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MONOTONIC PERMUTATIONS OF CHAINS

THOMAS J. SCOTT

An automorphism (opp) of a chain Ω is a permutation g
of Ω which preserves order in the sense that ω < τ iff ωg < τg.
An anti-automorphism (orp) is a permutation k of Ω which
reverses order in the sense that ω < τ iff ωk > r&. A permu-
tation which either preserves or reverses order is called
monotonicy and the group of all monotonic permutations is
denoted hy M(Ω). M(Ω) is ordered pointwise, i.e., g^hittωg^
ωh for all ω e Ω. This yields a po &et but not a po-group. How-
ever the subgroup A(Ω) of all opps of Ω forms a lattice-
ordered group (Z-group). A subgroup K of M(Ω) is called
l-monotonic if Kf — K Π A(ί2) is nonempty, i.e., if ϋΓ contains
an orp, and if G(K) = K Π A(ί2) is a transitive Z-subgroup of
A(Ω). The group M(Ω) is Z-monotonic iff Ω is homogeneous
and admits an orp. The opp group G(K) has index 2 in K
and is o-isomorphic to K'. Thus JΓ' is also a lattice and
there exist orps k in K' such that &2 = 1. The stabilizer of
a point aeΩ is Ma — {m6ikf |am = a}, and the paired orbit
of J is J ; = {ag \ a 6 Jg for some g G G}. The Main Theorem 8
shows that a i£α-orbit is the union of a Grα-orbit and its
paired Gα-orbit.

An ϊ-subgroup H of A(Ω) is extendable if there exists an
/-monotonic group (K, Ω) such that G(K) = H. Regular
abelian opp groups and full periodically o-primitive groups
are uniquely extendable. There exist both extendable and
nonextendable o-2-transitive groups. A characterization of
o-primitive ί-monotonic groups is given.

The transitivity of G(K) forces all (G(K))a's to be conjugate in
G(K), and also forces all Ka's to be conjugate in G(K), so that most
statements about these stabilizer subgroups are independent of the
choice of a. Transitive ϊ-subgroups of A(Ω) have been studied exten-
sively by Holland [3], [4], and [5]; Lloyd [6]; and McCleary [7], [8],
[9], and [10], Standard results about po-groups and ̂ -groups can be
found in [1], while standard results about permutation groups can be
found in [12]. We make minimal use of these results since the main
theme of this paper is the interplay between orps and opps.

2* Basic structure theory• Let Ω be a totally ordered set (chain)
containing more than one point. Points of Ω will be denoted by lower
case Greek letters; subsets, by upper case Greek letters; and permu-
tations, by lower case Roman letters. The image of β e Ω under the
permutation / will be denoted by βf, so that if g is also a permu-
tation, β(fg) = (βf)g.
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Since Ω is totally ordered, a permutation g is automatically an
opp (orp) provided only that ω < τ implies ωg < τg(ωg > τg) for all
ω, τ 6 Ω. If k and m are orps of Ω and α and δ are opps of Ω, the
following facts are easily verified:

(1) ab, km, and a'1 are opps;
(2) ak, ka, and Ar1 are orps.
It follows from these facts that M(Ω) is actually a group under

composition, and that A(Ω) is a subgroup. It is well known that
A(Ω) is a lattice-ordered group under the pointwise order, with
β(f V g) = max {βf, βg] and β(f A g) = min {βf, βg). A group G is
called a po-group iff (? is a po-set such that α, δ, c, d e G with δ ^ c
implies abd <* acd. M(Ω) is not a po-group, for if δ ^ c are opps of
β and k is an orp of Ω, then δfc ^ ck.

If β is equipped with the order topology, then it is clear that
the orps and opps of Ω are homeomorphisms of Ω. There exist orps
of the integers without fixed points, but if k is an orp of a chain Ω
such that (a, ak) is connected, since the continuous image of connected
set is connected, k has a fixed point in {a, ak).

The ίntial number of a cardinal number is the smallest ordinal
number of that cardinality. An ordinal number ωβ is regular if it
is an initial number and all of its cofinal subsets have cardinality fc^.
Following [9] we say that a point ae Ω has character cβr if ωβ is the
unique regular ordinal which is o-isomorphic to a cofinal subset of
{σeΩ\σ < a} (or equivalently, if \ξβ is the smallest cardinality of
any cofinal subset of {σeΩ\σ < a}), and dually for ωr. A chain is
homogeneous if A(Ω) is transitive. A point of Ω has symmetric
characters if its left character equals its right character. A necessary
condition for a homogeneous chain Ω to admit an orp is that points
of Ω have symmetric characters. Examples of chains with nonsym-
metric characters are easy to produce, e.g., the semi-long line with
points of character c01.

