. We show that if c¢/d is a product of prime elements
of R, then the ideal of solution moduli is a principal ideal
of R and its generator t, is determined. When R/{,R is a
finite ring, we derive an explicit formula for the number of
distinet solutions (meod ¢,) of GCD (AX + B, ¢) =d.

1. Introduction. Let R be a GCD domain. As usual GCD
(a;, ---, a,) will denote a greatest common divisor of the finite sequence
of elements a,, ---, a,, of R.

Let A be an m X n matrix with entries a,; in B and let B be an
m X 1 matrix with entries b, in R for ¢ =1, -+-,m; =1, .-+, n.
Let ¢ # 0, d be elements of R. In this paper we consider the “linear
GCD equation”

GCD(allxl + oo+ Q10ln + bl, Tty

1.1
1) Qs + *++ + AQputy + b, 0) = d .

Letting X denote the column of unknows x,, ---, 2, in (1.1), we shall
find it convenient to abbreviate the equation (1.1) in matrix notation
by

(1.2) GCD(AX + B, c) = d .

Of course we allow a slight ambiguity in viewing (1.1) as an equation,
since the GCD is unique only up to a unit.

Let R™ denote the set of » X 1 matrices with entries in R. We
let S = S(A4, B, ¢, d) denote the set of all solutions of (1.1), that is

S={XeR"|GCD(AX + B, ¢) = d} .

If S is nonempty, we say that (1.1) or (1.2) is solvable. Note that
X satisfies GCD(AX + B, d) = d if and only if X is a solution of the
linear congruence system AX + B = 0(mod d).

We show in Proposition 1 that if (1.1) is solvable, thend|¢c, AX +
B = 0(mod d) has a solution and GCD(A, d) = GCD(A, B, ¢). Here
GCD(A, d) = GCD(ayy, *++, Qypy ***, Qs ***y Ay &) and GCD(A, B, ¢) =
GCD(4, by, +++, b,, c). Conversely we show in Proposition 3 that if
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the above conditions hold and e¢ = ¢/d is atomic, that is ¢ is a product
of prime elements of R, then (1.1)is solvable. (Also see Proposition 4).

Let the solution set S of (1.1) be nonempty. We say that ¢ in
R is a solution modulus of (1.1) if given X in S and X = X'(mod ¢t),
then X’ is in S. We let M = M(A4, B, ¢, d) denote the set of all
solution moduli of (1.1). We show in Theorem 2 that M is an ideal
of R and if ¢ = ¢/d is atomic, then M is actually a principal ideal
generated by d/g(p, --- p), where g = GCD(4, d) and {p, *--, D}
is a maximal set of nonassociated prime divisors of ¢ such that for
each p,, the system AX + B = 0(mod dp,) is solvable. This generator
a/g(p, - -+ p,) denoted by ¢, is called the minimum modulus of (1.1).

In §4 we assume that R/t,R is a finite ring and we derive an
explicit formula for the number of distinct equivalence classes of
R"(mod t,) comprising S. We denote this number by N, =N, (4, B, ¢, d).
Let A’ = AJg and d’' =dJg. Let L ={X + d'R*| A’X = 0(mod d')}
and L, = {X + d’R"| A’X = O(mod d’'p,)} for 1 =1, ---, k. In Theorem
3 we show that

(1.3) Nio = ]L | fl':]; (J R/p.R|* — IR/piR [ptritsa)

where r; is rank A’(mod p,) and s, is the dimension of the RE/p.R
vector space L/L,.
The formula (1.8) is applied in some important cases. For example
in Corollary 6 we determine N,, when R is a principal ideal domain.
This paper is an extension and generalization to GCD domains,
of the results obtained over the ring of integers Z in [2].

2. Solvability of GCD (AX + B, ¢) = d.

ProrosiTiON 1. If GCD (AX + B, c) = d 1is solvable, then the
following conditions hold.
2.1) (i) dle,
(ii) AX + B = 0(mod d) is solvable,
(iii) GCD(A4, d) = GCD(A, B, ¢).

Proof. Let X satisfy GCD(AX + B, ¢) = d. Then clearly (i) d|¢
and (ii) AX+ B=0(modd). Let AX + B =dU where U is an
m X 1 matrix with entries u; for ¢ =1, ---, m. Then GCD(dU, ¢) =
GCD(du,, ++-, du,, ¢) = d. Let g = GCD(A4, d) and h = GCD(A, B, c).
Then B = 0(modg) as AX — dU = B and ¢ |c as d|¢, which shows
that g|h. Also dU = 0(mod %), so that & | GCD(dU, c), that is k| d.
Thus & |g, which proves (iii).

PROPOSITION 2. Let ¢ in R have the following property
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(I) GCD(AX + B, e) = 1 is solvable whenever GCD(A, B, ¢) = 1.
Suppose that ¢ = de, AX + B = 0(mod d) is solvable and GCD(4, d) =
GCD(A, B, ¢). Then GCD(AX + B, ¢) = d ts solvable.

Proof. Thereexist X’in R*and Vin R™ such that AX’' + B=dV.
Let g = GCD(A, d) and let A’ denote the matrix with entries a;/g
and B’ the matrix with entries b,/g for i =1, ---,m; j=1, -+, n.
Then A’X’+ B'=d'Vwhered =d/g. Weclaim that GCD(4’, V, e) =1.
For let » be any divisor of GCD(A’, V,e). Then B’ = 0(mod k) and
h|GCD(A', B', ¢') where ¢ = d'e. However, GCD(A’, B',¢)=1 as
9 = GCD(A, B, ¢). Hence h is a unit, that is GCD(4’, V,e) =1. So
by property (I), there is a Y in R" such that GCD(A'Y + V, ¢) = 1.
Thus GCD(A(d'Y) + dV, de) = d and if we set X = X' + d'Y, then
GCD(AX + B, ¢) = d, establishing the proposition.

