LINEAR TRANSFORMATIONS ON SYMMETRIC SPACES

Abstract

M. H. Lim

Let U be an n-dimensional vector space over an algebraically closed field F of characteristic zero, and let $\mathrm{V}^{r} U$ denote the r th symmetric product space of U. Let T be a linear transformation on $\mathrm{V}^{r} U$ which sends nonzero decomposable elements to nonzero decomposable elements. We prove the following: (i) If $n=r+1$ then T is induced by a nonsingular transformation on T. (ii) If $2<n<r+1$ then either T is induced by a nonsingular transformation on U or $T\left(\mathbf{V}^{r} U\right)=\mathbf{V}^{r} W$ for some two dimensional subspace W of U.

The result for $n>r+1$ was recently obtained by L. J. Cummings.

1. Preliminaries. Let U be a finite dimensional vector space over an algebraically closed field F. Let $\mathrm{V}^{r} U$ denote the r th symmetric product space over U where $r \geqq 2$. Unlese otherwise stated, the characteristic of F is assumed to be zero or greater than r.

A decomposable subspace of $\mathbf{V}^{r} U$ is a subspace consisting of decomposable elements. Let x_{1}, \cdots, x_{r-1} be $r-1$ nonzero vectors in U. Then the set $\left\{x_{1} \vee \cdots \vee x_{r-1} \vee u: u \in U\right\}$, denoted by $x_{1} \vee \cdots \vee x_{r-1} \vee U$, is a decomposable subspace of $\mathbf{V}^{r} U$ and is called a type 1 subspace of $\mathrm{V}^{r} U$. Let W be a two dimensional subspace of U. It is shown in [2] that $\mathrm{V}^{r} W$ is decomposable and is called a type r subspace of $\mathbf{V}^{r} U$. If y_{1}, \cdots, y_{r-k} are vectors in $U-W$ where $1<k<r$, then the set $\left\{y_{1} \vee \cdots \vee y_{r-k} \vee w_{1} \vee \cdots \vee w_{k}: w_{i} \in W, i=1, \cdots, k\right\}$, denoted by $y_{1} \vee \cdots \vee y_{r-k} \vee W \vee \cdots \vee W$, is also decomposable and is called a type k subspace of $\mathbf{V}^{r} U$. In [2] Cummings showed that every maximal decomposable subspee of $\mathbf{V}^{r} U$ is of type i for some $1 \leqq i \leqq r$.

A linear transformation on $\mathbf{V}^{r} U$ is called a decomposable mapping if it maps nonzero decomposable elements to nonzero decomposable elements. In [3] Cummings proved that if $\operatorname{dim} U>r+1$ then every decomposable mapping T on $\mathbf{V}^{r} U$ is induced by a nonsingular linear transformation f on U; that is, $T\left(y_{1} \vee \cdots \vee y_{r}\right)=f\left(y_{1}\right) \vee \cdots \vee f\left(y_{r}\right)$. In this paper we consider the case when $3 \leqq \operatorname{dim} U \leqq r+1$.
2. The case when $\operatorname{dim} U=r+1$. Two type 1 subspaces M_{1} and M_{2} of $\mathbf{V}^{r} U$ are called adjacent if

$$
\begin{aligned}
& M_{1}=x_{1} \vee \cdots \vee x_{r-2} \vee y_{1} \vee U \\
& M_{2}=x_{1} \vee \cdots \vee x_{r-2} \vee y_{2} \vee U
\end{aligned}
$$

for some $x_{1}, \cdots, x_{r-2}, y_{1}, y_{2}$ where y_{1} and y_{2} are linearly independent.
The proof of the following lemma is contained in that of Proposition 4 of [3].

Lemma 1. The images of two adjacent type 1 subspaces under a decomposable mapping are distinct.

Theorem 1. If $\operatorname{dim} U=r+1$ then every decomposable mapping T of $\mathbf{V}^{r} U$ is induced by a nonsingular mapping of U.