In the sequel all chains will be homogeneous and will admit orps.
A monotonic group (K, Ω) is t-monotonίc if G(K) is transitive on Ω.

THEOREM 1. // (K, Ω) is monotonic, then (K: G(K)) = 2, so that
G(K) is normal in K.

Proof. It follows from facts (1) and (2) that if k,me K\ km'1

is an opp. Since G = G(K) is the group of all opps in K, km'1 is in
G, so that Gk = Gm. Hence (K: G) = 2.

THEOREM 2 // (K, Ω) is t-monotonic, then for any aeΩ, (Ka:
(G(K))a) = 2.
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Proof. Since G — G(K) is transitive and K contains at least one
orp k, if a e Ω, there exists g e G such that akg = a. Thus K'a is
not empty. The result now follows from a proof analogous to the
proof of Theorem 1.

An opp group (G, Ω) is called regular if G is transitive and Ga =
{1} for one (and hence, every) ae Ω.

COROLLARY 3. If (K, Ω) is monotonic, G(K) is regular and a e
Ω, then K'a contains precisely one element.

THEOREM 4. // (K, Ω) is monotonic and G = G(K), then left
multiplication by a fixed orp r e K' provides an o-isomorphism (order
preserved both ways) from G onto K''.

Proof. If K m e M(Ω) and p is any permutation of Ω, apk ^
apm and ap~λk ^ ap~γm. Thus pk ^ pm and p~ιk ̂  p^m. It follows
from Theorem 1 that if r e K', rG = Kr and rKr = r2G = G. Thus
if g, heG, g ^ h iff rg <: rΛ,; and similarly if k, meK', k ̂  m iff
rfc ^ rm. Thus left multiplication by r is an o-isomorphism from G
onto IT.

COROLLARY 5. If {K, Ω) is monotonic and G(K) is an l-subgroup
of A(Ω), then K' is a lattice with a(k A m) = min {ak, am), and
dually for suprema.

Proof. Since every o-isomorphism of a lattice is a lattice iso-
morphism, the first statement follows from Theorem 4. If k, meK',
by Theorem 1, m — ka for some aeG(K). Since 1 A aeG(K), it
follows from Theorem 4 that k(l A a) = k A meK'. If aeΩ, a(k A
m) = ak(l A a), and since akeΩ (and 1 Λ aeG(K) where infs are
pointwise), ak(l A a) = ak A ocka = min {ak, am}. A dual argument
shows that a(k V m) = max {αfc, am).

COROLLARY 6. When ordered pointwise, the orps of any chain
(homogeneous or not) form a lattice.

Proof. A{Ω) is an Z-permutation group.

The following lemma uses the lattice properties of M(Ω) to establish
the existence of orps which square to the identity. These orps will
be very useful in §3, and in the upcoming example which shows that
this nice behavior is not valid for ί-monotonic groups.

LEMMA 7. If k is an orp of any chain Ω, then (k A Ar1)2 = 1 =
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(k V AT1)2.

Proof. If k is an orp of Ω9 M(Ω) is monotonic so that k A Ar1 e
M' by Corollary 5. If β e Ω and βk'1 <ί βk, since kr1 is an orp,
βk~2 ^ β. Thus by Corollary 5, /9(& Λ λΓ1)2 = βk'\k A k~ι) = min {β,
βk~2} = β. Similarly if βk ^ βk~\ we have β(k A Ar1)2 = β so that
(k A Ar1)2 = 1. The dual argument shows that (A; V Ar1) 2 = 1.

