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EXTENSIONS OF SHEAVES OF COMMUTATIVE
ALGEBRAS BY NONTRIVIAL KERNELS

D. H. VaN OsDOL

Let A, M, and R be sheaves of commutative algebras on
a topological space. Given a surjection from R to M there
is associated a cohomology class in H* R, ZA), the second
bicohomology group of R with coefficients in the center of
A. This cohomology class is zero if and only if the original
surjection arises from an extension of R by A.

Introduction. Let X be a topological space, R a sheaf of
commutative algebras on X, and A a sheaf of R-modules considered
as an algebra with trivial multiplication. It was shown in [5] that
the group of equivalence classes of commutative algebra extensions of
R with A as kernel is isomorphic to H'(R, A), the first bicohomology
group of R with coefficients in A. In this paper we will not assume
that A has trivial multiplication; we will find that, if ZA is the center
of A, then H*R, ZA) contains all of the obstructions to the existence
of extensions of R by A which “realize” a given morphism. This
will generalize the results of [1] to the category of sheaves, and of
[4] in that no assumptions need be made on X or R.

In order to keep this paper as short as possible, we shall follow
the format of [1]. We shall not, however, generalize §4 of [1].
There are two reasons for this: first, we do not know how to globalize
Barr’s theory, although we can do his §4 locally using only triple-
theoretic techniques (and then the underlying set of A is Z x K where
K is the kernel of R’s structure morphism); secondly, the correct
setting for completely characterizing the bicohomology H", » > 1,
will not be known until Duskin writes up his results [3].

Let Sets be the category of pointed sets. The distinguished point
of a set will be the zero of any corresponding algebra. Let 4 be a
sheaf of commutative rings on X, & (X, Alg) the category of sheaves
of commutative A-algebras on X, I7/4,-alg the product over x ¢ X of
the categories of A,-algebras (4, = stalk of 4 at z¢ X), and & (X,
Sets) the category of sheaves of pointed sets. We should stress that
our algebras need not have unit elements. It is easy to verify that
we have a bicohomology situation [5]:

S
F (X, Alg) —— 11 4,-alg

Ao Al

F (X, Sets) —— Sets!*!
Q
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where the horizontal arrows are adjoint resolutions of the Godement
standard construction, and the vertical ones are the obvious free and
forgetful functors. Given a sheaf R of A-algebras and a sheaf Z of
R-modules, the bicohomology theory we use is that arising from the
above picture and the functor Der,. Hence we take a “free” simplicial
resolution of R, a Godement cosimplicial resolution of Z, and examine
the cohomology groups of the double complex gotten by looking at
A-derivations of the resolution over R into the resolution under Z.

I. The Class £. There is no problem in globalizing §1 of [1],
but we will give a brief outline in order to fix notation. ILet A be
a sheaf of ideals in C and for each z ¢ X let Z(4,, C,) = {ccC,|c4, =
0}. Define the centralizer of A in C to be the pullback

c—22 . qsc,

and the center of A to be ZA = Z(A, A). Then Z(4, C) is a sheaf
of ideals in C and we let E(A) denote the set of equivalence classes
of exact sequences of sheaves of commutative algebras

0 ZA——s A——C|Z(A, C)—> ClA + Z(A, C)—> 0 .

Here equivalence is by isomorphisms which fix Z4 and A.

On the other hand, let E be any sheaf of subalgebras of the
sheaf of germs of endomorphisms of A such that E contains the
image of w: A— Hom, (4, A). For each a € A and open U in X, wU(a):
Al —— Aly is defined by [wU(a)]V(a) = [A(t)a]-a’ where 7 is the
inclusion of V in U, @’ € A(V), and ”-” represents multiplication. Let
E' be the set of all such E.

PropositioN 1.1. There s a natural one-one correspondence
E(A) = F.

Proof. As in [1]. Here we also construct the truncated simplicial
algebra
d° o -
B— P E— M.
- -
e N\ ¥
NS
80

ProrosiTION 1.2. The above simplicial algebra is exact.