We show in Proposition 3 that if e is atomie, then ¢ satisfies
property (I).

We require the following useful lemmas.

LEMMA 1. Let e = p, --- D, be a product of nonassociated prime
elements p,, ---, v, in R. If GCD(A, B,e) =1, then GCD(AX +
B, ¢) =1 is solvable.

Proof. Let GCD(A, B,e¢) =1. We use induction on k. Let
k=1. If GCD(B, p,) = 1, then X = 0 satisfies GCD(AX + B, p,) = 1.
‘Suppose that B = 0(mod p,). Then GCD(4, p,) = 1. Hence there is
a j such that GCD(ay, +--, @,; »,) =1. Let X’ in R” have a 1 in
the jth position and o’s elsewhere. Then GCD(AX? + B, p,) =
‘GCD(AX?, p,) = 1. Thus GCD(AX + B, p,) = 1is solvable. Now let
k>1and let ¢ = p, --- p,_,. By the induction assumption there is
X’ in R" such that GCD(AX' + B, ¢) =1. Let B = AX’ + B. We
claim that GCD(A¢, B, p,) = 1. If GCD(A, p,) = 1, then GCD(A¢,
B, p) =1. Suppose that A = 0(modp,). If B’ = 0(mod p,), then
B = 0(mod p,), contradicting the hypothesis that GCD(A, B, e) = 1.
Hence GCD(B’, p,) = 1, establishing the claim. So there exists a Y
in B* such that GCD((4¢")Y + B, p,) = 1. Let X = X’ + ¢'Y. Then
X = X'(mod ¢’) yields that AX + B = B’(mod ¢’). Thus GCD(AX +
B, ¢') =1 since GCD(B’, ¢') = 1. Also

GCD(AX + B, p,) = GCD((4¢\Y + B, p) =1,

80 that GCD(AX + B, ¢'p,) = 1, completing the proof.

LEMMA 2. Suppose that e is an atomic element of R.
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Let {p, +--, p} be a maximal set of monassociated
(*) prime divisors of e such that for each p;, the system
AX + B = 0(mod dp,) ts solvable .

Then X is a solution of GCD(AX + B, ¢) = d if and only if GCD(AX +
B, de)) = d, where ¢ = de and ¢, = p, -+ p,.

Proof. Since e is atomic, it is clear that we may select a set
{p,, ---, »} as defined in (*). If this set is empty, we let ¢, = 1.
Suppose that X satisfies GCD(AX + B, ¢) = d. Then there is U in
R™ such that AX+ B=dU and GCD(U,e¢) =1. Since ¢ e,
GCD(U, e) =1 and thus GCD(U, de,) = d, that is, GCD(AX +
B, de,) = d.

Conversely let X satisfy GCD(AX + B, de)) =d. Then AX +
B =dU and GCD(U, ¢,) = 1. Suppose there is a prime p|e and
U = 0(mod p). Then AX + B = 0(mod dp) and the maximal property
of the set {p, ---, »,} shows that p is an associate of some p,. So
U = 0(mod p,), contradicting that GCD(U, ¢,) = 1. Hence GCD(U, p) =1
for all primes p|e and thus GCD(U, ¢) =1, thatis GCD(AX + B, ¢)=d.

PROPOSITION 3. Suppose that ¢ = de, AX + B = 0(mod d) ts solvable
and GCD(A4, d) = GCD(A, B, ¢). If e is atomic, then GCD(AX +
B, ¢) = d 1is solvable.

Proof. Let e be atomic. By Proposition 2 it suffices to show
that e satisfies property (I). Thus let GCD(4,, B, ¢) = 1 where A,
is an m X » matrix and B, is an m X 1 matrix. By Lemma 2,
GCD(A,X + B,, ¢) = 1 is solvable if and only if GCD(4,X + B,, ¢,) =1
is solvable where ¢, = p, --- p, is a product of nonassociated prime
divisors of e. However by Lemma 1, GCD(4,X + B,, ¢) = 1 is solva-
ble since GCD(4,, B,, ¢,) = 1. Thus (I) holds and GCD(AX + B, ¢) =d
is solvable.

THEOREM 1. Let R be a GCD domain. Consider the following
condition

(II) GCD(ax + b, +-+, @,x + b, ¢) = 1 is solvable if
GCD(a,, +++, Qp, by, *=+, b, ¢) =1;

(1) If R satisfies (II), then GCD(AX + B, ¢) =1 s solvable when-
ever GCD(A, B, ¢) = 1.

(ii) If R is a Bezout domain such that GCD(ax + b, ¢) =1 1is
solvable whenever GCD(a, b, ¢) = 1, then R satisfies (II).

