LINEAR TRANSFORMATIONS ON SYMMETRIC SPACES

M. H. LIM

Let U be an n-dimensional vector space over an algebraically closed field F of characteristic zero, and let $\vee^r U$ denote the rth symmetric product space of U. Let T be a linear transformation on $\vee^r U$ which sends nonzero decomposable elements to nonzero decomposable elements. We prove the following:

(i) If n = r + 1 then T is induced by a nonsingular transformation on T.

(ii) If 2 < n < r+1 then either T is induced by a nonsingular transformation on U or $T(\mathbf{v}^{r}U) = \mathbf{v}^{r}W$ for some two dimensional subspace W of U.

The result for n > r + 1 was recently obtained by L. J. Cummings.

1. Preliminaries. Let U be a finite dimensional vector space over an algebraically closed field F. Let $\bigvee^r U$ denote the *r*th symmetric product space over U where $r \ge 2$. Unlese otherwise stated, the characteristic of F is assumed to be zero or greater than r.

A decomposable subspace of $\bigvee^r U$ is a subspace consisting of decomposable elements. Let x_1, \dots, x_{r-1} be r-1 nonzero vectors in U. Then the set $\{x_1 \lor \dots \lor x_{r-1} \lor u : u \in U\}$, denoted by $x_1 \lor \dots \lor x_{r-1} \lor U$, is a decomposable subspace of $\bigvee^r U$ and is called a type 1 subspace of $\bigvee^r U$. Let W be a two dimensional subspace of U. It is shown in [2] that $\bigvee^r W$ is decomposable and is called a type r subspace of $\bigvee^r U$. If y_1, \dots, y_{r-k} are vectors in U - W where 1 < k < r, then the set $\{y_1 \lor \dots \lor y_{r-k} \lor w_1 \lor \dots \lor w_k : w_i \in W, i = 1, \dots, k\}$, denoted by $y_1 \lor \dots \lor y_{r-k} \lor W \lor \dots \lor W$, is also decomposable and is called a type k subspace of $\bigvee^r U$. In [2] Cummings showed that every maximal decomposable subspace of $\bigvee^r U$ is of type i for some $1 \le i \le r$.

A linear transformation on $\bigvee^r U$ is called a *decomposable mapping* if it maps nonzero decomposable elements to nonzero decomposable elements. In [3] Cummings proved that if dim U > r + 1 then every decomposable mapping T on $\bigvee^r U$ is induced by a nonsingular linear transformation f on U; that is, $T(y_1 \vee \cdots \vee y_r) = f(y_1) \vee \cdots \vee f(y_r)$. In this paper we consider the case when $3 \leq \dim U \leq r + 1$.

2. The case when dim U = r + 1. Two type 1 subspaces M_1 and M_2 of $\bigvee^r U$ are called *adjacent* if

$$egin{aligned} M_{\scriptscriptstyle 1} &= x_{\scriptscriptstyle 1} ee \cdots ee x_{r-2} ee y_{\scriptscriptstyle 1} ee U \ M_{\scriptscriptstyle 2} &= x_{\scriptscriptstyle 1} ee \cdots ee x_{r-2} ee y_{\scriptscriptstyle 2} ee U \end{aligned}$$

for some $x_1, \dots, x_{r-2}, y_1, y_2$ where y_1 and y_2 are linearly independent. The proof of the following lemma is contained in that of Propo-

sition 4 of [3].

LEMMA 1. The images of two adjacent type 1 subspaces under a decomposable mapping are distinct.

THEOREM 1. If dim U = r + 1 then every decomposable mapping T of $\bigvee^r U$ is induced by a nonsingular mapping of U.

Proof. Let M be a type 1 subspace of $\bigvee^r U$. Then T(M) is a decomposable subspace of $\bigvee^r U$. Moreover dim $M = \dim T(M) = r + 1$. Let $T(M) \subseteq N$ where N is a maximal decomposable subspace. If N is of type k where 1 < k < r, then dim N = k + 1 < r + 1 which is a contradiction. Hence N is of type 1 or type r. Since dim N = r + 1, it follows that T(M) = N.