Proof. Let M be a type 1 subspace of $\mathrm{V}^{r} U$. Then $T(M)$ is a decomposable subspace of $\mathbf{V}^{r} U$. Moreover $\operatorname{dim} M=\operatorname{dim} T(M)=r+1$. Let $T(M) \subseteq N$ where N is a maximal decomposable subspace. If N is of type k where $1<k<r$, then $\operatorname{dim} N=k+1<r+1$ which is a contradiction. Hence N is of type 1 or type r. Since $\operatorname{dim} N=$ $r+1$, it follows that $T(M)=N$.

Suppose that some type 1 subspace $x_{1} \vee \cdots \vee x_{r-2} \vee y \vee U$ is mapped onto a type r subspace $\mathbf{V}^{r} W$ where W is a two dimensional subspace of U. We shall show that this leads to a contradiction.

Let $\mathscr{C}=\left\{T\left(M_{u}\right): u \in U, u \neq 0\right\}$ where $M_{u}=x_{1} \vee \cdots \vee x_{r-2} \vee u \vee U$. We shall show that $\mathbf{V}^{r} W$ is the only type r subspace in \mathscr{C}. Suppose there is another type r subspace $\mathbf{V}^{r} W^{*}$ in \mathscr{C}. Since $\mathbf{V}^{r} W \cap \mathbf{V}^{r} W^{*} \neq 0$, $W \cap W^{*}$ is 1-dimensional. Choose a nonzero vector z in U such that

$$
T\left(x_{1} \vee \cdots \vee x_{r-2} \vee y \vee z\right)=w_{1} \vee \cdots \vee w_{r}
$$

where $\operatorname{dim}\left\langle w_{1}, \cdots, w_{r}\right\rangle=2,\langle y\rangle \neq\langle z\rangle$, and $W \cap W^{*} \neq\left\langle w_{\imath}\right\rangle$ for all $i=1, \cdots, r$. If

$$
T\left(M_{z}\right)=z_{1} \vee \cdots \vee z_{r-1} \vee U
$$

for some z_{\imath} in U then

$$
T\left(M_{z}\right) \cap \bigvee^{r} W \neq 0
$$

and

$$
T\left(M_{z}\right) \cap \mathbf{V}^{r} W^{*} \neq 0
$$

imply that $z_{1}, \cdots, z_{r-1} \in W \cap W^{*}$ and hence $\left\langle z_{1}\right\rangle=\cdots=\left\langle z_{r-1}\right\rangle=W \cap W^{*}$. Since $w_{1} \vee \cdots \vee w_{r} \in z_{1} \vee \cdots \vee z_{r-1} \vee U$, it follows that $\left\langle w_{i}\right\rangle=W \cap W^{*}$ for some i, a contradiction. Hence

$$
T\left(M_{z}\right)=\mathbf{V}^{r} S
$$

for some two dimensional subspace S of U. Note that $x_{1} \vee \cdots \vee$ $x_{r-2} \vee y \vee z \in M_{z} \cap M_{y}$. Thus $w_{1}, \cdots, w_{r} \in W \cap S$. This implies that $\left\langle w_{1}, \cdots, w_{r}\right\rangle=W=S$, a contradiction to Lemma 1 since M_{z} and M_{y}
are adjacent type 1 subspaces. This proves that $\mathbf{V}^{r} W$ is the only type r subspace in \mathscr{C}.

Since $\left\{T\left(M_{x}\right):\langle x\rangle \neq\langle y\rangle, x \neq 0\right\}$ is an infinite family of type 1 subspaces (Lemma 1) it follows from Proposition 4 of [3] that there exist vectors u_{1}, \cdots, u_{r-2} such that for any $x \in U-\{0\}$ and $\langle x\rangle \neq\langle y\rangle$,

