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EXTENSIONS OF SHEAVES OF COMMUTATIVE
ALGEBRAS BY NONTRIVIAL KERNELS

D. H. VAN OSDOL

Let A, My and R be sheaves of commutative algebras on
a topological space. Given a surjection from R to M there
is associated a cohomology class in H2(R, ZA), the second
bicohomology group of R with coefficients in the center of
A. This cohomology class is zero if and only if the original
surjection arises from an extension of R by A.

Introduction* Let X be a topological space, R a sheaf of
commutative algebras on X, and A a sheaf of ϋJ-modules considered
as an algebra with trivial multiplication. It was shown in [5] that
the group of equivalence classes of commutative algebra extensions of
R with A as kernel is isomorphic to H\Ry A), the first bicohomology
group of R with coefficients in A. In this paper we will not assume
that A has trivial multiplication; we will find that, if ZA is the center
of A, then H\R, ZA) contains all of the obstructions to the existence
of extensions of R by A which "realize" a given morphism. This
will generalize the results of [1] to the category of sheaves, and of
[4] in that no assumptions need be made on X or R.

In order to keep this paper as short as possible, we shall follow
the format of [1]. We shall not, however, generalize §4 of [1].
There are two reasons for this: first, we do not know how to globalize
Barr's theory, although we can do his §4 locally using only triple-
theoretic techniques (and then the underlying set of A is ZxK where
K is the kernel of R's structure morphism); secondly, the correct
setting for completely characterizing the bicohomology Hn, n > 1,
will not be known until Duskin writes up his results [3].

Let Sets be the category of pointed sets. The distinguished point
of a set will be the zero of any corresponding algebra. Let A be a
sheaf of commutative rings on X, ^"(X, Alg) the category of sheaves
of commutative Λ-algebras on X, ΠΛx-alg the product over a e l of
the categories of Λx-algebras (Λx = stalk of Λ at xeX), and ^~(X,
Sets) the category of sheaves of pointed sets. We should stress that
our algebras need not have unit elements. It is easy to verify that
we have a bicohomology situation [5]:
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where the horizontal arrows are adjoint resolutions of the Godement
standard construction, and the vertical ones are the obvious free and
forgetful functors. Given a sheaf R of /ί-algebras and a sheaf Z of
i?-modules, the bicohomology theory we use is that arising from the
above picture and the functor Der^. Hence we take a "free" simpίicial
resolution of R, a Godement cosimplicial resolution of Z, and examine
the cohomology groups of the double complex gotten by looking at
Λί-derivations of the resolution over R into the resolution under Z.

L The Class E. There is no problem in globalizing §1 of [1],
but we will give a brief outline in order to fix notation. Let A be
a sheaf of ideals in C and for each x e X let Z(AX, Cz) = {ceCx\oAx =
0}. Define the centralizer of A in C to be the pullback

Z(A,C) >Q{Z(Ax,Cx)\xeX}

C — r - — + QSC ,

and the center of A to be ZA = Z(A, A). Then Z(A, C) is a sheaf
of ideals in C and we let E(A) denote the set of equivalence classes
of exact sequences of sheaves of commutative algebras

0 > ZA > A > C/Z(A, G) > CIA + Z(A, C) > 0 .

Here equivalence is by isomorphisms which fix ZA and A.
On the other hand, let E be any sheaf of subalgebras of the

sheaf of germs of endomorphisms of A such that E contains the
image of ω: A —> Hom4 (A, A). For each aeA and open U in X, ω U(a):
A\u > A\π is defined by [ωU(a)] V(af) = [A(i)a] ar where i is the
inclusion of V in U, a' eA(V), and "•" represents multiplication. Let
Ef be the set of all such E.

PROPOSITION 1.1. There is a natural one-one correspondence
E{A) ~ Ef.

Proof. As in [1], Here we also construct the truncated simplicial
algebra

PROPOSITION 1.2. The above simplicial algebra is exact.

PROPOSITION 1.3. There is a derivation d: B—> ZA given by d ==
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(P- S°-d°).(d°- d' + d2).

II• The obstruction to a morphisrru Let R be a sheaf of com-
mutative algebras, p: R—>M a surjection, and 0-+A—>C~+ R—>0
an exact sequence (extension) of commutative algebras. We say that
p arises from this extension if there is a commutative diagram:

0 >A >C >R >0

\A

0 >ZA >A >E-^M >0 .