PROPOSITION 1.3. There 1s a derivation 0: B— ZA given by 0 =
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(P — s°-d)-(d — d* + &).

II. The obstruction to a morphism. Let R be a sheaf of com-
mutative algebras, p: R— M a surjection, and 0—-A—C—R—0
an exact sequence (extension) of commutative algebras. We say that
p arises from this extension if there is a commutative diagram:

0 A > C R 0

o b s

0 ZA A E-l-M 0.

Given a surjection p, we wish to determine if there are any extensions
from which it arises.

Since 7: E — M is surjective, there is a map s: SUM — SUE such
that SUr-s = SUM. By adjointness we get s’: FUM — QSE such that
the diagram

FUM-2 QSE

EMl 1QS7T

M—" . osm

commutes. Let p,= s'-FUp. Then

QS -p, e FUR = nM-p-cR-¢eFUR
— pM’p'ER‘FUeR
= QSt-p,- FUeR

so there exists a unique 7,: (FU)R — QSP such that
ngo’ﬁx = p,-¢FUR, QSJ1ﬁ1 = po- FUeR .

Here (P, d?) is the kernel pair of =, and QS preserves finite limits.

Now the unique map u: P— P such that df-u = d* is surjective, so

there is t: SUP — SUP splitting it. Using this map and adjointness

we produce t': FUQSP — (QS)*P such that (QS)u-t = nQSP-¢QSP.
Define p,: (FU)R— (Q@S)*P by p, = t'- FUp, and then

D= pP-p-0'GR

where ¢ = multiplication for @S, ¢’ = comultiplication for FU. One
computes that QSu-p, = P, from which it follows that there is a
unique p,: (FU)*R — QSB such that d*-p, = p,-¢%, 0 < ¢ < 2 where ¢’ =
(FU)'e(FU)*R. By the naturality of e, T0-p,- >\, (—1)%* = 0.

On the other hand,
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(QS)m-nQSE-p, = 7QSM-QSr-p,
= PQSM-yM-p-cR
= QSyM-nM-p-eR
= QSnM-QSr - p,
= (QS)'7-QSnE-p,

so there is a unique §,: FUR— (QS)*P such that (@S)d*-§, = 7*E-py,
t=0,1, where 7’E is defined as was ¢ above. Let as before ¢":
FUQS)*P — (QS)*P be such that (QS)u-t" = 7(QS)*P-¢(QS)*P. Define
¢, =t"-FUq,and q, = tQSP-q,-8'R. Then (QS)-¢, = ¢, and ¢, induces
¢.;: FUR — (QS)’B such that (QS)*d* = 7*P-¢q,, 0 < 7 < 2. The induced
derivation (QS)%-q, has the property that >3i_, (—1)*- T%0-¢q, = 0.

Finally, for ¢ = 0, 1 consider (QS)*d*-7-p,: (FU)R— (Q@S)’E. One
computes that (QS)w-(QS)d*-7QSP-5, = (QS)w-(QS)d"-QSyP-p, and
concludes that there exists 7: (FU)*R — (QS)*P such that (QS)d*-¥ =
(QS)*di-7-p, for i = 0,1. As before, the fact that u: P— P is sur-
jective allows us to define v: (FU)*R — (QS)*P such that (QS)u-v =
7. Let r: (FU)*R— (QS)’B be the unique map such that (@S)*d°-r, =
NQSP-p, (QS)d'-r, = v, (QS)*d*-r, = q,- FUeR (it is easy to see that
such r, exists, because (@S)’Bis the kernel triple of (QS)*d° and (QS)*d").
Similarly let (QS)*d°-r,= q,-¢FUR, (@S)*d*-r, = v, and (QS)*d*-r, =
QSyP-p,. Now we have:

(@Sy0-7, — @S)0-7)- 3} (~ 1)
= @SF(P — 5d)-(@¢ — v + QSP-p)- 3 (~ D'’
—(@SP(P — &) (QSP-p. — v + g,-6)- 3, (- D'’
= —@SY(P — a3 (- 1) -p- (3 (- D)
~(3 (- 177)-@80-p,,

and similarly

(Z{, (- 1)"77")-((QS)26-1~2 — (QS)%-r) = (QS)sé-qz-g_‘a(—l)"e“ .
Hence (QS0-p,, (QS)%-r, — (QS)*d-r, (QS)*d-q,) is a cocycle in the
bicohomology double complex; we will denote its cohomology class
by [»] and call [p] the obstruction of ». We say p is wnobstructed
if [p] = 0. This terminology is justified by the next two results.

ProOPOSITION 2.1. The cohomology class of (QS0-p,, (RS)*0-r, —
(@S)?0-7,, (RS)°0-q,) is independent of the choices of s: SUM— SUE
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and t: SUP— SUP.

Proof. Once we have p,, ¢, and v the maps p,, ¢, 7, and 7, are
uniquely determined. So suppose o,, g, 7, 0, 0, are different choices
of pq, Dy, @, 71, 7, and construct simplicial homotopies as in [1]. Speci-
fically let QSd’-h° = p,, QSd*-h° = 0,, Tu-h’ = h°, and

QSd’-v' = QSd’- p,, @Sd'-v' = QSd'-0, .

Considering the maps p,, v/, and h’-¢' from (FU)R to QSP we see
that there exists A% (FFU)’R — QSB such that QSd’-h’ = p,, QSd*-h’ =
v, and QSd?- A’ = h'-¢'. Similarly there exists &' (FU)'R— QSB
such that QSd’-h* = h°-¢’, QSd*-h' = o', and QSd?-h' = g,. From these
relations it is easy to compute that (QS8-h, — QS0-h) 2, (—1)% =
QSo-p, — QS0-0,.

Now let w: FUR — (QS)’P be such that (QS)*d’-w = (QS)*d’-q,
and (QS)d'-w = (QS)*d*-z, where 7, “lifts” o,. As above let E°, k'
FUR — (@S)’B be determined by the conditions

@QSyd°-1° = q,, (QS)yd* -k = w, (QS)d* k> = QSyP-h°,
(@S)d*- K = 7QSP-I°, (QSyd -k = w,

and (QS)*d*-k' = 7,. Again one finds that (X2, (—1)7.%%)-((QS)*0-k° —
(QS)3-k) = (@S)9-q, — (QS)9-7,. Finally,

(@S)d-k° — (QS)za-kl)-;; (—1)et — (g (—1)fr;f).(Qsa.h° — QSa-hY)
= (QS)*d- 0, — (QS)'d- p, — (QS)d-r, + (QS)d-7, .

Hence the cohomology class of (@S-, (QS)*3-r, — (QS)*d-r, (@S)°0-q,)
agrees with that of (QS0-9,, (RS)%-0, — (QS)*-p,, (RS)*-7,), as was
to be shown.

THEOREM 2.2. A surjection p: R— M arises from an extension
if and only if p is unobstructed.

0

Proof. Suppose p arises from an extension 0 - A —C— R—

0 and let K be the kernel pair of §. Then we have a commutative
diagram:




536 D. H. VAN OSDOL

Moreover we can find o, FUR — QSC such that QS6-0, = nR-eR. If
we let 0,: (FU)’R— QSK be such that QSe’-0, = 0,-¢' and 7,: FUR —
(Q@S)’K such that (QS)%‘.-t, = -0, for 7= 0,1 then QSy,-g, serves
as P, @Sy,-0, as p,, and (QS)»,-7, as ¢,. By 2.1 we can assume that
things have been so arranged. But then using the fact that (@S)%’,
(@S)¢' is a kernel pair for each 7 = 0, one can show that

QS(K — t°-e°)-ol-i=0(—1)iei ~0,
QSY(K — 7€) [(Xi= (= 1)) -0, — 71+ (X (—1)%¢")] = 0, and
@K — £-0)-(3 (~17)-7 = 0.