$$
T\left(M_{x}\right)=u_{1} \vee \cdots \vee u_{r-2} \vee x^{\prime} \vee U
$$

for some $x^{\prime} \in U$. Since $T\left(M_{x}\right) \cap \mathbf{V}^{r} W \neq 0$ we have $x^{\prime} \in W$. Let g be a fixed nonzero vector such that $\langle g\rangle \neq\langle y\rangle$. Then for any $x \in U-\{0\}$ such that $\langle x\rangle \neq\langle g\rangle,\langle x\rangle \neq\langle y\rangle$,

$$
T\left(x_{1} \vee \cdots \vee x_{r-2} \vee x \vee g\right)=u_{1} \vee \cdots \vee u_{r-2} \vee x^{\prime} \vee g_{x}
$$

for some g_{x}. Since $u_{1} \vee \cdots \vee u_{r-2} \vee x^{\prime} \vee g_{x} \in u_{1} \vee \cdots \vee u_{r-2} \vee g^{\prime} \vee U$ and $\left\langle x^{\prime}\right\rangle \neq\left\langle g^{\prime}\right\rangle$ we have $\left\langle g_{x}\right\rangle=\left\langle g^{\prime}\right\rangle$. Therefore

$$
\begin{aligned}
T\left(M_{g}\right) \subseteq & u_{1} \vee \cdots \vee u_{r-2} \vee g^{\prime} \vee W \\
& \cup\left\langle T\left(x_{1} \vee \cdots \vee x_{r-2} \vee g \vee y\right)\right\rangle \\
& \cup\left\langle T\left(x_{1} \vee \cdots \vee x_{r-2} \vee g \vee g\right)\right\rangle
\end{aligned}
$$

This is impossible since $\operatorname{dim} T\left(M_{g}\right)=\operatorname{dim} U>2$.
Therefore, T maps type 1 subspaces to type 1 subspaces. By Theorem 2 of [3] T is induced by a nonsingular linear transformation on U.
3. The case when $3 \leqq \operatorname{dim} U<r+1$. In this section we assume that char $F=0$.

Lemma 2. Let x_{1}, \cdots, x_{k} be k nonzero vectors of U. Let $r>$ $k+1$ and $x_{1} \vee \cdots \vee x_{k} \vee A=z_{1} \vee \cdots \vee z_{r} \neq 0$ in $V^{r} U$ where $A \in$ $\mathbf{V}^{r-k} U$ and $z_{i} \in U$. Then $\left\langle x_{i}\right\rangle=\left\langle z_{j_{i}}\right\rangle$ for some j_{i} where $j_{s} \neq j_{t}$ for distinct s and t.

Proof. Let u_{1}, \cdots, u_{n} be a basis of U. Let ϕ be the isomorphism from the symmetric algebra $\mathrm{V} U$ over U onto the polynomical algebra $F\left[\xi_{1}, \cdots \xi_{n}\right]$ in n indeterminates $\xi_{1}, \cdots \xi_{n}$ over F such that $\phi\left(u_{i}\right)=\xi_{i}$, $i=1, \cdots, n[4, \mathrm{p} .428]$. Then

$$
\phi\left(x_{1}\right) \cdots \phi\left(x_{k}\right) \phi(A)=\phi\left(z_{1}\right) \cdots \phi\left(z_{r}\right) \neq 0 .
$$

Since $F\left[\xi_{1}, \cdots, \xi_{n}\right]$ is a Gaussian domain and since $\phi\left(x_{1}\right), \cdots, \phi\left(x_{k}\right)$, $\phi\left(z_{1}\right), \cdots, \phi\left(z_{r}\right)$ are linear homogeneous polynomials, it follows that for each $i=1, \cdots, k,\left\langle\phi\left(x_{i}\right)\right\rangle=\left\langle\phi\left(z_{j_{i}}\right)\right\rangle$ for some j_{i} where $j_{t} \neq j_{s}$ if $s \neq t$. This implies that $\left\langle x_{i}\right\rangle=\left\langle z_{j_{i}}\right\rangle$. Hence the lemma is proved.

The following result is proved in [1, p. 131] under the assumption that char $F=0$.