If (G, ί2) is a transitive Z-permutation group and δ e Ω, the Ga-
orbit containing δ is {δg\g eGa} It is easy to show [7, Proposition
1] that the orbits of Ga are convex. Thus the Gα-orbits partition Ω
into convex subsets, and this set inherits the natural total order, i.e.,
if A and A are Gα-orbits, then A ^ A iff δ <; 7 for all δe A, leΛ.
Furthermore, this natural total order is independent of a [7, Theorem
9]. We define for each Gα-orbit A, a paired orbit Δf = {ag\ae Ag),
and always use the notation A' to refer to pairings with respect to
some distinguished point a. It is shown in [12, §16] and [7, Theorem
9] that Af is indeed a Gα-orbit, and in [7, Proposition 4] that the map
A —> A' is an o-anti-isomorphism of the set of Gα-orbits with the pro-
perty that A" — A for any Gα-orbit A.

If βeΩ and βGa = {β}, then β is called a fixed point of Ga. If
/3Gα =7̂  {β}, {βGa} is a Zo^ Gα-orbit which must necessarily be infinite.
A Gα-orbit A is called positive (negative) iff δ > α(δ < α) for each
δ e A, and {a} is called the zero Gα-orbit.

The following theorem describes the relationship between the
G(iΓ)α-orbits and the iΓα-orbits of an Z-monotonic group (K, Ω).

THEOREM 8 (Main Theorem). If'(K, Ω) is l-monotonic, G = G(K),
A is a Ga-orbit, and k e K'a, then Ak = A'. Thus a Ka-orbit is the
union of a Ga-orbit and its paired Ga-orbit.

Proof. If k9 m e K'ttJ since km'1 e Ga, Akm"1 = A and Ak = Am. It
follows that AK'a is the union of Gα-orbits, for suppose that Γ is a
Gα-orbit not contained in Ak which meets Ak. Then if 7 e Γ\Ak and
β e Γ Π Ak, there exists g e Ga such that βg — 7. But then Akg Φ Ak,
which is a contradiction since kg eK'a. Thus Ak is the union of Gα-
orbits.

Suppose δk, τke Ak. Then since A is a Gα-orbit, there exists g e
Ga such that δg = τ. Thus δk(k~ιgk) = δgk — τk, and since A;"1^^ e Ga,
δk and rfc are in the same Gα-orbit. This shows that Ak is a Gα-orbit.

We note that both pairing and ke K'a provide an involution of
the set of Gα-orbits, so that we may assume that A is a positive Gα-
orbit. To show Ak = Ar, first suppose Af < Ak.
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Δk ^ - / = h^ ^ - — g-
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If δ e Δ, there exists g eG such that δg — a, and from the definition
of pairing we have ag = τ e Δf so that α:# < <5fc. But G is a transitive
i-group, so there exists heG such that δkh = α. Now # - 1 ^ 0"1 Λ
h = / and a = δkh = δkf; also akg'ιkf = tfflΓ1*;/ = δfc/ = α. But
since 0"1 ;> /, δfcflΓ1 > δfc/ = α, so that δkg~ιkf < af. Since pairing
is an orp of the Gα-orbits and Δk > Δ\ {Δk)f < Δ" = z/. Since (§&)/ =
α, from the definition of pairing we have af e {Δk)f < A. Thus
δkg~ιkf < af e (z/&)' < J, and this is a contradiction since kg~ιkf e Ga

and Δ is a (?α-orbit.
If Δk < Δ1 a dual argument leads to a contradiction. This com-

pletes the proof of Theorem 8.

COROLLARY 9. If (K, Ω) is l-monotonic and G = G{K), the paired
Ga-orbits are o-anti-ίsomorphic.

Proof. The o-anti-isomorphism is achieved by means of any k e Kf

a.

Transitive i-subgroups G of A(Ω) such that fixed points of Ga are
never paired with long <?α-orbits were called balanced in [7]. Examples
of unbalanced ^-permutation groups can be constructed, but it follows
from Corollary 9 that if {K, Ω) is Z-monotonic, then G{K) is balanced.

A monotonic group (K, Ω) is called c-monotonic if G(K) is coherent,
i.e., a < β e Ω implies that there exists 1 ^ g e G(K) such that ag =
β. The chain of implications ϊ-monotonic => c-monotonic ==> ί-mono-
tonic => monotonic is easy to verify. The following is an example of a
c-monotonic group (if, Ω) which not only has no orp k such that k2 = 1
but also does not have the orbit pairing property of Theorem 8.