Given a sur jection p, we wish to determine if there are any extensions
from which it arises.

Since π: E—+M is surjective, there is a map s: SUM-+ SUE such
that SUπ s = SUM. By adjointness we get s': FUM-+ QSE such that
the diagram

FUM-^QSE

εM [QSπ

commutes. Let p0 = s' FUp. Then

= ηM>p-eR eFUR

= ηM-p-eR-FUsR

= QSπ-pQ.FUsR

so there exists a unique pt: (FU)2R—+QSP such that

- Po sFUR, QSd'-p, = pQ-FUeR .

Here (P, d*) is the kernel pair of π> and QS preserves finite limits.
Now the unique map u: P-+P such that dl-u = d* is surjective, so
there is t: SUP —̂  SUP splitting it. Using this map and adjointness
we produce f:FUQSP~-*(QS)2P such that (QS)*u ϊ - ηQSP sQSP.

Define ft: (FUyR-+(QS)2P by ft - t'-FUp, and then

<p ι = μP prδ'GR

where μ = multiplication for QS, δ' = comultiplication for FU. One
computes that QSu-p^ — ft, from which it follows that there is a
unique p2: (FUfR-+QSB such that di-p2 = p^ε*, 0 ^ i ^ 2 where ε* =
(FUyeiFUf-'R. By the naturality of ε, Γ3.pa Σ?-o (- l)V = 0.

On the other hand,
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= ηQSM QSπ-pQ

= 7}QSM 7]M p-sR

= QSηM-ηM-p-εR

= QSηM-QSπ p,

so there is a unique ft: FUR->(QS)2P such that (QSy& ςd = ^ Po,
i = 0, 1, where *̂2£ is defined as was e* above. Let as before £":
FU(QSyP — (QS)3P be such that (QSγu t" - η(QS)2P e(QS)2P. Define
ft = ί" FC7ft and & = μQSP ft S'i?. Then (QS)2u & = ft and & induces
q2: FUR-+(QS)*B such that (QS)3^ = τfP-ql9 0 ^ i ^ 2. The induced
derivation (QS)3δ g2 has the property that Σ U ( - 1 ) V ^^.g, - 0.

Finally, for i = 0, 1 consider (QSγd'-η' ps (FU)2R->(QSyE. One
computes that (QSyπ'(QS)2dQ'7}QSP'P1= (QSyπ.iQSyd' QSηP-^ and
concludes that there exists v: (FU)2R^(QSyP such that (QSyfr-v =
(QSydt-γ.p, for i = 0, 1. As before, the fact that %: P - ^ P is sur-
jective allows us to define v: (FUyR-+(QS)2P such that (QSyu-v =
v. Let rx: (FUYR^(QS)2B be the unique map such that (QSγd^r, =
7}QSP-pu (QSyd' r, = v, (QSγd2.^ = q.-FUeR (it is easy to see that
such rx exists, because (QS)2Bis the kernel triple of (QS)2d° and (QSyd1).
Similarly let (QS)2cf r2 = q^eFUR, {QS)2d^τ2= v, and (QS)2d2*r2 =

^ Now we have:

i=0

i=o

(

and similarly

S ( W ) ( ( r % (y.rd = (QSyδ.qt.£ ( - l ) V .
i=o / <=o

Hence (QSd p2, (QS)2d r2 - (QS)2d-ru (QSyd q2) is a cocycle in the
bicohomology double complex; we will denote its cohomology class
by [p] and call [p] the obstruction of p. We say p is unobstructed
if [p] = 0. This terminology is justified by the next two results.

PROPOSITION 2.1. The cohomology class of (QSd p2, (QS)23 r2 -
(QS)*d-ru (QSγd-q2) is independent of the choices of s: SUM-* SUE
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and t: SUP-* SUP.

Proof. Once we have pί9 q19 and v the maps p29 q2, r19 and r2 are
uniquely determined. So suppose σΰ9 σu τlf pl9 p2 are different choices
of pΰ9 PI, ίi, rl9 r2 and construct simplicial homotopies as in [1]. Speci-
fically let QSd°'h° = p0, QSd'-h0 = cr0, Tu h0 = £°, and

QSdP-v' - QSd0-^, QSdι vf = QSd'-σ, .