Lemma 3. $\mathrm{V}^{r} U$ is spanned $b y\{u^{r}=\underbrace{\vee \vee \cdots \vee u}_{r \text {-times }}: u \in U\}$.
Hereafter we will assume that $3 \leqq \operatorname{dim} U<r+1$ and T is a decomposable mapping on $\mathrm{V}^{r} U$. Since every type k subspace has dimension $<r+1$ where $1 \leqq k<r$ we see that every type r subspace of $\mathrm{V}^{r} U$ is mapped onto a type r subspace under T.

Lemma 4. If there are two distinct type r subspaces M and N of $\mathrm{V}^{r} U$ such that $M \cap N \neq 0$ and $T(M)=T(N)$, then $T\left(\mathrm{~V}^{r} U\right)=T(M)$.

Proof. Let $M=\mathrm{V}^{r} S_{1}, N=\mathrm{V}^{r} S_{2}$ and $T(M)=T(N)=\mathrm{V}^{r} S$ where S, S_{1}, S_{2} are two dimensional subspaces of U. By hypothesis,

$$
M \cap N=\mathbf{V}^{r} S_{1} \cap \mathbf{V}^{r} S_{2}=\mathbf{V}^{r}\left(S_{1} \cap S_{2}\right) \neq 0
$$

Hence $S_{1} \cap S_{2}$ is one dimensional. Let $S_{1}=\left\langle y_{1}, y_{2}\right\rangle, S_{2}=\left\langle y_{1}, y_{3}\right\rangle$. Consider $S_{3}=\left\langle y_{2}, y_{3}\right\rangle$. Then

$$
\mathbf{V}^{r} S_{3} \cap \mathbf{V}^{r} S_{2}=\left\langle y_{3}^{r}\right\rangle, \quad \mathbf{V}^{r} S_{3} \cap \mathbf{V}^{r} S_{1}=\left\langle y_{2}^{r}\right\rangle
$$

Hence $T\left(\mathrm{~V}^{r} S_{3}\right) \cap \mathrm{V}^{r} S \supseteq\left\langle T\left(y_{3}^{r}\right), T\left(y_{2}^{r}\right)\right\rangle$. Since T is a decomposable mapping and $\left\langle y_{2}^{r}, y_{3}^{r}\right\rangle$ is a two dimensional decomposable subspace, it follows that $\left\langle T\left(y_{2}^{r}\right), T\left(y_{3}^{r}\right)\right\rangle$ is two dimensional. Hence $T\left(\mathrm{~V}^{r} S_{3}\right)=\mathrm{V}^{r} S$ because any two distinct type r subspaces of $\mathbf{V}^{r} U$ have at most one dimension in common.

Let $z=\alpha y_{1}+\beta y_{2}+\gamma y_{3}$ where α, β, γ are all nonzero scalars. Consider $S_{4}=\left\langle y_{1}, z\right\rangle=\left\langle y_{1}, \beta y_{2}+\gamma y_{3}\right\rangle$. Since

$$
\begin{aligned}
& \mathbf{V}^{r} S_{4} \cap \mathbf{V}^{r} S_{3} \supseteqq\left\langle\left(\beta y_{2}+\gamma y_{3}\right)^{r}\right\rangle, \\
& \mathbf{V}^{r} S_{4} \cap \mathbf{V}^{r} S_{1} \supseteqq\left\langle y_{1}^{r}\right\rangle,
\end{aligned}
$$

we have $T\left(\mathrm{~V}^{r} S_{4}\right) \cap \mathrm{V}^{r} S \supseteqq\left\langle T\left(y_{1}^{r}\right), T\left(\left(\beta y_{2}+\gamma y_{3}\right)^{r}\right)\right\rangle$ which is two dimensional. Hence $T\left(\mathbf{V}^{r} S_{4}\right)=\mathrm{V}^{r} S$. Consequently by Lemma 3, $T\left(\mathbf{V}^{r}\left\langle y_{1}, y_{2}, y_{3}\right\rangle\right)=\mathbf{V}^{r} S$.