Suppose H is the subgroup of the linear group of the reals which
consists of the elements {ax + β \ a is a positive rational and β is any
real number}. An element g of H is positive iff a = 1 and β > 0.
Then H is a coherent opp group, but not an i-permutation group.
Let k be the orp of the reals which sends each real number a to
—V2a. Since ak2 = 2a, k2eH. If h e H there is a positive rational
number τ and a real number β such that ah = τa + β for each real
number a. Hence akhk = 2τa — τ/2/3, so that khk e H for each h e
H. The element g of H defined by τg = τ/2 has the property that
AT1 = kg, so that khk'1 e H for each heH. Since k2 e H if K = <fc, #>,
it is easy to show that G(UL) = H. (In fact this result follows from
Theorem 10.) Thus K is c-monotonic, and if meifj, there exists a
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positive rational number 7 such that am = —V2rfa for each a. Since
am2 = 2τ2α and V 2 is irrational, m2 Φl.

If r G IT there is a positive rational number η and a real number
λ such that αr = —V2ηa + λ for each a. But then if r2 = 1, since
0 = Or2 = λ(l — V2η), either λ = 0 or τ/~2~ is rational, and because
of the above, both of these statements lead to contradictions. Thus
no orp in K squares to the identity.

Since the positive rationale are an orbit of HQ, the orbits of Ho

are not convex; and furthermore, since the positive rationale are paired
(in HQ) with the negative rationale, K clearly does not have the orbit
pairing property of Main Theorem 8.

3* Extendable Z-permutation groups* If H is an Z-subgroup of
A{Ω), an orp of k of Ω will be said to extend H iff (?«&, H)) = H.
If k extends H, we note that for any a e H, ka also extends H. If
(K, Ω) is Z-monotonic and G{K) = H, K will be called an extension of
H, and H will be called extendable. The following theorem provides
a computational necessary and sufficient condition for extendability.

THEOREM 10. An orp m extends an l-subgroup H of A(Ω) iff m
normalizes H and m2 e H.

Proof. If H is extendable, any m e K\H normalizes H, and
clearly, m2eH.

Conversely, if such an orp m exists, mgm'1 e H for each g eH,
so that since m2 e H, mgm — mgm~ιm2 e H. Similarly m~ιgm~ι e H.
Since only words which contain an even number of m's or m~1?s are
opps, it follows that m extends H.

THEOREM 11. Suppose that (H, Ω) is regular. Then His extendable
iff H is abelian) and then H uniquely determines its extension.

Proof. If K is an extension of H and H = G(K) is regular, we
know by Corollary 3 that there is precisely one keKf

a. Since each
β 6 Ω is an iϊα-orbit, we know by Main Theorem 8 and the definition
of pairing that βk = β' = ag, where g is the unique element of H
such that βg = a. We next show that this orp k extends H iff H
is abelian.

Since k fixes a, k2 fixes a so that by regularity, k2 — 1 and k =
kr1. It suffices (by Theorem 10) to show that kgk e H for each g e H.

From the definition of k we have akgk = agk — {ag)f = ag'1 for
any g in H. If β e Ω, there is a unique h in H such that βh — a.
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Thus βkgk = ahgk = (ahg)' = ag~Ίι~ι. But since H is abelian ag~γh~x =
ah~xg~ι = βg~x. Thus for each g e H, we have kgk — g'1 so that k
extends H. Also H uniquely determines its extension, since k must
belong to any extension of iJ, and thus, all extensions are simply
extensions by k.

If H is not abelian, by regularity there exist c, deH such that
Ίc~ιd~γ Φ Ύd^c'1 for any 7 e Ω. Then picking 7 such that ΊC = a, we
have akdk = adk = {ad)' = ad~lm, but since 7c = α, 7&ώfc = acdk =
(αcd)' = αcί"1^"1 =£ ac^d'1 = Ίd~\ Thus fteZΛ agrees with d"1 at a but
not at 7; so by regularity, kdk £ H. Thus since k must belong to any
extension of H, H is not extendable.

COROLLARY 12. Suppose that (K, Ω) is montonic and G = G{K)
is regular. Then for any meK' and g e G, m2 = 1 and mg = g~ιm.

Proof. In the proof of Theorem 11 we actually showed that for
any heG, khk = h'1 where k is the only orp in K«. Thus (khf = 1
and since k = k~\ kh = h~ιk. If m e K', by Theorem 1 m = kf for
some f eG, so that m2 = (kff = 1. Now if g e G, mg = (Λ/)flr so that
since fg e G, (mg)2 — (k(fg))2 = 1, and since m2 = 1 we have mg = g~ιm.

