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TWO RELATED INTEGRALS OVER SPACES
OF CONTINUOUS FUNCTIONS

R. H. CAMERON AND D. A. STORVICK

In this paper the authors evaluate Yeh-Wiener integrals
(which apply to functionals of a variable continuous
function of two arguments) in terms of multiple Wiener
integrals (which apply to functionals of several variable
continuous functions of one argument). First somewhat
specialized cases are given where the multiplicity of the
Wiener integral is finite, and then quite general Yeh-Wiener
integrals are evaluated in terms of limits of n-folά Wiener
integrals as n->oo.

Introduction* James Yeh [5]1 defined Wiener measure in the
space C2[S] of continuous real valued functions of two variables
defined on the square S O ^ s ^ l , 0 <. t <>1 and vanishing whenever
s or t equals zero. More recently James Kuelbs [3, 4] extended
Yeh's integral to integration over C2[X], the space of continuous real
valued functions on any compact subset X of the plane. Kuelbs
also defined a similar integral over spaces of functions of several
variables and even infinitely many variables [4]

In the present paper we shall consider integration over C2[X]
in the case where X is the rectangle R = {(s, t) \ a ^ s <;&, a <; t <; β}.
We note that this is closely connected with Yeh's integral over C2[S]
and that Kuelbs has given a formula for relating integrals over
C2[R] with integrals over C2[S], [3, p. 18].

Yeh's measure as applied to the space

C2[R] Ξ {&(., •) I Φ, *) = Φ, a) = °, Φ, t)
continuous for α ^ s ^ δ , a <^ t <^ β}

is defined as follows. Let a = s0 < ^ < < sm = 6, and a - ί0 <
tt < - < tn — β be subdivisions of [α, b] and [a, β] respectively and
let — co <ς pj k <; Qj Jc ̂  i co be given for j = 1, , m and k —
1, •••, n. Then

I = {x e C2[R] I Pj>k < x(sh tk) ^ QStk for j = 1, , m, k = 1, , n}

will be called an "interval" in C2[R], He defines the measure of the
interval / by

1 See also reference to Kitagawa in [5].
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m(I) = π — ' ί [ ( β 1 - s 0 ) ( s m - S m _ 1 ) ] - M / 2 [ ( ί 1 - « . ) • • • ( ί .

f«-.-<»») fβi,i ί_ - [%.lt-ltf_1,t-%,t_1 + tty_1,t-
i \ e x P 1 2-J2_J 7 Γ7T — :

where ^0)fc == ujfQ = 0 for j = 1, - , m; k = 1, , w.
This measure is countably additive on the set of intervals in

C2[R] and can be extended in the usual way to the sigma-algebra of
sets generated by the intervals and can then be further extended so
as to be a complete measure. Thus "Yeh-Wiener measurable set"
and its "measure" are defined in C2[R].

The integrals of functionals integrable with respect to this
measure will be called "Yeh-Wiener integrals".

In Theorem 1 of the present paper we establish a formula for
evaluating in terms of a Wiener integral the Yeh-Wiener integral of
a functional of x( , •) which actually depends solely on the values
of x on one horizontal line.

Theorem 2 treats the case of a functional depending only on the
values of x on a finite number of horizontal lines.

Theorem 4 deals with the case of a functional depending only
on the values of x on the two (perpendicular) free edges of R.
Examples are given to show how Theorem 4 can be used to evaluate
Yeh-Wiener integrals of specific functionals.

Finally in Theorem 5 we consider a class of functionals that may
depend on the values which x assumes at all points of the rectangle
R and not only on the values x assumes on some restricted set.

l The one line theorem* Let C^a, b] = {y( ) | y(a) = 0, y(t)
continuous on [α, 6]}, let R = [a, b] x [a, β] and let

CAR] = M , •) I x(a, t) = x(8, a) = 0, φ , t)
continuous for a ̂  s ^ 6, a <̂  t ^ β) .