From this it follows that @So.-p, = 0, (QS)*3-r, — (QS)*d-r, = 0, and
(@S)°0-qg, = 0. Thus [p] = 0.

Conversely, suppose [p] = 0. Then there exist 7: (FU)RE— QS(ZA4),
p: FUR— (QSY’ZA with 7.6 = QS0-p,, -0 = (@S)*3-¢,, and p-&¢ — -7 =
(RS)?0-r,— (QS)*0-r,. Here we abbreviate 37, (—1)%s* = ¢ and similarly
for 7. Now P, =p, — 7, q, = q, — p serve as new p,, ¢, and also give
Doy Toy T1, 7,.  We have

QS(P — s*d")-QSd-p, = QS(P — s°-d")-p,-¢
= QS(P — s°-d-p,re — QS(P — 8-d%-T-¢
= QS(P — s°-d"-p,-¢
—7-¢ + QSs*-QSd’-7-¢
= QS0-p, — T-¢
=0

because the kernel of QSd° is QS(Z(A, P)) which contains QS(ZA).
Similar computations yield (QS)*(P — s°-d°)-(QS)’d-g, = 0 and

@Sy (P — s"-d")-(QS)yd-7, — (QS)*(P — s°-d°)-(QS)d-7, = 0.

Hence we can assume that (QS)%-q,, QS0-p,, (QS)*0-r, — (QS)*0-r, are
all zero (by Prorosition 2.1). We now go over to the equivalent
category (Sets'*). where T =UF, G = SQ. The reader is referred to
[6] for a clarification of what this means, and to [5] for an introduction
to the techniques to be used below. Let R, M, E, P, P, B, A, ZA be
translated respectively into {R,, &, &}, {M., B, B}, (s, 1y Vs, (P, T, U},
{A, x E,, v, v}, {B,, —, —}, {4.,, a,, a;}, {ZA,, —, —}. Since we want to
use the symbols p, for projections from a product, we let our old p,
be u, 051 < 2.

For notational convenience, we drop all subscripts # and say once
and for all that an equation will stand for the same equation with
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subscripts adjoined. For example, 6-s = M means 0,-s, = M, for each
2z in X. Our assumption that (QS)3-q, e.t.c. are all zero translates
into the following three equations in (Sets'*')%:

(1) Dou-TE — pouy- tR + p-v- Tuy, = 0

(11) Gzpl'Guz'(h - G2p1'5’(A X E)‘Ql + Gzpl'Gq1°Ez =0

(111) Gpl'Ql'El - Gpl'Gul')"P' TQ1 = Gpl‘GquR’TEz - Gpl'vz'ul'
Here \: TG — G T is the distributive law (see [5]), and p, (or p,) is
the first (or second) projection from the appropriate product. Since
our presentation has now begun to differ significantly from that of
Barr [1], we will provide more detail than earlier in the paper. Let
C=A X R, and define {;: TC— C, {,;: C— GC by the conditions p,-{;, =
Py, TPy X 8D D) + Dyt Ty Do & =6, TPy, G0 - Lo = Ay 0+ G D1 Q1 Dy
Gp,-%, = &0, We claim that (C, £, &) is in (Sets'™)%. Besides the
“cocycle identities” listed above, the only fact we need is that

V:T(A X E)— A X K

has the following property: For each g: X— A and f: X— A X E we
have

(iv) pov-T(g+pi- F1xd'-f) =p-v,- T(gxd’- ) +p,-v,- Tf. Since
this amounts to a combinatorial identity, we relegate its proof to
the Appendix. Using (i) and (iv) we can prove that {, is associative:

D2 TG = [pyevi- T(py X 8-0222) + pyetty- Tl - TG,
= 0,V T({p,-v,- T(p, X s-p-D) + Dy-uy- TP,] X 895+ Tpy)
+ pu, - TS - TPp,
= PV T({p.-v.- T(p, X s-p-py)] X 7.+ Ts-Tp- Tpy)
+ vy Tuy - TPpy + pyeuy 76 TPp,
= PV Ty T(py X 829+ 02)) + Drow, ptB-Tp,
= p,v (A X E)-THp, X 8D-D,) + pi-us LB T,
= p.-Li- A X R);
the fact that p,-(,-T¢ = p,-{,-p(A x R) is an easy computation.
Notice that in the above computation we have taken

g=2,9-T(p, X 5-p-Dy)
and f = u,- T, in (iv). Before proving that {, is unitary, we show
that «. is “normalized”:
0= (pl'ﬂq' T, — pi'ul',uR + DYy TMI)WTR
= pl'u’l'y]R'El — DUy + ]01'”1'771%'%
= pl’ul'vR'& .

But composing this equation with nR gives p,-u,-nR = 0, and from
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this it follows that {, is unitary:

Coo(A X R) = [pi-v- T(py X 8-0-1) (A X E)
+ Dyu TP (A X R)] X &-Tp,-n(A X R)
= [p-([p: X 52 2:]) + Di-us-PR-T°p,] X &-9R- T,
=P X Dy
The computations which show that {, is counitary and coassociative
use only (ii) above, and will be omitted. The “compatibility” of &,
and ¢, uses (iii) and (iv) above, and proceeds as follows:
Gp,-GL-MA x R)-TC,
= G(p1'”1'T(p1 X 3'p'p2) + p1'u1‘sz)'>"(A X R)TCz
= Gp,-Gv,-GT(p, X s-0-1,) MA X R)-TC,
+ Gp,-Gu,-GTp,-MA x R)-TC,
= Gp,-Gy,-MA X E)-TG(p, X s-p-p,)- TC,
+ Gp,-Gu, MR- TGp,- TC,
= Gp,-Gv,-MA X E)-T([ay 0, + Gp,-q:+D:] X Gs:Gp-&;-,)
+ Gp,-Gu, NR-T(&,-p,)
= Gp,-Gy, MA X E)-T(0ty-p, X V3-8-D-D,)
+ Gp,-Gy,-NMA X E)-Tq,- Tp, + Gp,-Gu,-\R-T&,- T,
= Gp,- Gy, NMA X E)- Ty, T(p, X s-D-D5)
+ Gp,-qi&- T, + Gpy-v,-u,- Tp,
= G-V, Y- T(Dy X 8-D:Dy) + Ay DyoUy T, + GD+ ¢+ 51+ T,
=08 + Gpi gy 2
= Gp-C- G
here, again, that Gp,-G{,-MA X R)-TC, = Gp,-{,-C, is obvious. Notice
that we have not used (iv) as it stands, but rather the analog of (iv)

for GP= G(A x E). We have taken g = a,-p, and f = ¢,-p,. Atany
rate, (C, {, {) is in (Sets')z and the first injection, second projection
give us an exact sequence 0— A L L AXR=C-2R—0in (Sets'*N)E.
Define h:C— E by h = @-p, + s-p-p,. Clearly n-h = p-p,and k-t =
o, so that if & is a morphism in (Sets'*!)% then we will have produced
an extension from which p arises, and the proof will be complete.
But we have:

hl=w @Y T X sp0:) + DU Tp;) + 5:0:&,- T,
=@ PV T(p, X 80 15)
+ v,-Ts-Tp-Tp, — s-0-&,-Tp, + s-p:&,+ Tp,
= @0, Y- T(D; X 8:DD;) + Doy T(Dy X 8D Dy)
= d°p, T(D, X 8-D*Dy)
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= ,Yl.TdO.T(pl X 3'p°pz)
=7 T(@w-p, + s-D-0)
=7Th,

and

Gh-ly= Go-(ay-p, + Gp,- ¢+ D) + G5-Gp-&,-p,
Vo WP, + Vo5 0P, — G5 GP-Eyo 0y + Gs-GPE;0 D,
= Yy h .

I

ITII. The Action of H'.