If F is any group of permutations on Ω, then a convex F-con-
gruence on Ω is an equivalence relation Q on β such that each Q-
class is convex, and such that if aQβ then afQβf for each f eF.
If L is any ί-monotonic subgroup of M(Ω), it follows from the transi-
tivity of G(L) that all convex L-congruence classes for any one convex
L-congruence are o-isomorphic. If Q is a convex L-congruence, we
call each Q-class an o~block of L; thus an o-block of L is a nonempty
convex subset A of Ω such that Am = A or Am Γ) A ~ { } ίor each
meL. L is called o-primitive iff the only convex L-congruences are
trivial ones.

A subgroup G of A(42) is o-2-transitive iff whenever a < β and
7 < δ, there exists # e G such that ag = 7 and βg = δ. It is clear
that if (H, Ω) is an o-2-transitive opp group, then H is o-primitive.
Proposition 24 [7] states that a regular opp group (H, Ω) is o-primitive
iff H is isomorphic as an ordered group to a subgroup of the additive
reals.

The easiest example of a transitive ^-permutation group which is
neither o-2-transitive nor regular is the group (G, Ω), where Ω is the
reals and G = {g e A(Ω) \ ag + 1 = (a + l)g for all aeΩ). Some comments
on this group will facilitate the understanding of the next few theorems.
The long orbits of any Ga form a chain o-isomorphic to the integers
(in fact, the long G0-orbits are the intervals (n, n + 1) where n is an
integer). The o-permutation z defined by az = a + 1 generates (as
a group) the centralizer ZA[Ω)G, and z is called the Ω-period of G.
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Because of this periodicity, the action of g e G on any long Gα-orbit
determines its action on all of Ω. The long Gα-orbit Δj+1 is "one
period up" from Δ3 in the sense that Δ3z = Δ3-+1.

McCleary's Theorem 40 [7] states that any transitive o-primitive
Z-permutation group which is neither o-2-transitive nor regular looks
strikingly like (G, Ω). These groups were called periodically o-primitive
in [7]. Here, more precisely, is what Theorem 40 says.

Let (G, Ω) be an o-primitive transitive ^-permutation group which
is neither o-2-transitive nor regular, and let aeΩ. Then the long
orbits of Ga form a chain o-isomorphic to the integers. Suppose Δλ —
(A^a is the first positive long orbit of Gaj Δj+1 is the first long orbit
greater than Δίf and ώj is the sup of Δ3 . Either there is a positive
integer n such that sup Δ3 = ώ e Ω iff j = 0 (mod n), and we say that
G has Config(n); or sup Δ3 = ω^eΩ only when j = 0, and we say
that G has Config(oo). The o-permutation z of Ω, Ω the Dedekind
completion (without end points) of fl, such that az = sup (Δ^a = ώι

for each aeΩ is called the Ω-period of G in the sense that it genera-
tes (as a group) the centralizer ZΛiβ}G; so that (βz)g = (βg)z for all
βeΩ, geG. If G has Config(w), z = zn is called the Ω-period of G.
G is called full if G is the entire centralizer ZMQ)Z.

—1(—X—)l(^)(—)l(—
α>_i α = COQ ωι = az ω^

CONFIG (2)

LEMMA 13. Suppose that (F, Ω) is a periodically o-primitive
l-permutation group and t is either the Ω-period or the Ω-period of
F. Then if an orp k extends F, tk = kt~\ i.e., if β is one period
up from 7, βk is one period down from lk. Conversely if (H, Ω) is
full periodically o-primitive with t either period of Ή., and k is an
orp of Ω such that tk — kt~\ then k extends H.

Proof. Suppose t is the β-period of F. If k extends F, then
for some a e F, m = ka fixes a. Since ώn is fixed by Fa for each
integer n, it follows from Theorem 8 that ώnm = ά)_Λ. Thus atm =
ώjn, = ώ_x = at'1 = amt~ι. If β e Ω, since F is transitive, βf = a for
some f eF. Then βfmt~λ = amt~ι = a im = /3/ίm = βtfm since ί
centralizes F. Since fc (and hence m) extends ί7, there exists ceF
such that / m = me. But then βfmt"1 = βmct"1 = βmt~ιc, and since
also βfmt'1 = βtfm = /5ίmc, we have /Sim = βmt"1. Thus ίm = mi"1

and since m = fcα, we have ί&α = /bαί"1 = kt~ιa so that ί& = kt~γ as
desired.