THEOREM 1. Let a < 7 ̂  β, and let /(•) be a real or complex
valued functional defined on C^a, b] such that /(l/(7 — a)j2y) is a
Wiener measurable functional of y on Cι [α, b]. Then f(x( , 7)) is a
Yeh-Wiener measurable functional of x(-, •) on C2[R] and

where the existence of either integral implies the existence of the
other and their equality.

Proof. Let g(y) = /(V(7 — oc)βy). Then it suffices to prove that
#(α/2/(7 — ά)x(-9 7)) is Yeh-Wiener measurable and that
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(1.2) \ g(J—*—χ(., i))dx = ( g(y)dy

where the existence of either implies the existence of the other and
their equality.

Case I. Let us consider a subdivision a = s0 < sλ < < sm = 6
and let #(?/) = Xz(y) where I is the interval

1= {ye C^a, b]\ —oo <> Zi < y(s%) ̂  w< <: + oo, i = 1, . . . , m}

so that

where

K=\xe Ct[B] I - 00 ^ J 1 ^ L z i < x(sit 7) ^

^ +00, i, , m .

Thus in this case, flr(i/2/(7 — φ ( , 7)) is Yeh-Wiener measurable on
C2[R] (see Definition (2.1) of [4, p. 434]).

Because g(l/2/(y — a)x( f y)) is the characteristic functional of
an interval, the left member of equation (1.2) equals the measure of
the interval K, i.e.,

ί oi-J—— *(-, y))dx = \ Xκ(x( , ))dx
JC2[RJ \ f 7 — a / JC2ίB]

S V( r -«)/2w w (m) f V' {y-a)\lwχ

•••
V (r-α)/2zTO J V (ϊ-ot)l2z1

J V (^ %-i)

I -1 (β, - 8 W ) ( 7 -

V( r -«)/2w w (m) f V' {y-a)\lwχ

l2z1

QYrJ V ( ^ % i ) \7 J

exps

where ^0 = 0.

The right hand member of (1.2) can be evaluated in the following

manner,

g(y)dy = Uv)dy = [(2π)-(βl -«,)••• (βw - s^Γ'2

J
I

2

where v0 = 0. If we set vt = 1/2/(7 — ̂ ) ^ έ we obtain (1.2) and hence

(1.1).

Case II. Let g(y) = χβ(τ/) where β is the union of the disjoint
intervals Ilf I2, . Then by Case I, we have
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C2ίR]

including the measurability of the left hand integrand. The functional
obtained by summing over k is Yeh-Wiener measurable, i.e.,

Σ
Jfc=i

is Yeh-Wiener measurable. Then summing the integrals we have

Λ ΊLΩ\ V ^v > Ί)\ax — i XΩKVJ^V

Thus (1.2) holds in this case.

Case III. Let #(?/) = χΔ{y) where A is a countable intersection
of sets Ω of the type considered in Case II. Since finite intersections
of such sets are of the same type, we can set

where Ωλ z> Ω2 Z) £?3 z) and each Ωk is of the type considered in
Case II. Thus

g(y) - lim χQjc(y) ,

and g(y) is Yeh-Wiener measurable. If we now apply (1.2) to χΩ]c

and take limits we obtain (1.2) for g(y) = χΔ(y), including the meas-
urability of flf(l/2/(τ - φ ( , 7)).

Case IV. Let g(y) = χN(y) where N is a Wiener null set. Let
Nx be a Wiener null set of the type discussed in Case III such that
JVΊ=) N. Then (1.2) holds for χNι{y) and we have

Ί
cLia,b]

including the measurability of the left hand integrand which we now
know to be Yeh-Wiener almost everywhere zero. Thus

Ί — a

is also Yeh-Wiener almost everywhere zero and (1.2) holds.

Case V. Let g(y) = χE(y) where E is any Wiener measurable set.
Then E = A — N where A and N are sets of the type considered in
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Cases III and IV. By applying (1.2) to Δ and to N we obtain (1.2)
for E including the measurability of the left hand integrand.

Case VI. Let g(y) be a simple functional (with respect to Wiener
measure). Then g(y) is a linear combination with constant coefficients
of a finite number of functionals of the type considered in Case V.
Hence (1.2) holds.