THEOREM 3.1. Let p: R— M be unobstructed, and let X denote
the equivalence classes of extensions of R by A which induce p.
Then the group H'(R, ZA) acts on X as a principal homogeneous
representation.

Proof. It is shown in [5] that H'(R, ZA) is in one-one corre-
spondence with the set of equivalence classes of singular extensions of
R by ZA. Once this is known, Barr’s proof of this proposition [1]
translates almost verbatum into a proof for sheaves.

APPENDIX. In this appendix we give a proof of equation (iv)
above (§1I), and compare Barr’s constructions [1] to our own. To
dispose of equation (iv), recall that given a commutative algebra A,
its structure map a: T4 — A takes a polynomial in elements of A to
the “value” of the polynomial. That is, @ remembers that A is an
algebra and uses the algebra operations in A to compute the poly-
nomial. Now multiplication in P= A x E is defined by (a,, 2,)(@s, %) =
(@@, + @@, - a2, 2,%,) Where z,a, and a,2, denote the value of z on a.

ProPOSITION A.l. Given a,€A, 2,¢E for 1 <41 =n we have

(e, x)=CfQ), - f(n),, -+ x,) where the sum is taken over

all functions fim = {1, 2, -+, n} — {a, x} such that f is not identically
equal to x.

Proof. By induction on n. We have

(ah xz)

=Q@F)er flo— 1)y, @ -0 2,2) (@0, ©,)
=fQ,--- S —1D,a, + 3fQ), -+ fln — 1,3,
+wyp e Lp1@py By = ** xn)

= (Zf(]-)l"' f(/n’)m Lyoee xn)

k2

=

il
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where the indexing sets for the sums are clear.

PROPOSITION A.2. Given a;, b, €A, x, € E for 1 =1 =<n we have
that 113 (@; + b, ;) and T1%, (b;, wa, + x;) + [1% (a,, 2;) have the same
Jfirst coordinates.

Proof. Induction on % and Proposition A.l.

3

(@; + by, ;)

1

= ZgQ@), - g(n — 1),y + ZhA), -+ B(n — 1)y,
Tye e ) (@n + by, )

1

I

where the g’s run through the set of functions from » — 1— {b,
wa + x} which are not identically wa + « and the A’s through all
n — 1— {a, } which are not identically x. Hence we get as first
coordinate

Jg), -+ g(n — Dy, + Jg(1), -+ g(n — 1),.4b,
+ Zh@), -+ h(n — 1),_a, + ThQA), - - k(n — 1),_,b,
+ Yg@), --- gn — 1), + ZRQA), - -+ b(n — 1),
4 Xy Byi @y Xy v Tyiby,

The third, sixth, and seventh terms of this sum give us
Zh(1), « -+ h(n), .

Since Yh(), --- k(n — 1),_:b, = 115 (wa, + 2.)b, — 2, +++ ©,_,b, the re-
maining terms give us Jg(1), --- g(n),. This completes the proof.
Taking into account the remarks preceding Proposition A.l,
equation (iv) follows immediately from A.2.
In [1] Barr constructs the extension which realizes an unobstructed
p as a certain coequalizer. In the notation of our §II, his diagram
on page 365 would look like:

0
(4, @) = (4, @)
0 .

X uR TN 1 D2

(T°R, pTR) —————(AX TR, —) 0t ) XED (AxR,L)
P1vi-Tuy X TE,
TzRi D2 lpz

#R &

(T°R, tTR) :—FE”: (TR, tR) (&, &)

0 0
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He uses the coequalizer (p, + D,-u;-D;) X &-p, to define the algebra
which gives the extension, and then must make some rather tedious
computations to verify that all requirements are met. One knows
that if an extension exists, then its underlying set will have to be
A x R: the only question is how the algebra structure on 4 X R is
“twisted”. By passing to the equivalent category of T-algebras it
becomes clear exactly how the cocycle should be used to produce this
twisted structure. All of this was first noticed by Beck in the case
of singular extensions [2]. At any rate, the “globalization” of Barr’s
results seems to require that we pass to (Sets'*!)g.
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