Conversely suppose (H9 Ω) is full and t is the ^-period of H. If
fc is an orp such that tk = λtf""S it follows that t~ιk = &ί and Γ1*;"1 = fe""1*.
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Since H is full, using Theorem 10, k extends H iff for each g in if,
kgk~\ k~ιgk, and k2 all commute with t. If g e H, kgk~H = kgt~ιk~ι ==
tkgk'K Thus kgkr1 (and similarly k~ιgk and &2) commutes with t.
Thus fc extends H. The proof for the corresponding β-period is
similar.

LEMMA 14. Suppose (H, Ω) is periodically o-primitive with finite
Config {n), Ai is the ith positive Ha-orbit, and Ψ = AL U U An.
Then Ω has an orp iff Ψ has an orp.

Proof. Since H has Config(w) if z is the β-period of H, azeΩ
so that if m is an orp of Ω, a < az and azm < am. Since H is
periodically o-primitive, A(Ω) is o-primitive. Since A(Ω) is not periodic
[6], it must be o-2-transitive. Thus there is a g in A(Ω) such that
azmg = α: and αmg = az. Thus m# induces an orp on Ψ.

Since ίZ" has Config (n), z is actually in A{Ω). Thus if m is an
orp of Ψ, we define a function fc by

((GSsrOm)*-'-1 if βeWt = Ψz*
βk = \ _ _ _

(ω.ί =ω t / if β = ωteΩ

Since the long orbits and fixed points of jffα partition Ω, and m is an
orp of Ψ, k is an orp of Ω which is essentially the "period extension"
of m to Ω.

THEOREM 15. // (H, Ω) is full periodically o-primitive with finite
Config (n), and Ω has an orp, then H is uniquely extendable.

Proof. If a e Ω and W is as in Lemma 14, then by Lemma 14
Ψ has an orp m which we periodically extend to the orp k of Ω as
in Lemma 14. To show that H is extendable it suffices by Lemma
13 to show that if z is the β-period of H, then zk — kz~\ If βeAt,
t = an + ft, 0 ̂  b < n, then βz e Ψa+1 = Ψza+1 so that by the definition
of k, βzk = (βz)z-a-1mz-a-2 = {β(z~amz-a-ι))z-1 = βkz~\ Similarly if
β — ωan e Ω, βzk = βkz~ι so that zk — kz~\ and thus k extends H by
Lemma 13.

If k and r both extend H, it follows from Lemma 13 that zk =
kz'1 and zr — rz~\ By Theorem 1, r = ak for some α e A(Ω), so that
α̂fc = zr = r^"1 = α/b̂ ;"1 = αzfc, i.e., ̂ α = az. Thus α 6 i ί since H is full,

and it follows that H is uniquely extendable.

If A and Γ are subsets of a chain Ω, we write 4 < Γ iff δ < 7
for all d e A, 7 eΓ. Let α: be an ordinal number. An a-set is a chain
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Ω of cardinality #a in which for any two (possibly empty) subsets
A < Γ of cardinality less that \ξa, there exists w eΩ such that A <
co < Γ. If ωa is a regular ordinal, then (assuming the generalized
continuum hypothesis) there exists an α-set, and it is unique up to o-
isomorphism [2, pp. 179-181]. Reversing the ordering on an α:-set
yields an α-set, so by the uniqueness of α-sets, every α-set possesses
an orp.

It is shown in [8, Lemma 22] that if ίΠs a periodically o-primitive
Z-subgroup of A(Ω) and Δλ = {Δ^)β is an α-set, then all long iϊ rorbits
Jt are α-sets. Theorem 24 [8] states that if n = 1, 2, , or ©o, and
J is an α-set (where ωα is a regular ordinal number) then there exists
a unique (up to o-permutation group isomorphism) full periodically o-
primitive group (H, Ω) having Δ as the first positive orbit of a stabilizer
subgroup Gβ and having Config(w). We have

THEOREM 16. Let n — 1,2, , or oo, let ωa be a regular ordinal
number, and let Δγ be an a-set. Then the unique full periodically
o-primitive l-permutation group (H, Ω) having Δλ as the first positive
orbit of a stabilizer subgroup Hβ and having Config (n) is uniquely
extendable.