Considering the maps plfv', and A° eι from {FUfR to QSP we see
that there exists h°: (FU)2R-+QSB such that QSd°-h° = j>lf QSd'-h0 =
y, and QSd2 h°= W-s1. Similarly there exists h1: (FU)2R-+QSB
such that Q&f ft1 = ft°.ε°, QSdι λι - v', and QSfeP Λ1 = σx. From these
relations it is easy to compute that (QSd-h0 — QS9 fci)"Σf=o(—l)*e< =
QSd p2- QSd σ2.

Now let w:FUR->(QS)2P be such that (QS)2d°*w - (QSγd^q,
and (QSfd' w = {QSfd^τ, where τx "lifts" σ0. As above let &°, A;1:
FUR-*{QS)2B be determined by the conditions

-W = qu (QSyd'-k" = w, (QSfd' k0 = QSηP-h"

(QSfd' k1 = j]QSP h\ (QSyd'-k1 - w ,

and (QSyd' k1 = r t. Again one finds that (ΣJ-o (-lJ ' ^
(QSyd k1) = (QSyd q, - (QS)»3T,. Finally,

((QS)23 A;0 - O Σ (-l)V - fΣ (-l )γ) (QS3 Λ° -
<=o \i=o /

Hence the cohomology class of (QSd p2, (QS)23 r2 - (QS)2d-rlf (QS)3d q2)
agrees with that of (QSd-d2, (QS)2d ρ2 - (QS)2d ρlf (QSγd-τ2), as was
to be shown.

THEOREM 2.2. A surjection p: R—+ M arises from an extension
if and only if p is unobstructed.

n

Proof. Suppose p a r i ses f r o m a n extens ion 0 —> A —> C > R —>
0 a n d let K be t h e kerne l pa i r of θ. T h e n w e h a v e a commutat ive
diagram:
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Moreover we can find σ0: FUR->QSC such that QSΘ-σ0 = ηR sR. If
we let σ,: (FU)2R->QSK be such that QSei-σ1 = σo ε* and τx: FUR->
(QSfK such that (QSfe^τ, = Ύ]i σ» for i = 0, 1 then QSvo-σo serves
as p0, Q & Ί GΊ as Pi, and (QS)2i>i Ti as gL. By 2.1 we can assume that
things have been so arranged. But then using the fact that (QS)3'e°,
(QSy'e1 is a kernel pair for each j ^ 0, one can show that

QS(K- f ^ ^ . Σ ί - l ) ^ = 0 ,
* = 0

(QSY(K - ί° β°H(Σ}=o(-W) *i - î (ΣJ=o(-l)V)] = 0, and

(QS)3(JΓ - ί° e») ( Σ ( - W W = 0 .
\i=o /

From this it follows that QSd p2 = 0, (QSyδ r2 - (QSyd r,. = 0, and
(QS)35 g 2 - 0. Thus [p] = 0.

Conversely, suppose [p] = 0. Then there exist r: (FU)2R-+QS(ZA),
ρ:FUR->(QSyZAwithτ ε = QSd p2, η p - (ζ>S)33.g2, and p ε - 77.τ =
(QS)23 r2 - (QS)2d-n. Here we abbreviate Σ?=o (- l)*e* = e and similarly
for η. Now Pi = Pi — τf qt = q1 — p serve as new £>ly QΊ and also give
Vi, Q29 τu r 2 . We have

QS(P- s°.do)'QSd p2=

= QS(P - 80-d0)-pre - QS(P - s«-d

= QS(P- s'-d^-prε

- τ ε + QSs°-QSd° τ e

= QSδ p2 - τ ε

- 0

because the kernel of QSd° is QS(Z(A, P)) which contains
Similar computations yield (QSf(P - so do)-(QSyd>q2= 0 and

(QS)2(P - s°.cf).(QS)2ώ.r2 - (QS)2(P - s^d^^QSyd-r, = 0 .