Case VII. Let g(y) be a real nonnegative Wiener measurable
functional. Then g(y) is the limit of a monotone increasing sequence
of simple functionals and (1.2) follows from Case VI by monotone
convergence.

Case VIII. General case: Because any complex valued functional
can be decomposed into its real and imaginary parts and they into
their positive and negative parts, the theorem is proved.

2* The ^-parallel lines theorem* Having obtained a formula
for Yeh-Wiener integrals where the functional of x( , •) actually
depends only on the values of x(>, 7), i.e., on the values of x on one
horizontal line of the fundamental rectangle R, it is natural to
inquire next concerning functionals that depend solely on the values
of x on a finite number of horizontal lines, i.e., functionals of the
form

(2.0) F(x) = /[&(., O, a(. f t2), , x( , Q] .

One might expect to obtain the Yeh-Wiener integral of F as an
%-fold Wiener integral over the product of n Wiener spaces. Since
it is not immediately apparent what the formula should be, we begin
with the case where / depends on the values of the yk{ ) at a finite
number of points. Thus we let

(2 1)

where

<P(ultί, w2,i, , umtl; ••;%!,», , umιn) == φ{U)

is defined on Rmn and U denotes the rectangular array
{ ;̂}ί=i, .,m ,;=i,...,%. Then from (2.0) and (2.1) we have

(2.2) F(x) - φ({x(sίf «,)}«,..,.) .
i=i, ,n

Integrating over C2[R] and evaluating the Yeh-Wiener integral we
have
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S Γ ' m n η-1/2

F(x)dx = \π™ Π Π («< - s^Jitj - tj-d
C2lR] L <=ι 3=1 J

(2.3) ( φ{U) exp f- Σ Σ (™<>y " ^ " 1 ; i ~ Γ/̂ '"1 + Ui-ι'j-ι)

where dU = d ^ ώ^m>w, where w0>i = w<>0 = 0 .
We now make the transformation

Vi,j = YJ-—

so

and obtain

ί ^(α )d^ - Γ(2ττ) Π (β* - β ί.i)T*/1

JC2\RΊ L i=i J

Π exp {--1 Σ ( ^

where vO)J = 0 .

For each fixed j , the sums in the exponential are those which
would occur in the evaluation of a Wiener integral, and so we see
that the whole expression is the evaluation of an w-fold Wiener
integral. Thus

\ F(x)dx = ί - ί
JC2[i2] JCΊCβ.6] JCΊCcδ]

(2.5)

We shall use the following notation for the cartesian product of n
n (n)

Wiener spaces X C^α, b] ~ Cλ[a, b] x x Cx[a, b].
We have given the motivation for the following theorem:

THEOREM 2. Let a = to<tι< < tn = β and let f[yu , yn]
n

be a real or complex valued functional defined on X CJα, b] such that
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(2.6)

is a Wiener measurable functional of (ylf •• ,yn) on X Cx[a, b\.
Then f[%( , tt), •••, #( , tn)] is a Yeh-Wiener measurable functional
°f %(*, •) o n C2[R] and

(2.7)

i x x v.)

where the existence of either integral implies the existence of the
other and their equality.

Proof.2 Let

., ±
Making the substitution zv = Σϊ=i "^(ί* — ί*-i)/2 2/̂ , we have

2 . («i ~ «o), , V-T—^7—(«• ~ «

Thus it suffices to prove that if g(yu , yn) is a Wiener measurable
functional of (yίf •••, 2/J, then

(2.8) .f t ί ) ,

is a Yen-Wiener measurable functional on C2[B] and

(2.9)
r W r

Case I. Let •,!/») = %/G/i, , i/n), where / is the interval
2 The proof has to proceed in the opposite order from the motivation because of

the measurability argument.
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/ = {(yi9 " j j e χ d [ α , 6] I ~ oo ^ ^>fc < Vk(Sj) ^ w i (Jb ^ + oo, for j
1, , ra, & = 1, , w}. Clearly J = Λ Π /2 Π Π /» where /,

n
{(Vi, , Vn) e X Q α , 6] I - oo ^ siffc < # fc(Si) ^ Wi>Jfe ^ + oo, for fc
1, , n). Now