Suppose that some type 1 subspace $x_1 \vee \cdots \vee x_{r-2} \vee y \vee U$ is mapped onto a type r subspace $\bigvee^r W$ where W is a two dimensional subspace of U. We shall show that this leads to a contradiction.

Let $\mathscr{C} = \{T(M_u): u \in U, u \neq 0\}$ where $M_u = x_1 \vee \cdots \vee x_{r-2} \vee u \vee U$. We shall show that $\bigvee^r W$ is the only type r subspace in \mathscr{C} . Suppose there is another type r subspace $\bigvee^r W^*$ in \mathscr{C} . Since $\bigvee^r W \cap \bigvee^r W^* \neq 0$, $W \cap W^*$ is 1-dimensional. Choose a nonzero vector z in U such that

$$T(x_1 \lor \cdots \lor x_{r-2} \lor y \lor z) = w_1 \lor \cdots \lor w_r$$

where dim $\langle w_1, \cdots, w_r \rangle = 2$, $\langle y \rangle \neq \langle z \rangle$, and $W \cap W^* \neq \langle w_i \rangle$ for all $i = 1, \cdots, r$. If

$$T(M_z) = z_1 \vee \cdots \vee z_{r-1} \vee U$$

for some z_i in U then

$$T(M_z) \cap \mathbf{V}^r W \neq 0$$

and

$$T(M_z) \cap \mathbf{V}^r W^* \neq 0$$

imply that $z_1, \dots, z_{r-1} \in W \cap W^*$ and hence $\langle z_1 \rangle = \dots = \langle z_{r-1} \rangle = W \cap W^*$. Since $w_1 \vee \dots \vee w_r \in z_1 \vee \dots \vee z_{r-1} \vee U$, it follows that $\langle w_i \rangle = W \cap W^*$ for some *i*, a contradiction. Hence

$$T(M_z) = \mathbf{V}^r S$$

for some two dimensional subspace S of U. Note that $x_1 \vee \cdots \vee x_{r-2} \vee y \vee z \in M_z \cap M_y$. Thus $w_1, \cdots, w_r \in W \cap S$. This implies that $\langle w_1, \cdots, w_r \rangle = W = S$, a contradiction to Lemma 1 since M_z and M_y

500

are adjacent type 1 subspaces. This proves that $\bigvee^r W$ is the only type r subspace in \mathscr{C} .

Since $\{T(M_x): \langle x \rangle \neq \langle y \rangle, x \neq 0\}$ is an infinite family of type 1 subspaces (Lemma 1) it follows from Proposition 4 of [3] that there exist vectors u_1, \dots, u_{r-2} such that for any $x \in U - \{0\}$ and $\langle x \rangle \neq \langle y \rangle$,

$$T(M_x) = u_1 \vee \cdots \vee u_{r-2} \vee x' \vee U$$

for some $x' \in U$. Since $T(M_x) \cap \bigvee^r W \neq 0$ we have $x' \in W$. Let g be a fixed nonzero vector such that $\langle g \rangle \neq \langle y \rangle$. Then for any $x \in U - \{0\}$ such that $\langle x \rangle \neq \langle g \rangle$, $\langle x \rangle \neq \langle y \rangle$,

$$T(x_1 \lor \cdots \lor x_{r-2} \lor x \lor g) = u_1 \lor \cdots \lor u_{r-2} \lor x' \lor g_x$$

for some g_x . Since $u_1 \vee \cdots \vee u_{r-2} \vee x' \vee g_x \in u_1 \vee \cdots \vee u_{r-2} \vee g' \vee U$ and $\langle x' \rangle \neq \langle g' \rangle$ we have $\langle g_x \rangle = \langle g' \rangle$. Therefore

$$egin{aligned} T(M_g) & \sqsubseteq u_1 ee \cdots ee u_{r-2} ee g' ee W \ & \cup \langle T(x_1 ee \cdots ee x_{r-2} ee g ee y)
angle \ & \cup \langle T(x_1 ee \cdots ee x_{r-2} ee g ee y)
angle \end{aligned}$$

This is impossible since dim $T(M_g) = \dim U > 2$.