Hence we can assume that (QSyd q2, QSd-p2, (QS)2d r2 - (QSyd r, are
all zero (by Prorosition 2.1). We now go over to the equivalent
category (Setsιx% where T = UF, G = SQ. The reader is referred to
[6] for a clarification of what this means, and to [5] for an introduction
to the techniques to be used below. Let R, M, E, P, P, B, A, ZA be
translated respectively into {Rx, ξlf £2}, {Mx, βlf β2), {Ex, %, 72}, {Px, Vlf ϋ2},
{Ax x Ex, vlf v2), {Bx, ~, -}, {Ax, aγ, α2}, {ZAX, - , -} . Since we want to
use the symbols pt for projections from a product, we let our old pt

be ui90<Li<^ 2.
For notational convenience, we drop all subscripts x and say once

and for all that an equation will stand for the same equation with
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subscripts adjoined. For example, θ s = Mmeans θx-sx = Mx for each
x in X. Our assumption that (QSfd-q2 e.t.c. are all zero translates
into the following three equations in (Sets]X%:

( i ) Pi Wi Tζ, - Pi u^μR + prVi Tu, = 0

(ii) G2p1-Gv2 q1 - G'p. δ'iA x #) ? 1 + G2px-Gqr^ = 0
(iii) GprQrξi - Gp^Gv^XP-Tq, = GprGu^XR-Tζ2 - Gpr^-u,.

Here λ: TG-+GT is the distributive law (see [5]), and px (or p2) is
the first (or second) projection from the appropriate product. Since
our presentation has now begun to differ significantly from that of
Barr [1], we will provide more detail than earlier in the paper. Let
C= A x R, and define ζ,: TC-+ C, ζ2: C—> GC by the conditions ^vd =

Pi yi TOPiXs p p^ + Pi i v T ^
Gp2 ζ2= ς2 P2> We claim that (C, ζl9 ζ2) is in (Setsιx%. Besides the
"cocycle identities" listed above, the only fact we need is that

v,\ T(A x E) > A x E

has the following property: For each g: X—> A and / : X—> A x E we
have

(iv) ^ ^ 1 Γ([flr + 2>1 /]xdί1 /) = 3?1 v1 Γ(flrxdo / ) + p 1 ^ 1 Γ/. Since
this amounts to a combinatorial identity, we relegate its proof to
the Appendix. Using (i) and (iv) we can prove that ζ1 is associative:

x s p pj + p1 u1 Tp2] Tζ1

x s p>p2) + Prv>i-Tp2] x s ^ ί

x

, x s p-p2)) + prurμR' T2p

x JSO JΓ'OPJ. x s p p2) + pru

the fact that p2'ζr Tζ1 = p2 ζi μ(A x R) is an easy computation.
Notice that in the above computation we have taken

9 = Pi-Vi T(pλ x s p-p2)

and / = UrTp2 in (iv). Before proving that ζx is unitary, we show
that u, is "normalized":

0 = (p^ur Tξx — PrUr μR + Pr^r Tuλ) - rj TR

But composing this equation with ηR gives p^u^ηR— 0, and from
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this it follows that ζ1 is unitary:

Z,'V(A x R) = [p^v^T(p, x s-p p2)-η{A x R)

+ Pi-ur Tp2-η(A x R)] x ft Γiv^(A x R)

= bi (bi x β p.pj) + jvw^iί.T pJ x ξrVR

= Pi X p 2

The computations which show that ζ2 is counitary and coassociative
use only (ii) above, and will be omitted. The "compatibility" of ζ1

and ζ2 uses (iii) and (iv) above, and proceeds as follows:

x R) Tζ2

x s p-p2) + prUrTpJ-XίA x i2) Γζ2

, x s p p2) λ(ii x i2) Γζ2

MA x R) Tζ2

x E)-TG(p1 x s-p-p2)-Tζ2

+ GprGur^R-TGpt Tζ,

x #) Γ([α8 px + G^.g^p,] x Gs Gp-ξ2-p2)

x E)-T{a2-p1 x 72 s p p2)

x E)-Tq1- Tp2 + Gp^Gu^XR- Tξ2 Tp2

x E)*Tv2-T(p1 x s p 2>2)

ί x s p p2) + cCt p^urTPi + Gpι-q1-ζ1-Tp2

here, again, that Gp2-Gd-X(A x iϋ) Tζ2 = Gp2-ζ2*ζ1 is obvious. Notice
that we have not used (iv) as it stands, but rather the analog of (iv)
for GP = G(A x 2£). We have taken g = a2-p1 and / = ?i ί>2 At any
rate, (C, d, ζ2) is in (Setsιx% and the first injection, second projection
give us an exact sequence 0 —> A —̂ -> A x i2 = C -^-> i2->0 in (S^s !Z |)^.
Define h: C-+E by h = ω-pλ + s p-p2. Clearly π h = p p2 and Λ i =
ω, so that if h is a morphism in (Sets]X% then we will have produced
an extension from which p arises, and the proof will be complete.
But we have:

, x s p p2) + Pr^r Tp2) + s p & Tp2

P! x s p Pβ)

X Γs Γp Γp2 - s p fx Tp2 + s p ίx Γp2

P1'V^T{p1 X S p p*) + P2'V1-T{pι X S J> 3>2)

1 x β p p,)
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x s p p2)

= ΊrTiω p, + 8 p p2)

= V Th ,

and

Gh-ζ2 = Gω*(a2 p1 + Gp^QrPz) + Gs-Gp-ξ2-p2

= Ύz ω-Pi + 72'S P PZ — Gs'Gp'ξ2-pz + Gs-Gp ξ2 p2

= 72 fe .

Ill- The Action of fl\

THEOREM 3.1. Le£ p:R—>M be unobstructed, and let Σ denote
the equivalence classes of extensions of It by A which induce p.
Then the group H\R, ZA) acts on Σ as a principal homogeneous
representation.

Proof. It is shown in [5] that H^B, ZA) is in one-one corre-
spondence with the set of equivalence classes of singular extensions of
R by ZA. Once this is known, Barr's proof of this proposition [1]
translates almost verbatum into a proof for sheaves.

APPENDIX. In this appendix we give a proof of equation (iv)
above (§11), and compare Barr's constructions [1] to our own. To
dispose of equation (iv), recall that given a commutative algebra A,
its structure map a: TA —> A takes a polynomial in elements of A to
the "value" of the polynomial. That is, a remembers that A is an
algebra and uses the algebra operations in A to compute the poly-
nomial. Now multiplication in P= A x E is defined by (au x1)(a2, x2) =
(a^ + xλa2 + aγx2i xtx2) where xλa2 and a1x2 denote the value of x on a.

PROPOSITION A . I . Given ateA9 x^eE for l<^i<Ln we have
Πί=i iau χι) — (Σf(ΐ)ί f(n)n, xx xn) where the sum is taken over
all functions f \ n — {1, 2, , n) —> {α, x] such that f is not identically
equal to x.

Proof. By induction on

= %ff{ii
+ *i ί

- (*/(l)x

• /(Λ -

We have

f(n -
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where the indexing sets for the sums are clear.

PROPOSITION A.2. Given au 6̂  G A, xte E for 1 ^ i tί n we have

that Π?=i (ct<i + bif xτ) and Π?=i (&*, <*>αf + %i) + Π?=i (α<, %i) have the same

first coordinates.

Proof. Induction on n and Proposition A.I.

Π (a< + bu Xi)

- g(n- 1 ) ^ + Σh(l\ . . h(n - 1)^ ,

where the #'s run through the set of functions from n — 1—> {6,
ωα + #} which are not identically ωa + x and the λ's through all
n — 1 —* {a, x} which are not identically x. Hence we get as first
coordinate

Σg{l\ ... g(n- ΐ)^xan + ^ ( 1 ) , - g(n - 1)^A

+ Σh(l\ ...h(n- ΐ)n^an + Σh(l\ - h(n -

.. g(n~ l)n^xn + ^ ( l j i h(n -

The third, sixth, and seventh terms of this sum give us

Σh{l\ . . h(n)n .

Since Σh(l\ ... h(n ~ l)n.J)n = Π?=ί ^ i + xdK - ^ ajw_!6w the re-
maining terms give us ^(/(IX g(n)n. This completes the proof.

Taking into account the remarks preceding Proposition A.I,
equation (iv) follows immediately from A.2.

In [1] Barr constructs the extension which realizes an unobstructed
p as a certain coequalizer. In the notation of our §11, his diagram
on page 365 would look like:

0

(A, «0 (A, a,)

I μR I I

(TB, μTR) = ^ (TB, μB) 2 > (B, ξj
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He uses the coequalizer (pλ + p1-uι-p2) x £r?>2 to define the algebra
which gives the extension, and then must make some rather tedious
computations to verify that all requirements are met. One knows
that if an extension exists, then its underlying set will have to be
Ax B: the only question is how the algebra structure on A x E is
"twisted". By passing to the equivalent category of Γ-algebras it
becomes clear exactly how the cocycle should be used to produce this
twisted structure. All of this was first noticed by Beck in the case
of singular extensions [2]. At any rate, the "globalization" of Barr's
results seems to require that we pass to (Setsιx%.
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