Proof. (i) Let R satisfy (II). Let GCD(A, B, ¢) =1 where A
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is an m X » matrix. We prove that GCD(AX + B, ¢) = 1 is solvable
by induction of n. For » = 1, solvability is granted by the suppo-
sition (II). Let n > 1 and let A’ denote the m x (n — 1) matrix with
entries ¢, ;,, forti =1 -+, m; j=1,---,n—1. If ¢/ =GCD(ay, -,
Qyn, €), then GCD(A’, B, ¢') = 1. Hence by the induction assumption,
there exist «, --:, 2, in R such that GCD(a,.x; + --- + @2, +
by vy Q®s + oo+ Wy + by €) = 1. If bl = @y + + -+ + 0%, +b;
for i =1, ---, m, then GCD(ay, -+, Gy, b, -+, b, ¢) = 1. Thus by
(II), there exists «, in R such that GCD(a,a, + b}, +++, @, + bn, ¢) = 1.
So if X in R" has entries x, ®,, ---, %,, then GCD(AX + B, ¢) = 1,
completing the proof of (i).

(ii) Let R be a Bezout domain, that is a domain in which every
finitely generated ideal is principal. Suppose that R has the property
that GCD(ax + b, ¢) = 1 is solvable if GCD(a, b, ¢) = 1. Let

GCD(aly ey, Qp, bly tt bm, C) =1 .

Let A and B denote the m x 1 matrices with entries a,, ---, a, and
b, +--, b, respectively. Then by [3, Theorem 3.5], there exists an in-
vertible m x m matrix P such that PA has entries @, o, ---, 0. Also
it is clear that GCD(PA, PB, ¢)=1. Let PB have entries b, b, -+, bl.
Thus by hypothesis, GCD(ax + b, ¢’) =1 is solvable where ¢ =
GCD(b;, - -+, b, ¢). Hence GCD(Ax + B, ¢) = 1 is solvable, that is R
satisfies (1I).

As an immediate consequence of the preceding propositions and
Theorem 1, we state

ProrPOSITION 4. Let R be a UFD or a Bezout domain such that
GCD(ax + b, ¢) = 1 is solvable if GCD(a, b, ¢) = 1. Then GCD(AX +
B, ¢) = d is solvable if and only if d|¢, AX + B = 0(mod d) is solvable
and GCD(A, d) = GCD(A, B, c).

We remark that we do not know whether there exists a GCD
domain in which (II) is not valid. Any Bezout domain satisfying (II)
is an elementary divisor domain [3, Theorem 5.2].

We conclude this section with the following result.

PROPOSITION 5. Let R be a Bezout domain. Suppose that (0)
GCD(ax + b, ¢) = 1 is solvable whenever GCD(a, b) =1 and a|c. Then
GCD(ax + b, ¢) = 1 is solvable whenever GCD(a, b, ¢) = 1.

Proof. Let GCD(a,b,c)=1. If a’=GCD(a,c), then GCD(a’,b) =1
and a'|c. By the assumption (0), there is #' in R such that
GCD(a's" + b, ¢) =1. If uw = a2’ + b, then o’ | (uw — b) and since R is
a Bezout domain, there is an z in R such that ax + b = u(mod c).
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Thus GCD(ax + b, ¢) = 1 since GCD(u, ¢) = 1.

Let a|c and let v: R/cR— R/aR be the epimorphism given by
Y(r + ¢R) = r + aR for all r in R. Let G(resp.G’) denote the group
of units of R/cR(resp. R/aR). If v:G— G’ is the induced homo-
morphism, then note that (0) is equivalent to the condition that
V(@) = G'. (See [5].)

3. The minimum modulus. Let the solution set S of
GCD(AX + B, ¢) = d be nonempty. Then

M={tcR|X +tR" < S for all XS}

is the set of solution moduli of GCD(AX + B, ¢) = d.

Note that ¢ce M for if Xe¢ S and X = X'(mod ¢), then AX + B =
AX' + B(mod¢), so that d = GCD(AX' + B, ¢).

It is obvious that M = R, that is S = R" if and only if d =
GCD(A4, d) = GCD(A4, B, ¢) and GCD(A/d(X) + B/d, ¢/d) =1 for all X
in R".

THEOREM 2. Let R be a GCD domain. Let GCD(AX + B,¢)=d
be solvable. Let ¢ =c/d = [[¢_.,e;. Let & =e, -+ e;_16., -+ €, for
i=1, - k.

(1) M is an ideal of R,

(2) M2NE, M, where M, is the ideal of solution moduli for
GCD(AX + B, de,) = d.

(8) If each é, satisfies property (I) of Proposition 2, then
M= N, M, and M is a principal ideal if each M, is principal.

(4) If e is atomic, then M ts a principal ideal generated by
ad/g(p, - -+ p.) where g = GCD(A, d) and {p,, ---, p} s defined in (*)
of Lemma 2.

Proof.

(1) As Sis nonempty, the set M is well-defined and o, ¢ belong
to M. Let ¢, t, bein M and let re¢ R. Let Xe S andlet Ye R*. Then
X+t,YeSand hence (X+¢t,Y)+t(—Y)eS, thatis X+ (¢, —t)Y e S
which shows that ¢ — ¢, e M. Also X + ¢,(rY)eS, that is X +
tr)YeS. So treM and thus M is an ideal of R.

(2) As d|c we let ¢ = de. Let S, denote the solution set of
GCD(AX + B, de,) = d where ¢ = [[_,¢,. Then clearly S = N, S..
Let teNf, M,. Let Xe8S and let YeR*. Then X +tYecNi,S;
since XeN:.S,. So X + tYeS, that is ¢ e M, which proves that
M2 Nk M.