Therefore, T maps type 1 subspaces to type 1 subspaces. By Theorem 2 of [3] T is induced by a nonsingular linear transformation on U.

3. The case when $3 \leq \dim U < r + 1$. In this section we assume that char F = 0.

LEMMA 2. Let x_1, \dots, x_k be k nonzero vectors of U. Let r > k + 1 and $x_1 \vee \dots \vee x_k \vee A = z_1 \vee \dots \vee z_r \neq 0$ in $\bigvee^r U$ where $A \in \bigvee^{r-k} U$ and $z_i \in U$. Then $\langle x_i \rangle = \langle z_{j_i} \rangle$ for some j_i where $j_s \neq j_t$ for distinct s and t.

Proof. Let u_1, \dots, u_n be a basis of U. Let ϕ be the isomorphism from the symmetric algebra $\bigvee U$ over U onto the polynomical algebra $F[\xi_1, \dots, \xi_n]$ in n indeterminates ξ_1, \dots, ξ_n over F such that $\phi(u_i) = \xi_i$, $i = 1, \dots, n$ [4, p. 428]. Then

$$\phi(x_1) \cdots \phi(x_k)\phi(A) = \phi(z_1) \cdots \phi(z_r) \neq 0$$
.

Since $F[\xi_1, \dots, \xi_n]$ is a Gaussian domain and since $\phi(x_1), \dots, \phi(x_k)$, $\phi(z_1), \dots, \phi(z_r)$ are linear homogeneous polynomials, it follows that for each $i = 1, \dots, k$, $\langle \phi(x_i) \rangle = \langle \phi(z_{j_i}) \rangle$ for some j_i where $j_i \neq j_s$ if $s \neq t$. This implies that $\langle x_i \rangle = \langle z_{j_i} \rangle$. Hence the lemma is proved.

The following result is proved in [1, p. 131] under the assumption that char F = 0.

M. H. LIM

LEMMA 3. $\bigvee^r U$ is spanned by $\{u^r = \underbrace{u \lor \cdots \lor u}_{r \text{-times}} : u \in U\}$.

Hereafter we will assume that $3 \leq \dim U < r+1$ and T is a decomposable mapping on $\bigvee^r U$. Since every type k subspace has dimension < r+1 where $1 \leq k < r$ we see that every type r subspace of $\bigvee^r U$ is mapped onto a type r subspace under T.

LEMMA 4. If there are two distinct type r subspaces M and N of $\bigvee^r U$ such that $M \cap N \neq 0$ and T(M) = T(N), then $T(\bigvee^r U) = T(M)$.

Proof. Let $M = \bigvee^r S_1$, $N = \bigvee^r S_2$ and $T(M) = T(N) = \bigvee^r S$ where S, S_1, S_2 are two dimensional subspaces of U. By hypothesis,

$$M \cap N = igveerine{\mathsf{V}}^r S_1 \cap igveerine{\mathsf{V}}^r S_2 = igvee{\mathsf{V}}^r (S_1 \cap S_2)
eq 0$$
 .

Hence $S_1 \cap S_2$ is one dimensional. Let $S_1 = \langle y_1, y_2 \rangle$, $S_2 = \langle y_1, y_3 \rangle$. Consider $S_3 = \langle y_2, y_3 \rangle$. Then

$$igvee ^r S_3 \cap igvee ^r S_2 = \langle y_3^r
angle$$
 , $igvee ^r S_3 \cap igvee ^r S_1 = \langle y_2^r
angle$.