(2.10) = π χJ\/—?—χ( , ίt), , V, 2 , N > *.) - *(•> *-0

Π

where

W , •))

~ ^ B J ^ +CO for Λ = l, •••,»},

and

(2.11)

where

jzJi=LWjik ^ + oo for fc = 1, -. .,

Thus in this case (2.8) is Yeh-Wiener measurable on C2[B] since χL.
is a Lebesgue measurable function in Rmn. Integrating the expression
(2.8) we obtain by using (2.10) and (2.11),

r m

— _-(mw)/2Γ/Q Q \ . . . (Q Q M~W/2IY/ ί \ . . . if t \\~ml2

r oo (mn) roo m

— Σ Σ ^—^ 3-Ltzλ 3~uk —L=hh=iLKdZJ ,

w h e r e ujtθ = uQ>k = 0. If we set vjtk = l/2/(ί f c — tk^)(uj}k — M/,fc_i) so
that u i | f c - Σ L i V ^ - ti-Jβv^i, we obtain
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G = (2τr)-"-" 2[( S l - β.) (β . - s^)]-"'*

" Γ π v / J ^ , ... ^ / v ^ w ...ί oo

g ΞEZ,,,) βxp {_

• Π X r ? 0 / i ( s ; ) , , 2/t(Si), , vΛs^dy, ••> dyn

( » ) r

JCΊ[α,6]

and Case I is proved. The remaining cases are analogous to those
of Theorem 1 and are proved in the same way.

3* The orthogonal transformation* Theorem 2 which we have
just proved gives us an evaluation of the Yeh-Wiener integral of a
functional F(x( , •)) which depends only on the values of x on n parallel
lines. It is natural to inquire next concerning functionals that depend
solely on the values of x on two perpendicular lines. We shall limit our
investigation in this paper to the case where the two perpendicular
lines are the free edges of the fundamental rectangle. Before we
can obtain such a theorem, we will need to establish a generalization
of Bearman's theorem [1, 130] on rotations in the product of two
Wiener spaces. (A theorem of this sort was once proved by Edwin
Sheffield, but so far as the authors know, it was never published.)

T H E O R E M 3. Let F(ylf '9-fyn) be any Wiener integrable func-
n

tional of 2/i( ), •••, 2/»( ) on X Cx[a9 b] and let (ci>j)i>j==u...,n be a real

orthogonal matrix (so that Σ2=i Gi,kCj,k — δtj for i, j = 1, , n).

Then the transformation

/QΠ) y (A — V n -7 •( A fnr i — 1 . . . ΎΪ

n
is a measure preserving transformation of X C^a, b] onto itself.
Moreover,

r (n) Λ

)c [α 6] ' " )c a 6 ^ * ' ' " ' V ^ l " ' ^ "

= L [«6] " " L [α δ] Fxjk CltjZj' "*'% °»jZs)dZi " dzn .

Proof. Case I. Let F depend only on the values of yl9 , y%

at a certain finite set of points, a — sQ < st < < sm — δ, i.e., let
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F(yl9 yn) =
6Δ

where /(tt l f l, u1>m; •; wWfl, , wΛflll) is a bounded measurable func-
tion of its nm arguments. It is clear that F is Wiener measurable

n
and bounded on X CJα, 6]. Now we have

(n)
I = \ \ F(Vi, , Vn)dyι - dy«

(mn)S oo {mn) r°°

2 J 2JI —jfi r~̂

where ui)0 = 0.
Let us make the transformation uί)k = Σ?=ici,ivi,fc where i =

1, , w and & = 1, , m, to obtain

S
oo (mn) roo

. . .
-oo J-oo

( n n

ΣCi.yVy.i, •••, Σ ^ Λ ' , .
i=i i=i/ Λ \ 2

» ΣCu(^t-^t-l)
Σ ^ ^ ^ 7 r Lexp i - Σ Σ ^ ^ ^ 7 r L\dv1Λ - ώ^w,m .