Now, let $w \in U$ such that $w \notin\left\langle y_{1}, y_{2}, y_{3}\right\rangle$. Let $W=\left\langle y_{1}, w\right\rangle$. Consider the type 1 subspace $P=y_{1} \vee \cdots \vee y_{1} \vee U$. Since

$$
\operatorname{dim}\left(P \cap \mathbf{V}^{r}\left\langle y_{1}, y_{2}, y_{3}\right\rangle\right)=3
$$

we have $\operatorname{dim}\left(T(P) \cap \mathbf{V}^{r} S\right) \geqq 3$. Since the maximal dimension of the intersection of two distinct maximal decomposable subspaces is 2 , we conclude that $T(P) \cong \mathrm{V}^{r} S$. This shows that

$$
T\left(\mathbf{V}^{r} W\right) \cap \mathbf{V}^{r} S \supseteqq\left\langle T\left(y_{1}^{r}\right), T\left(y_{1} \vee \cdots \vee y_{1} \vee w\right)\right\rangle
$$

Since $\left\langle y_{1}^{r}, y_{1}^{r-1} \vee w\right\rangle$ is a two dimensional decomposable subspace, $\left\langle T\left(y_{1}^{r}\right), T\left(y_{1}^{r-1} \vee w\right)\right\rangle$ is also two dimensional. Hence $T\left(\mathrm{~V}^{r} W\right)=\mathrm{V}^{r} S$. By Lemma 3, we conclude that $T\left(\mathbf{V}^{r} U\right)=\mathrm{V}^{r} S$. This completes the proof.

Lemma 5. Suppose that for any two distinct type r subspaces M, N such that $M \cap N \neq 0$, we have $T(M) \neq T(N)$. Then T is induced by a nonsingular transformation on U.

Proof. Let y, y_{1}, y_{2} be linearly independent vectors. Let $S_{1}=$ $\left\langle y, y_{1}\right\rangle, S_{2}=\left\langle y, y_{2}\right\rangle$. Then $T\left(\mathrm{~V}^{r} S_{1}\right)=\mathrm{V}^{r} S_{1}^{\prime}$ and $T\left(\mathrm{~V}^{r} S_{2}\right)=\mathrm{V}^{r} S_{2}^{\prime \prime}$ for some two dimentional subspaces $S_{1}^{\prime}, S_{2}^{\prime}$ of U. By hypothesis $\mathrm{V}^{r} S_{1}^{\prime} \neq$ $V^{r} S_{2}^{\prime}$. Hence

$$
\mathbf{V}^{r} S_{1}^{\prime \prime} \cap \mathbf{V}^{r} S_{2}^{\prime}=T\left(\mathbf{V}^{r} S_{1} \cap \mathbf{V}^{r} S_{2}\right)=\left\langle y^{\prime r}\right\rangle
$$

for some $y^{\prime} \in U$. Therefore $T\left(y^{r}\right)=\lambda y^{\prime r}$ for some λ in F.
Let $H=y \vee \cdots \vee y \vee U$. We claim that $T(H)=y^{\prime} \vee \cdots \vee y^{\prime} \vee U$. Since $T(H)$ is a decomposable subspace, it is contained in a maximal decomposable subspace. If $T(H)$ is contained in a type k subspace $g_{1} \vee \cdots \vee g_{r-k} \vee W \vee \cdots \vee W$ where $2 \leqq k<r$, then $y^{\prime r} \in g_{1} \vee \cdots \vee$ $g_{r-k} \vee W \vee \cdots \vee W$ and hence $\left\langle g_{1}\right\rangle=\left\langle y^{\prime}\right\rangle, \quad y^{\prime} \in W$. This implies $g_{1} \in W$, a contradiction. If $T(H)$ is contained in a type r subspace $\mathbf{V}^{r} W$, then

$$
\begin{aligned}
& \operatorname{dim}\left(\mathbf{V}^{r} S_{1} \cap H\right)=2 \Longrightarrow \operatorname{dim}\left(T\left(\mathbf{V}^{r} S_{1}\right) \cap \mathbf{V}^{r} W\right) \geqq 2, \\
& \operatorname{dim}\left(\mathbf{V}^{r} S_{2} \cap H\right)=2 \Longrightarrow \operatorname{dim}\left(T\left(\mathbf{V}^{r} S_{2}\right) \cap \mathbf{V}^{r} W\right) \geqq 2 .
\end{aligned}
$$