(3) Assume that each ¢, satisfies property (I). We prove that
M& M, for i=1,---, k. As g = GCD(A4, d) = GCD(4, B, ¢), let
A" = Alg, B = B/g, and d’' = d/g. Let 7 be fixed and let X, S,.
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Then A’X,+ B'=d'U where GCD(U,e¢)=1. We claim that
GCD(e,A', U, é,) =1. TFor let h be a divisor of GCD(e;A’, U, é;). Then
A’ = 0(mod k) since GCD(h, e;) =1. Thus h|GCD(A’, B, d'e), that
is h|1. So by assumption there exists X’ in R" such that

GCD((e;AYX' + U, é,) =1.
Let X=X, + d'e¢,X’. Then for y=1, ---, k,

GCD(A'X + B, d'e;)
= &' GCD((e.A)X' + U, ¢5) = d’ .

Hence X e i, S;, that is Xe S. Now let te¢ M and let Ye R*. Then
X+tYeSandso X +tYeS, However, X +tY = X, + ¢tY(mod d’e;)
and thus X, +¢YeS,, that is ¢te M,;, which proves that M & M,.
So by (2), M = N, M,. Moreover, if each M, is a principal ideal,
say M, =t,R, then MN‘., M, is a principal ideal generated by the
LCM(t, ---, ty).

(4) Let ¢t be any element of M. We show that d/g|¢ where
g = GCD(A4, d). First note that S is the solution set of GCD(A'X +
B, d¢) = d where A’ = Alg, B = B/g, and d’ =d/g. Let Xe 8§ and
let A’X + B"=d'U. Then GCD(A'(X +tY) + B, de) =d forall Y
in R*. So GCD((A't)Y + d'U, d'¢) = d’ and thus (A't)Y = 0(mod d')
for all Yin R". Hence A't = O(mod d’) and since GCD(4/, d') =1, it
follows that d’|¢.

Now suppose that e is atomic. By Lemma 2, S is also the so-
lution set of GCD(A’X + B, d'e) =d where ¢, =p, ---p, and
{p, ---, i} is defined in (*). Thus M is also the ideal of solution
moduli of GCD(A’X + B’, d'e)) = d’. Let M; denote the ideal of
solution moduli of GCD(A’'X + B',d'p,) =d’ for 1 =1, --., k. Then
Lemma 1 shows that (3) can be applied to yield that M = N, M.
We prove that each M/ is a principal ideal generated by d'p;,. Clearly
d'p,e Mi fori =1, .- k. Let i be fixed and let ¢ be any element in
M;. Then as shown earlier, d' |t say t = d't’. By (*) there exists X
in B* such that 4’X + B’ = O(mod d’p;). Thus GCD(A’, p,) =1 since
GCD(A’, B', d’'e) = 1. So there is a j for which GCD(A'E;, p;) =1
where E; is the » x 1 matrix with 1 in the jth position and o’s
elsewhere.

Now assume that GCD(t', p,) = 1. Let X' = X + tE;. Then
GCD(A'(X'—X), d'p;)=d' GCD{'A’E;, p;)=d’ since GCD({'A’E;, p;)=1.
So GCD(A'X' — A’X, d'p;) = d and thus GCD(A'X’' + B, d'p)=d
as B= —A'X(mod d'p,). Hence GCD(A'(X’ + t(—FE;)) + B, d'p,) = d’
since te M;. That is GCD(A'X + B',d'p,) = d' and thus d'p,|d,
which contradicts that p, is a nonunit. So the assumption that
GCD(t', p;) = 1 is untenable, that is p,|¢. Thus d'p, |t proving that
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M; = d'p,R. However M = (i, M/, so that M is a principal ideal
generated by the LCM(d'p, ---, d’'p,), that is M is generated by
d'py -+ Dy

The generator d'p, --- p, of M is called the minimum modulus
of GCD(AX + B, de) = d.

4. The number of solutions with respect to a modulus. Let
GCD(AX + B, ¢) = d be solvable where ¢ = ¢/d is atomic. If ¢ in R
is a solution modulus of GCD(AX + B, ¢) = d, then S consists of
equivalence classes of R"(modt). If R/tR is also a finite ring, we let
N, = N/(A, B, ¢, d) denote the number of distinct equivalence classes
of R*(mod t) comprising S.

For R/tR finite, let |¢t| = | R/tR| denote the number of elements
in R/tR. Note that if ¢,|¢, then each equivalence class of R™(mod ¢,)
consists of |t/t,|" = (Jt|/|t,])* classes of R"(modt). Thus if ¢ is a
solution modulus and ¢, denotes the mininum modulus of GCD(AX +
B, ¢) =d, then N, =|t/t,|" N,. In Theorem 3, we explicitly deter-
mine N,.

The following lemma is also of independent interest.

LeMMA 3. Let R be a GCD domain and suppose that R/dR is
a finite ring. Let p,, ---, D, be nonassociated elements such that R/p,R
1s a finite field for i =1, --- k. Let A be an m X n matriz and let
r; denote the rank of A(modp,) for 1 =1 --- k. Let &= {Xe
R"|AX = 0(mod d)} eand L ={X + dR"|Xe <}. Let ¢ = It p;
and let &' = {Xe R"| AX = 0(mod de,)} and L' = {X + de,R"| X e &¥"}.
Let &4 ={XeR"|AX = 0(mod dp,)} and L; = {X + dR" | X e &£} for
1=1 +-- k. Lt H={X+¢R"|Xe ¥ }and H,={X + p,R"| X e ¥}
Jor t =1, --. k. Then

(1) IL'|=|L|IH]
and
(HI=]1/H,].

L/L, is an R/p,R wvector space of dimension s, and
[H,] = lR/piRIn-—(ri+sq‘,) for o 1, cee k.

s, = 0 if and only if for each X in ¥ there exists X’
in £, such that X' = X(mod d) .