Since (cί}y) is an orthogonal matrix,

n / n \ 2 n

Σ Σ C i . ^ .fc - Vi.fc-i) = Σ (̂ i.fc - ^i.fc-i)2

and we obtain

S
co (mn) r 00

. . .

-00 j-00

. ft V /• ?; . . . V r 7; 1 e x n - Y V W>fe — Vj,k-i)

VJ=I i=i / I *=i i=i 2(sk — Sk-i)

(3.4) dv1Λ - - - dvn,m

( cuizs{sύ, - , Σ ^.,^,(
i

• \ i^(Σc uM ), • -, Σ C,A-(

In the above argument, the measurability of each successive inte-
grand follows from the measurability of f(ultl, " ,un>m), and the
boundedness of / implies the integrability of each integrand. Thus
(3.1) is established for Case I. If we apply (3.1) to the case where
/ is a characteristic function of a measurable set we observe that

n
(3.0) is a measure preserving transformation of X CJα, 6] onto itself.
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Case II. Let F(yίf •••,#») = 1Ω{VU , 2/»), where i2 is the union
of a countable disjoint set of intervals Ω = (JΓ=i ̂  a n ( i e a c ^ •'y *s

an interval in the product space X C^a, b], (as in the proof of
Theorem 2, Case I). Because each χz. satisfies the hypothesis of
Case I, the theorem holds when F is of the form F(yu •••, 2/*) =
Xijiϊli, •", Vn)' Since Ω is the countable union of measurable sets, it
is measurable, and by summing both sides of (3.1) applied to χIό we
obtain (3.1) applied to χΩ.

Case III. Let F = χE(yί9 , yn) where E is a Wiener measurable
set in Xn Ct[a, b]. The result of Case II can be extended from Ω =
[JT^iIj to countable intersections of sets of this form and then to
null sets and then to general measurable sets in the usual way.

Case IV. Let F be a nonnegative functional. If F is actually a
simple functional the result follows from Case III by multiplication
by constants and addition. If F is not a simple functional, it can
be expressed as a limit of a monotone increasing sequence of simple
functionals, and the theorem follows for this case.

Case V. General Case: If F is real, we write F = F+ — F~
and apply Case IV to F+ and to F~ and thus establish the theorem
for real functionals. The extension to complex functionals is
immediate.

4* The two perpendicular lines theorem* We now proceed to
establish a formula for the evaluation of the Yeh-Wiener integral of
a functional that depends solely on the values of x on two perpen-
dicular lines.

THEOREM 4. Let f{z, y) defined on Cx[a, b] x C\a, β] be a functional
such that

(4.0) +
-) τ - a V2(β - a)

is Wiener measurable on C^a, b] x C\a, β\. Then it follows that
f[x( , β), x(b, •)] is Yeh-Wiener measurable on C^B], where R =
[a, b] x [a, β]. Moreover,

\ fM; β), x(b, )\dx

*(&) ,,„„. χ
1/209 - a).
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where the existence of either member implies the existence of the
other and their equality.

Proof* Case I. Let f(z, y) = g(z; y{tx), , y(tn))f where a = t0 <
ίi < <tn = β and let g(z; uu , un) be the characteristic functional
of a half-open interval / in C^a, b] x Rn; i.e., I— {(z; ult , un) | — oo <ς
7, < z(sj) <; δy ^ +00 for j = l, - -, m) — 00 <^ ck < uk S dk S + 00 for

fc = 1, , w}, α = s0 < βi < < sm = 6.

The right member of (4.1) becomes

+
r - α τ/2(/3 - a)(4.2)

{ t n " V2(/S - a)

We now apply the well-known result : If φu — ,φn are ortho-

normal on [a, b] and of bounded variation on [α, b] and if h(ul9 •••,%*)

is measurable, then

I h\\ φ^dxit), •••, I ^Λ(£)dcc(ί) Wcc

(4.3) _ _^ p (n) p , . u]

J-oo J-oo 1? ' I i = l 2

where the existence of either member implies that of the other and
their equality.