Proof. Suppose that n is finite, Δt be the ίth positive orbit of Hβ

and Ψ = Ai U U Δn. Since each Δt is an α-set, it has an orp and
furthermore, At is also o-isomorphic to A3 for any integer j ; therefore
Ψ has an orp. Thus Ω has an orp by Lemma 14 and H is uniquely
extendable by Theorem 15.

If n — oo, one can use the β-period z of H and a special property
of α-sets (namely Lemma 23 [8]) to show that H is uniquely extend-
able by a proof similar to the proof of Theorem 15.

A chain Ω is o-2-homogeneous iff A(Ω) is o-2-transitive. The support
of meM(Ω) is {β eΩ\βm Φ β}. An l-ideal of an ϊ-group G is a convex
normal Z-subgroup of G. We make the following definitions:

B(Ω) = {g G A(Ω) I g has bounded support}

BA(Ω) = {g e A(Ω) | g has support bounded above}

BB(Ω) = {geA(β)|# has support bounded below}.

It is shown in [3, Theorem 6] that when Ω is o-2-homogeneous, B,
BA, and BB are all o-2-transitive ϊ-ideals of A(Ω). We have the
following theorem.

THEOREM 17. Suppose that Ω is o-2-homogeneous and has an orp.
Then B(Ω) is extendable, but in general, not uniquely extendable.
Furthermore BA(Ω) and BB(Ω) are not extendable.
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Proof. If m is any orp of Ω, it is straightforward to show that
m fixes 7 iff m~γhm fixes 7m. Thus conjugation by any orp m fixes
B(Ω) and interchanges BA{Ω) and BB(Ω), so that BA(Ω) and .RB(β)
are never extendable. If m is an orp of Ω which squares to 1 (such
an orp exists by Lemma 7 since M(Ω) is Z-monotonic), since m~1B(Ω)m —
B{Ω) and m2 = 1 e £(i2), m extends £(£) by Theorem 10.

If Ω is the reals, and the orps k, n of the reals are defined by:
ak — — a for each a; and <m = — 2a if α :> 0, <m = — α/2 otherwise,
then both ά and n extend B(Ω). The extensions K = <&, J?> and iV =
<w, B> are definitely not identical however, for n is clearly not in kB.

It follows from Corollary 9 that a necessary condition for (H, Ω)
to be extendable is that the paired iία-orbits be o-anti-isomorphic which
implies that H must be balanced. Balanced is not sufficient for
extendability since BA and BB are both balanced whenever Ω is o-2-
homogeneous.

In [11] the generalized monotonic wreath product is constructed
(along the same lines as the generalized ordered wreath product
constructed in [5] but different in one crucial way), and it is shown
that an Z-monotonic group can be "nicely" embedded in the generalized
monotonic wreath product of its "o-primitive components". Thus a
study of o-primitive ϊ-monotonic groups is called for.

If (K, Ω) is an o-primitive ί-monotonic group, G(K) is either o-2-
transitive, the regular representation of a subgroup of the reals, or
periodically o-primitive. If G{K) is o-2-transitive, then K is actually
2-transitίve, i.e., if a, β, 7, δeΩ, there exists keK such that ak —
7 and βk = δ. If a < β and 7 > δ and k is an orp, then ak > βk
so there exists g e G(K) such that akg = 7 and βkg = δ. The other
cases are similar, and it follows that K is 2-transitive. It is shown
in [8] that when A(Ω) is o-2-transitive, it is actually o-w-transitive
for n ^ 3. Since an orp can have at most one fixed point, M(Ω) is
not 3-transitive.

If G — G(K) is the regular representation of a subgroup of the
reals, Corollary 12 shows that if k e K', k2 = 1 and kg = g~~γk for any
g e G. If G = G(K) is periodically o-primitive with i3-period z, and
keK', since k extends G, zk = kz~ι by Lemma 13. We summarize
these results in

THEOREM 18. // {K, Ω) is an o-primitive l-monotonic group and
G — G(K)y then either:

(1) G is the regular representation of a subgroup of the reals,
and if ke K\ g eG, k2 = 1 and kg = g~ιk', or

(2) G is o-2-transitive, and K is 2-transitive; or
(3) G is periodically o-primitive with Ω-period z, and zk = kz~ι

for any keK'.
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