(2)

(3)

(4) If GCDW, ;) =1, then s, =0 .

|L| =1 i and only if m = rank A(mod p) for each

(5) prime p|d .
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Proof.

(1) In the obvious way, L, L', and H are R-modules. Let
0. L/ — H denote the R-homomorphism defined by o(X + de¢,R") =
X + ¢,R™ for all X in &#’. Then clearly Ker ¢ = {¢,Y + de¢,R"| Y ¢ &}
so that L = Ker 0 under the R-isomorphism 7: L — Ker ¢ defined by
(Y + dR") = ¢,Y + de,R" for all Y in & Thus |L'|=|L||H]|
since Imo = H. We now show that H is isomorphic to @, H;, the
direct sum of the R-modules H;. Let v: H— @%, H, denote the
R-homomorphism defined by v(X + ¢,R") = (X + »,R", ---, X + p,R")
for all X in &¥’. If X+ ¢R"cKerv, then X = O(modp;) for
1=1,---, k, that is X = 0(mod ¢,), which shows that vis 1 — 1. To
show that Im~v = @', H,, let X,e &, for 1 =1, ---, k. Since R/dR
is finite, it is easy to verify that d is atomic. Thus let d = d, [, p™
where m; = 0 and GCD(d,, p;) = 1. By the Chinese remainder theorem
there exists X in R™ such that X = 0(mod d,) and X = X (mod p*)
for ¢ =1, ..., k. However, AX, = O(mod p*) for : =1, ---, k, so
that AX = 0mod (d, [T%., p*'), that is AX = 0(mod de,). Thus X +
¢, R"ec H and v(X + ¢,R") = (X, + p,.R", ---, X, + p,R"). Hence 7 is
an isomorphism and | H| = [t | H,|.

(2) Let Li={X+dp,R"| Xe} for =1, ---, k. Let 7 be
fixed. Let v:L;— L, denote the R-homomorphism defined by
V(X + dp;R*) = X + dR" for all X in &4. Then clearly Ker v =
{dY + dp,R"| AY = 0(mod p,)} and it follows that

|[Kery| = |R/p;R|"" = |p,|" "

where r; = rank A(mod p,). Thus | L;| = |p,|" | L, | since Imy = L,.
However by (1), | L}| = |L||H;|. Also since L, is an R-submodule
of L, the quotient module L/L, is defined and |L| = |L;|| L/L;|.
Thus we obtain that | H;||L/L;| = | p;|[*™". We now show that L/L;
is an R/p,R vector space. Let (X) = X + dR" for X in R". Then
L/L; = {X>+ L;| Xe <}. For r in R, let 7#=1r + p,R in R/p,R.
We define #((X) + L,) = {rX) + L; for all » in R and X in <~
We claim that this is a well-defined R/p,R multiplication on L/L,.
For let =% and (X)+ L,=<(X">+ L;,, where »,7c¢R and
X, X'es” Then r— 7 =o(modp,) and (X)) — (X">e L,, that is
(X — X">e L,. Thus there exists Y in & such that (X — X') =
<Yy, We must show that <rX)+ L,=<{r'X">+ L, that is
rX—rX>eL,, We write »rX—7rX =(@r—r) X+ rX- X').
However, X — X’ = Y(mod d) and thus »(X — X’) = rY(mod d). So
rX—rX =@ —1r)X+ rY(modd) and (»r — )X + rY e <. Hence
{(rX — ' X"y € L;, which establishes the claim. It follows immediately
that L/L,; is an R/p,R vector space since L/L, is an R-module.

Let s; denote the dimension of the R/p,R vector space L/L,.
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Then |L/L;| = |p;|* and as |H,||L/L;| = |p;| ", we obtain that
|H;||p:|" = |p;|""". Thus o=s,=n—7r; and |H;|=|p,[" """,
which completes the proof of (2).

(3) As |L|=|L;||»; ], it is immediate that s, = 0 if and only
if L = L;, that is if and only if for each X in & there exists X’
in & such that X’ = X(mod d).

(4) Suppose that GCD(d, p;) = 1. Let Xe . & By the Chinese
remainder theorem there exists X’ in R" such that X’ = X(mod d)
and X’ = 0(mod p;). Thus AX' = 0(mod dp,), so that s; = o by (3).

(5) Let p be a prime dividing d and let d = d,p. Then L =
{X + dpR"| Xe &}. However as shown in the proof of (2), |L| =
|p*~ ™| L,| where 7, = rank A(mod p) and L, ={X + d,R"| Xe &¥}.
Thus if |L| =1, then » = rank A(mod p) for any prime p|d. The
converse is trivial.

THEOREM 3. Let R be a GCD domain. Let GCD(AX + B,¢c)=d
be solvable and suppose that e = ¢/d is atomic. Let A’ = Alg and
d' = d/g where g = GCD(A, d). Lett, = d' [Ii, p; denote the minimum
modulus of GCD(AX + B, ¢) = d where {p,, ---, p,} s defined in (*)
of Lemma 2. Suppose that R[t,R is a finite ring. Let L =
X+ dR"| A’X = 0(mod d')} and L, = {X + d’R"| A’X = 0(mod d'p,)}
for i =1, -« k. Then

(.1) Ny = LT (p.]" = [ o rste9)

where r, denotes rank A'(mod p,) and s, denotes the dimension of the
R/p,R vector space L/L,.