To apply this result, we let

for i = l,

and note that θn{t) = 0, so

MEL = V θά{t)dy(t), for j = 1, . , n .
ίy τ — a J«

3 This proof is given in the logical order. For motivation read in reverse order,
using the inverse of the matrix (ckj).
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θffifdτ

θj(t)] for j = 1, , n - 1 ,

and observe that {̂ Ί, •• ,<?>

ίl-i} forms an orthonormal set on [a, β].
To solve for θά we write

and sum from j — fc to j — n — 1 to obtain

and consequently (4.4) becomes

'MEL= Σ J t%-t< \' φί(t)dy(t).
k T - a i=* v (ίy - α)(ί, + i - oc) J«

Substituting the value of \ (dy(τ))/(τ — a) for ft = 1, , n

into (4.2) we obtain

'δ - α
/2 =

Φ)

(4.4)
i/2Gβ-α)

1 8 - α)J' V
1/208 - α)

We now use (4.3) to evaluate the inner Wiener integral above
and obtain

(»-DS C~ (n—i) (••*>
( 2 f f ) - « - »'2 . . .

CΉM] J-oo J -
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If we set vό = up/ b — a, then
(n — 1)S

roo (n — 1) roo
(2π(b - α))"""- 1 " 2 ' . . . \

C7i[α,δ] J-oo J -

- y J
- α)

( ί y _ α ) ( ί / + ι _ α )

Γ V
- α) +

V2C8-α)J P l 2(6 - α)V2C8-α)J P l 2(6 - α)

• dVi dv^ίdz .

Using the formula

/

 1 Γ F{v)e'v%ιwh-a))dv =
V2π(b — a) J-~ j

(n — 1) times, we see that (replacing z by zn)

2(δ - α)

F(xφ))dx

JCΊCα.δ] JCΊ[α,δ] ^ V 2 1/2 L1//S — <X

- t,

J
V (

VΎ
zn(b)

(t._x - a)(tn - α) _Γ l/ 2 Vβ

We next apply Theorem 3, using the transformation
n

where for k ^ n — 1

- a)

-VA^iL

0
and

l ί J ^ fC

if i = fc + i

if i > k + 1

for j = 1, •••, w .

We note that (cfc,, ) forms a real orthogonal matrix and that

= Σ i/*y ~ ίy-ii/y , for Λ = 1, , n .
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Thus by Theorem 3

Γ w r r* It
i*=\ ••• g Σ V h

and by Theorem 2,

/« - ί 0(&( , U; »(6, ίi), , Φ, t%))dx = \ /[«(., /S), a?(6, -)]dx ,

and Case I is established.

We then proceed as in Theorem 1 to establish Theorem 4.

5* Applications of Theorem 4*

EXAMPLE 1. Let us apply Theorem 4 to the functional:

(5.0) f{z, y) - Γ p(s)[z(s)Yds V q(t)[y(t)Ydt

where p e L\a, b] and q e L^a, β]. Then

I = \ \\bp(8)[x(8, β)]2ds\βq(t)[x(b, t)γdt\dx

(5.1) = \ \ \" p(s)(^-=-^)z\s)ds V q(t)[(t - aγ\

2 J« r - a V2(β - ά)Δ

and each expression can be evaluated by known techniques to yield

(5.2) 4 J* J«

+ 2(β - a)(t - a)]dxdt .

EXAMPLE 2. We next show how to calculate the following
integral using Theorem 4: (the authors know of no way of evaluat-
ing the integral without applying Theorem 4)

(5.3) I~\ exp \A Γ [X(8, β)Yds + B V x(b, t)dt\dx .\
JC2ίRi

Let us set

(5.4) f(z, y) - exp j A j * [z(s)Yds + B ^ y{t)dt\ .
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By Theorem 4,

exp { A($ ~ a) [ [z(s)Yds
{ 2 JC1[α',/9]

= /i I2 where

(5.6) Jx = ί exp \Mβ-«) Γ [φ)γds\ e x p \B f'«• -

and

(5.7) 72 = ί exp {B^TΞK V (t - a) \' M&dtldy .