Since $T\left(\mathrm{~V}^{r} S_{1}\right)$ and $T\left(\mathrm{~V}^{r} S_{2}\right)$ are both type r subspaces, it follows that $T\left(\mathrm{~V}^{r} S_{1}\right)=\mathrm{V}^{r} W=T\left(\mathrm{~V}^{r} S_{2}\right)$, a contradiction to our hypothesis. Hence $T(H)$ is a type 1 subspace of $\mathbf{V}^{r} U$. Since $y^{\prime r} \in T(H)$, it follows that

$$
T(H)=y^{\prime} \vee \cdots \vee y^{\prime} \vee U
$$

By Lemma 3, let $x_{1}^{r-1}, \cdots, x_{t}^{r-1}$ be a basis of $\mathrm{V}^{r-1} U$. Note that $3 \leqq \operatorname{dim} U<r+1$ implies that $r \geqq 3$. Clearly if $i \neq j$ then x_{i} and x_{j} are linearly independent. Consider any type one subspace $D=$ $z_{1} \vee \cdots \vee z_{r-1} \vee U$. Let $z_{1} \vee \cdots \vee z_{r-1}=\sum_{i=1}^{t} \lambda_{i} x_{i}^{r-1}$ where $\lambda_{i} \in F$ and $i=1, \cdots, t$. We shall show that $T(D)$ is a type 1 subspace. Suppose to the contrary that
(i) $\quad T(D) \cong \mathrm{V}^{r} S$
or
(ii) $\quad T(D) \leqq w_{1} \vee \cdots \vee w_{r-k} \vee S \vee \cdots \vee S, 2 \leqq k<r$, for some two dimensional subspace S of U and some $w_{1}, \cdots, w_{r-k} \in U-S$.

Let $T\left(x_{i} \vee \cdots \vee x_{i} \vee U\right)=x_{i}^{\prime} \vee \cdots \vee x_{i}^{\prime} \vee U, i=1, \cdots, t$. Note that $T\left(x_{i}^{r}\right)=\eta_{2} x_{i}^{\prime r}$ for some $\eta_{i} \in F, i=1, \cdots, t$. For $i \neq j,\left\langle x_{i}^{r}, x_{j}^{r}\right\rangle$ is a two dimensional subspace of $\mathrm{V}^{r} U$ implies that $T\left(\left\langle x_{i}^{r}, x_{j}^{r}\right\rangle\right)=\left\langle x_{i}^{\prime r}, x_{j}^{\prime r}\right\rangle$ is a two dimensional subspace of $\mathrm{V}^{r} U$. Hence x_{i}^{\prime} and x_{j}^{\prime} are linearly independent if $i \neq j$.

Consider case (ii). Choose a vector w of U such that

$$
w \notin\left\langle w_{1}\right\rangle \cup \cdots \cup\left\langle w_{r-k}\right\rangle \cup S \cup\left(\bigcup_{i \neq j}\left\langle x_{i}^{\prime}, x_{j}^{\prime}\right\rangle\right)
$$

Let $u \in U$ such that $T\left(x_{1}^{r-1} \vee u\right)=x_{1}^{r-1} \vee w$. For each $i \geqq 2$, let $T\left(x_{i}^{r-1} \vee u\right)=x_{i}^{r-1} \vee u_{i}$. We shall show that $\left\langle u_{i}\right\rangle=\langle w\rangle$ for $i \geqq 2$.