Proof. Let S denote the solution set of GCD(AX + B, ¢) = d.
As g = GCD(A, B, ¢), let B' = B/g. Then by Lemma 2, S is also the
solution set of GCD(A’X + B, d’e;) = d’ where ¢, = [[i., »,. Let &
denote the set of X in R" such that A’X + B’ = O(mod d'). Let &4
denote the set of X in R" such that A’X + B’ = O(mod d'p,) for
1=1 -+, k. It is clear that S = \UL, & Let T,={X+
t.,R*| XeS}. Then | T,| is what we have denoted by N,. Also let
T={X+tR"|Xec}and T, = {X + t,R"| Xe &} fori =1, ---, k.
Hence T, = T\U:. T, and by the method of inclusion and exclusion

ki

(4.2) Ny = 1Ty = 2 (=1 | T4

where the summation is over all subsets I of

L=1{1, -k} and T, =N T:.

Now let &4 = MNier &4 and d} = d’' [1:c; »; for each subset I of
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I,. Then it is easy to see that &4 is the set of X in R"™ such that
AX+ B =0modd)) and T, ={X+ t,R"| Xe4}. Let T/ ={X+
diR"| Xe %4} and let I' = [L\I. Then |T;| = |T;| Ilier | p: ", since
X + d}R" consists of |t,/d; |" = Tl.er | p;|" distinct classes of RB*(mod t,).

Let &4 denote the set of X in R" such that A’X = 0(mod d)).
Let L ={X+ d}R"| Xe&5}. As 94 is nonempty for 1 =1, ---, k,
an argument involving the Chinese remainder theorem shows that
each %4 is nonempty. Hence it follows that | ;| =|L}|. Let L =
X+ dR"'|Xe%}) and L, ={X+ dR"| XeF,} for i=1, .- k.
Then (1) and (2) of Lemma 3 yield that | L}| = | L| [1;e; | . [*~ %7
where 7, = rank A’(mod p,) and s; = dimension of the R/p,R vector
space L/L,.

Hence by (4.2),

N, = | LIS (=D TLIp, =05 TT |,

where the summation is over all subsets I of I, and I’ = I,\I. Thus
we may write

k
Ny, = [ LITT 2P 3 (=) I |0
where the summation is over all subsets I of I,. However,
k
I~ |p[f%9) = 32 (=D IT [ pe[ 779,

which yields the formula (4.1) for N,. This completes the proof of
the theorem.

We remark that if p is the highest power of p, dividing d',
then s, is also the dimension of the R/p,R vector space KY/K, where
K ={X + p"R" | A’X = 0(mod p})} and

K, = {X + pMR* | A’X = O(mod pl*)} .

Also note that », =1 for ¢ =1, ---, k.
In Corollaries 1 and 2, the notation is the same as in Theorem 3.

COROLLARY 1. Let GCD(AX + B, ¢) = d be solvable and suppose
that e = ¢/d is atomic. Let R[t,R be finite where t, = d' [[., p, s
the minimum modulus of GCD(AX + B, ¢) = d.

(i) If GCD(d, e) =1, then

@3 Ny = LI (o = 2 -

(ii) If |L| =1, then
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.4 N, =TL0n " = 9,

where r, =n if p;|d.
(iii) If »' = rank A’(mod p,) for i =1, ---, k, where n' denotes
the smaller of m and n, then

“.5) Ny =ILITL(p.] = [2.77) -

(iv) N,, =1 ¢f and only if (a) | L | = 1 and there exists no prime
ple such that AX + B = 0(mod dp) is solvable, or (b) n =1 and
[p| =2 for any prime v |e such that AX + B = 0(mod dp) is solvable.

Proof.

(i) If GCD(, p;) =1, then (4) of Lemma 3 shows that s, = o
in (4.1). Hence if GCD(d', e¢) = 1, then s, =0 for ¢ =1, ---, k, which
yields (4.3).

(ii) Suppose that |L|=1. If p,|d, then n =» by (5) of
Lemma 3 and thus s, = o since s, <n—r,. However if GCD(d', p,) =1,
then s; = o, so that (4.4) is immediate from (4.1).

In particular if d =1, then N, is given by (4.4). If A’ is in-
vertible (mod d’), then (4.4) also applies.

(iii) If n = r, then s, =o0. If m = r, then the criterion in (3)
shows that s, = 0. Thus (4.5) follows from (4.1).

(iv) Suppose that N, =1. Then by (4.1), |L| =1 and thus
s;=o0 for ¢=1 ---, k. If p, is a prime dividing ¢ such that
AX + B = 0(mod dp,) is solvable, then |p,|" — |»;|"" =1, so that
n =r7r;,=1and |p,|] =2. Thus either (a) or (b) holds. Conversely
if (a) holds, then N, =1. If n =1, then clearly |L| =1 and hence
(b) implies that N, = 1.

COROLLARY 2. Let GCD(AX + B, c) =d be solvable and let
e = c/d. Suppose that R/cR is a finite ring. Then

(4.6) N, =|L| Igelniljl (1 — | p, |"irirey

Proof. Since R/cR is finite, e is atomic. Thus ¢, = d' [I%, p; is
the minimum modulus of GCD(AX + B, ¢) =d. Also R/t,R is finite
since ¢,|¢, so that N, is given by (4.1). However N. = |c/t,[" N,,
which yields the result (4.6).