To evaluate /^ we shall use the following theorem of Cameron
and Martin [2, 75] where we have changed the scale and the variance:

THEOREM la. Let q(t) be continuous and positive on [a, b] and
let μ0 be the least characteristic value of the differential equation

(5.8) h"{β) + μq(s)h(s) = 0

subject to the boundary conditions

(5.9) h(a) = h'Q>) = 0 .

Then if F(x) is any Wiener measurable functional, if μ < μ0, and
if hμ(t) is any nontrivial solution of (5.8) satisfying h'μ(b) = 0, we
have

[ F(x) exp { ϋ Γ q(s)x2(s)ds\dx
JCΊEα.6] ( 2 Jα )

where the existence of either member implies that of the other and
their equality.

We now identify in the expression for Iλ in (5.6)

Let g(s) = 1, μ = 4̂(/9 — α:). An examination of the differential system
shows that the least characteristic value is μ0 = ττ2/(4(δ - α)2). We
must therefore have A < τr2[4(δ — a)\β — oc)]"1. Now
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hμ(s) = cos ((s - b)μι<*)

= c o s ( ( s - b)VA(β -a)) ,

and our integral lx may be evaluated:

\ \

cos ((δ — a)V A(β — a)) MCMI

exp \B(P-^ cos ((<j -

In order to employ (4.3), we normalize the secant function ap-
pearing in the Stieltjes integral, i.e., since

Γ sec2[(<7 - b)VA(β- a)]dσ = tan [(6 - a)VA{β - «)]

we let p(α) = sec [(σ — b)VA(β — α)](tan7)~1/2[A(/3 — ^)] 1 1 4, where 7 =
(6 — α)l/A(/3 — a). Our integral ^ becomes

I1 = Vsecrί \ exp \c 1 p(σ)dy(σ)\dy
JCΊCcδJ ί Jα )

where c - J5((/S - a:)/2)3/2τ/tarΓ7[A(/S - a)]~{1^.

We apply (4.3) to obtain

e

2π J -oo

exp

2

[sec [(6 - α)(A(/S - α))1"]]1*

[(6 - α

In J2, we set

r — a

= \\\τ - a)dy{τ) .

We normalize the integrand of this Stieltjes integral and set p(τ)
(τ - a)(β - a)-*t2VΎ, so the integral becomes
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and (5.7) becomes

Thus our original integral has the value I = It-12, so that

I = [sec [φ - a)(A(β - a))1"]]1'2

. e χ p I B\β - ay* tan [(6 - a)(A(β - aψ*) )

where A < 7Γ2/(4(δ - a)\β - a)) and A Φ 0.

6* General functionals* Finally we consider a class of func-
tionals which are not required to depend only on the values of x on
a restricted set. We do this by approximating F(x) by a sequence
of functionals F(xn) where xn is determined by the values of x on
n horizontal lines and is defined in between the lines by linear inter-
polation. We then apply Theorem 2 to F(xn) and take limits.

THEOREM 5. Let F{x) be a functional which is bounded and
continuous in the uniform topology on CZ[R]. Let

(6.0) g.[yu •., yn; s, t] =

for a ^ s ^ b, tk^ ^ t ^ tk, yke Cx[α, b] for k = 1, , n; where σ is a
subdivision, a = t0 < ίx < < £Λ = β, and

. . = 0.

Then

00r w r
\x)dx = lim I F

. _ . . *-vjjLjt"J n o r m σ—»0 J (7^[α,&] J ( 7 I [ G I & ]

( 6 . 1 )
2/1 + + V - 2 — ^ J L = 1 y » r d ^ i - m dVn-
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ΆVi, * * , V») = F{9o[Vi, '' , Vn, , •]}

so that

f[x(., ίθ, . . , a?(., Q] - F{sφ( , ί j , , &(-, ί J ; •, •]} ,

our functional / satisfies the hypotheses of Theorem 2 and we have

If we let

we obtain

ί Fa{x)dx
J C2[Λ]

JCAa.bl JcΊ[α,δ] ί L r 2 k=l V 2 J)

It is clear that limnorm σ^0 Fa(x) = F(x) for all xeCz[R] and since F is
bounded we may apply Lebesgue's convergence theorem to obtain
(6.1).
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