Since $\left\langle x_{i 1}^{r-1} \vee u, x_{i}^{r-1} \vee u\right\rangle$ is a decomposable subspace for $i \geqq 2$, $\left\langle x_{1}^{r-1} \vee w, x_{i}^{r-1} \vee u_{i}\right\rangle$ is also a decomposable subspace. By our choice of $w,\left\langle x_{1}^{\prime}, w, x_{i}^{\prime}\right\rangle$ is three dimensional. Hence $\left\langle x_{1}^{\prime r-1} \vee w, x_{i}^{\prime r-1} \vee u_{i}\right\rangle$ is contained in a type k subspace A for some $1 \leqq k<r$. If A is of type k where $1 \leqq k \leqq r-2$, then we have $\left\langle x_{i}^{\prime}\right\rangle=\langle w\rangle$ or $\left\langle x_{i}^{\prime}\right\rangle=\left\langle x_{1}^{\prime}\right\rangle$ which is a contradiction. Hence A is of type $r-1$. This implies that $\left\langle u_{i}\right\rangle=\langle w\rangle, i \geqq 2$.

Let $u_{i}=a_{i} w$ where $a_{i} \in F, i \geqq 2$. Then

$$
\begin{aligned}
T\left(z_{1} \vee \cdots \vee z_{r-1} \vee u\right) & =T\left(\sum_{i=1}^{t} \lambda_{i} x_{i}^{r-1} \vee u\right) \\
& =\lambda_{1} x_{1}^{\prime r-1} \vee w+\sum_{i=2}^{t} \lambda_{i} x_{i}^{\prime r-1} \vee\left(a_{i} w\right) \\
& =\left(\lambda_{1} x_{1}^{\prime r-1}+\sum_{i=2}^{t} \lambda_{i} a_{i} x_{i}^{\prime r-1}\right) \vee w \\
& =g_{1} \vee \cdots \vee g_{r} \neq 0
\end{aligned}
$$

for some $g_{i} \in U, i=1, \cdots, r$. In view of Lemma $2,\left\langle g_{j}\right\rangle=\langle w\rangle$ for some $j, 1 \leqq j \leqq r$. Since

$$
g_{1} \vee \cdots \vee g_{r} \in w_{1} \vee \cdots \vee w_{r-k} \vee S \vee \cdots \vee S
$$

we have $\langle w\rangle=\left\langle w_{i}\right\rangle$ for some i or $w \in S$. This contradicts our choice of w. Hence

$$
T(D) \not \equiv w_{1} \vee \cdots \vee w_{r-k} \vee S \vee \cdots \vee S .
$$

Similarly $T(D) \nsubseteq \mathrm{V}^{r} S$. Therefore $T(D)$ is a type 1 subspace. In view of Theorem 2 of [3], T is induced by a nonsingular linear transformation on U.

Combining Lemmas 4 and 5 we have the following main result:
Theorem 2. Let $T: \mathrm{V}^{r} U \rightarrow \mathbf{V}^{r} U$ be a decomposable mapping. If $3 \leqq \operatorname{dim} U<r+1$ then either T is induced by a nonsingular transformation on U or $T\left(\mathbf{V}^{r} U\right)$ is a type r subspace. In particular, if T is nonsingular, then T is induced by a nonsingular transformation on U.

We have so far not been able to determine whether there does in fact exist a decomposable mapping on $\mathbf{V}^{r} U$ such that its image is a type r subspace when $3 \leqq \operatorname{dim} U<r+1$.

The author is indebted to Professor R. Westwick for his encouragement and suggestions. Thanks are also due to the referee for his suggestions.

References

1. H. Boerner, Representations of Groups, North-Holland, Amsterdam, 1963.
2. L. J. Cummings, Decomposable symmetric tensors, Pacific J. Math., 35 (1970), 65-77.
3. -, Transformations of symmetric tensors, Pacific J. Math., 42 (1972), 603-613.
4. S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965.

Received October 3, 1973 and in revised form September 18, 1974.
University of Malaya, Kuala Lumpur, Malaysia