COROLLARY 3. Suppose that R/cR 1s a finite ring. Then
GCD(ax; + -+ + a,x, + b, ¢) = d s solvable if and only if d|c and
GCD(a,, -+, a,,d)=GCD(a,, +++, a,, b, ¢). Leta;=a;lgforj=1, ---, n
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where g = GCD(ay, +++, a,, d). Let {p,, ++-, v} be a maximal set of
nonassociated prime divisors of e = ¢/d such that GCD(a;, ---, ar, p;) =1
Jor i =1 ... k. Then

@7 No=lePlgel T = Inl™) .

Proof. Suppose that ¢ = de and ¢ = GCD(a,, ---, a,, b, ¢). Since
R/cR is finite, d is atomic and R/pR is a finite field for any prime
pld. Hence as g|b, a standard argument shows that ax, + --- +
a,%, + b = o(mod d) is solvable and has |g||d | distinet solutions
(mod d). Thus GCD(ax, + --- + a,x, + b, ¢) = d is solvable since e
is atomic. Let d' = d/g and b’ = b/g. Since GCD(a;, ---, ar, d'p;) =1
and R/d'p,R is finite, ax, + --- + aix, + b’ = 0(mod d’'p,) is solvable
fori=1, --- k. It follows that ¢, = d’ [[%, p, is the minimum modulus
of GCD(ax, + +++ + a,x, + b, ¢) = d. Let A’ denote the 1 x » matrix
(@, -+, a,). Then rank A'(modp,)=1 for v=1 ... k. Also
ax, + - + a,x, = o(mod d’) has |d'[*" distinct solutions (mod d’).
Thus by (iii) of Corollary 1,

N, =@ T (p ) = 2.7,

which yields (4.7).

COROLLARY 4. Suppose that R/cR is a finite ring where ¢ = de.
Let g=GCD(ay, -+, a,, d) and a;= a9 for 1=1, - m. Then
GCD(ax + by, ---, @ux + b, ¢) = d s solvable if and only if

(1) GCD(a, d)|b, for 4+ =1, -+, m,

(2) ab;=ad(modd) for 1 <1< j=m,

(3) 9=GCD(ay, -+, ap, b, -+, b, ©).

Let {p,, ---, p} be a maximal set of nonassociated prime divisors of
e such that for each p,, GCD(a, dp,)|b, for 1 =1, .- m and
a; = ab(mod dp,) for 1 <1< j=<m. Then

N.=lgel T —Iml™) .

Proof. Let A and B denote the m X 1 matrices with entries
a, +--, a, and b, ---, b, respectively. Since R/dR is finite, the reader
may easily verify that the system Az + B = 0(mod d) is solvable if
and only if (1) and (2) hold. Thus as e is atomic, GCD(Ax + B, c) =d
is solvable if and only if (1), (2), and (3) hold. Let GCD(Ax + B, c) =d
be solvable and let d’ = d/g. Then it follows that &, = d’' [Tk, ps is
the minimum modulus of GCD(Axz + B,c¢) = d. Let A’ denote the
m X 1 matrix with entries ai, ---, a@,,. Then rank A’(mod p,) =1 for



190 DAVID JACOBSON

1=1,++-, k. Also the system A’x = 0(mod d’) has only the solution
# = o(mod d’). Thus by (ili) of Corollary 1, N, = Ili-.((»s| — 1).
Hence N, = |ge| [Tio, (X — | 24 |7Y)-

COROLLARY 5. Let ¢ = de where e is atomic. Let g = GCD(a,,
cee,a,, d) and d' = d/g. Suppose that R/d'R is a finite ring. Then
GCD(ax, + by, -+, a2, + b,, ¢) =d s solvable if and only if
GCD(a;, d) | b; for j =1, ---,m and g = GCD(a,, +--, a,, b,, -+, b,, ¢).
Suppose that R/(T1:., )R s finite where {p, ---, D} is @ maximal
set of monassociated prime divisors of e such that for each p,,
GCD(a;, dp;) | b; for 5 =1, -+-, n. Then t,= d' [[%, p; is the minimum
modulus of GCD(ax, + b, -+, a,x, + b,, ¢) = d. Let d; = GCD(a;, d)
and d; = d;/lg for =1 ---,n. Then

n k
(4.8) Ny = 11T ( Rl = |27
where t, denotes the number of 7 in {1, ---, n} for which

GCD (‘;_J pi) ~1.
}

Proof. Suppose that d;|b; for j =1, ---, n. Let a} = a;/g and
b, = b;/g for j =1, --- n. Let A and A’ denote the n X n diagonal
matrices with entries a,, ---, @, and ai, ---, a, respectively. Let B
and B’ denote the » X 1 matrices with entries b, ---, b, and b;, ---, b,
respectively. Then the system A’X + B’ = 0(mod d’) is solvable since
GCD(a}, d') | b; for j =1, .-+, n and R/d'R is finite. Thus the system
AX+ B=0(mod d) is solvable. Henceif g=GCD(a,,+++,,, by, -+, b,, ¢),
then GCD(AX + B, ¢) = d is solvable.

Assume that GCD(AX + B, ¢) = d is solvable. It follows that
o = d' T[%, p; is the minimum modulus of GCD(AX + B, ¢) = d. Let
L={X+ dR"|A'X = 0(mod d')}. Let

Z={XeR"| A’X = 0(mod d'p,)}
and L, = {X + dR"| Xe <~} for i =1, ---, k. Then by (4.1),

Ny = LITL(p.l — o rste)

where 7, = rank A’(mod p,) and s, is the dimension of the RE/p,R
vector space L/L,. Clearly |L| = [[?..|d;| since d;= GCD(aj, d’)
for j=1,---,mn. Let Li={X+ dpR"| Xe ¥} and H,={X+
p.R"| XeF) for i =1, ---, k. Then (1) and (2) of Lemma 3 show
that |L}| =|L||H;|] where |H,|=|p,[* "t for 1=1, --- k.
However, GCD(a}, d'p;) = d; GCD(a;/d;, p;) and thus
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= 1 i p,
L4 = LI 1| 6CD(4E, »)

for ¢ =1, .-+, k. Hence |p, """ = [[2_, | GCD(a;/d;, p;)| and thus
|p, "t = | p, |""%, since ¢, is the number of j in {1, ---, n} for
which GCD(a;/d;, p) =1. So t,=r,+ s, for ¢ =1 --- k, which
yields (4.8).

Note that if R/cR is finite, then

n k
N =11 del T — 2.7

COROLLARY 6. Let R be a principal ideal domain. Let A be
an m X n matric of rank r and let «,, ---, a, be the invariant
factors of A. Let B be an m X 1 matriz and let (A: B) have rank
" and invariant factors B, -++, B,. Then GCD(AX + B, ¢)=d 1s
solvable if and only if (1) dle¢, () GCD(a, d) = GCD(B,, ¢), (3)
GCD(a;, d) = GCD(B;, d) for j=1 ---,r and B, =o(modd) if
r=r+1.

Let {p,, ---, p,} be a maximal set of nonassociated prime divisors
of e = c¢/d such that each p; satisfies (3') GCD(a;, dp;) = GCD(B;, ap,)
for j=1,--- rand B, =o(mod dp,) if v = r+ 1. Let d; = GCD(c;, d)
for =1 --- 7 and d' = d/d,. Then t, = d' T[] ., p, s the minimum
modulus of GCD(AX + B, ¢) = d. Suppose that R/t,R is finite. Then

(*.9) Ny =1 TG T (e = [20P70)

where d; = d;/d, and t, denotes the largest j in {1, ---, r} for which
GCD(a;/d;, p;) = 1.

Proof. Since R is a principal ideal domain, it is well-known that
there exist invertible matrices P and @ such that PAQ = A, where
A, is an m X n matrix in ‘“diagonal form”, with nonzero entries
a, -+, a, and a;|a; if 7 < j. The elements «, ---, a, are called
the invariant factors of A and a; = D;/D;_, where D; denotes the
GCD of the determinants of all the 7 x j submatrices of A. Clearly
GCD(4, d) = GCD(«ay, - -+, «,, d), that is GCD(A4, d) = GCD(«,, d) since
a,la; for j =1, ---, r. Similarly GCD(4, B, ¢) = GCD(B,, ¢). How-
ever, it is also well-known that the system AX + B = 0(mod d) is
solvable if and only if condition (3) holds (see [4]). Thus GCD(AX +
B, ¢) = d is solvable if and only if (1), (2), and (3) hold.

Let GCD(AX + B,c) =d be solvable and let ¢ = de. Then
t,=d' [l p; is the minimum modulus of GCD(AX + B,c) =d.
Suppose that R/t,R is finite. Let S denote the set of X in R" such
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that GCD(AX + B,¢) =d. Let PB = B, and let S’ denote the set
of Y in R" such that GCD(4,Y + B,, ¢) = d. Then clearly Xe S if
and only if Y=Q'XeS’. Thus GCD(AX + B, ¢)=d and GCD(4,Y +
B, ¢) = d have the same ideal of solution moduli. Let T; = {X +
t,R"| XeS}and T;={Y + t,R*| Ye S’}. Then the mapping f: T;— T}
is a bijection, where f(X + t,R") = QX + ¢,R" for all X in S. Hence
| To| = | T7|, that is N, = |T;|. Let B, have entries b, ---, b5 and
let ¢, = GCD®Y,,, ---, b%, ¢). Then S’ is the set of solutions of the
linear GCD equation

GCD(a,y, + b3, -+, @y, + b2, 09, + 0O,

(4.10)
...yo.yn_}.o’co):d‘

Thus ¢, = d' [ . », is also the minimum modulus of (4.10) and hence
by (4.8) of Corollary 5,

r &
N, = |d |n~r]H=1 , d;[iIzll (p,I" — | p, |*4)

where d; = d;/d, and ¢, is the largest 5 in {1, ---,r} for which
GCD(«a;/d;, p;) = 1 since «;/d; | a;/d; if 7 < g’
If R/cR is finite, then

N.=lel T 1del [T~ [p]).

Finally we remark that the formula for N, in (4.1) applies to
the class & of GCD domains R which contain at least one element
p such that R/pR is a finite field. Some immediate examples are the
integers Z, the localizations Z,, at primes p in Z and F[X] where
F' is a finite field.

However, an example of such a ring R in <7 which is not a PID
is the subring R of Q[X] consisting of all polynomials whose constant
term is in Z. Indeed R is a Bezout domain which cannot be expressed
as an ascending union of PID’s [1]. Clearly if p is a prime in Z, then
R/pR is isomorphic to the finite field Z/pZ.

We are also indebted to Professor W. Heinzer for the following
construction of a ring R in & which is a UFD but not a PID. Let
F be a finite field. Let Y be an element of the formal power series
ring F[[X]] such that X and Y are algebraically independent over
F. Let Vdenote the rank one discrete valuation ring F[[X]IN F(X, Y)
and let R= F[X, Y][1/X]N V. Then R/XR is isomorphic to F and
R is a UFD.
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