Hence $T(\bigvee^r S_3) \cap \bigvee^r S \supseteq \langle T(y_3^r), T(y_2^r) \rangle$. Since T is a decomposable mapping and $\langle y_2^r, y_3^r \rangle$ is a two dimensional decomposable subspace, it follows that $\langle T(y_2^r), T(y_3^r) \rangle$ is two dimensional. Hence $T(\bigvee^r S_3) = \bigvee^r S$ because any two distinct type r subspaces of $\bigvee^r U$ have at most one dimension in common.

Let $z = \alpha y_1 + \beta y_2 + \gamma y_3$ where α , β , γ are all nonzero scalars. Consider $S_4 = \langle y_1, z \rangle = \langle y_1, \beta y_2 + \gamma y_3 \rangle$. Since

$$igvee ^r S_4 \cap igvee ^r S_3 \supseteq \langle (eta y_2 + \gamma y_3)^r
angle , \ igvee ^r S_4 \cap igvee ^r S_1 \supseteq \langle y_1^r
angle ,$$

we have $T(\bigvee^r S_4) \cap \bigvee^r S \supseteq \langle T(y_1^r), T((\beta y_2 + \gamma y_3)^r) \rangle$ which is two dimensional. Hence $T(\bigvee^r S_4) = \bigvee^r S$. Consequently by Lemma 3, $T(\bigvee^r \langle y_1, y_2, y_3 \rangle) = \bigvee^r S$.

Now, let $w \in U$ such that $w \notin \langle y_1, y_2, y_3 \rangle$. Let $W = \langle y_1, w \rangle$. Consider the type 1 subspace $P = y_1 \lor \cdots \lor y_1 \lor U$. Since

$$\dim \left(P \cap igvee {}^r \left< y_{\scriptscriptstyle 1}, \, y_{\scriptscriptstyle 2}, \, y_{\scriptscriptstyle 3} \right>
ight) = 3$$
 ,

we have dim $(T(P) \cap \mathbf{V}^r S) \geq 3$. Since the maximal dimension of the intersection of two distinct maximal decomposable subspaces is 2, we conclude that $T(P) \subseteq \mathbf{V}^r S$. This shows that

$$T(\bigvee^r W) \cap \bigvee^r S \supseteq \langle T(y_1^r), T(y_1 \vee \cdots \vee y_1 \vee w) \rangle .$$

Since $\langle y_1^r, y_1^{r-1} \vee w \rangle$ is a two dimensional decomposable subspace, $\langle T(y_1^r), T(y_1^{r-1} \vee w) \rangle$ is also two dimensional. Hence $T(\mathbf{V}^r W) = \mathbf{V}^r S$. By Lemma 3, we conclude that $T(\mathbf{V}^r U) = \mathbf{V}^r S$. This completes the proof. LEMMA 5. Suppose that for any two distinct type r subspaces M, N such that $M \cap N \neq 0$, we have $T(M) \neq T(N)$. Then T is induced by a nonsingular transformation on U.

Proof. Let y, y_1, y_2 be linearly independent vectors. Let $S_1 = \langle y, y_1 \rangle$, $S_2 = \langle y, y_2 \rangle$. Then $T(\bigvee^r S_1) = \bigvee^r S_1'$ and $T(\bigvee^r S_2) = \bigvee^r S_2'$ for some two dimensional subspaces S_1' , S_2' of U. By hypothesis $\bigvee^r S_1' \neq \bigvee^r S_2'$. Hence

$$\mathbf{V}^r S_1' \cap \mathbf{V}^r S_2' = T(\mathbf{V}^r S_1 \cap \mathbf{V}^r S_2) = \langle y'^r \rangle$$

for some $y' \in U$. Therefore $T(y^r) = \lambda y'^r$ for some λ in F.

Let $H = y \lor \cdots \lor y \lor U$. We claim that $T(H) = y' \lor \cdots \lor y' \lor U$. Since T(H) is a decomposable subspace, it is contained in a maximal decomposable subspace. If T(H) is contained in a type k subspace $g_1 \lor \cdots \lor g_{r-k} \lor W \lor \cdots \lor W$ where $2 \leq k < r$, then $y'^r \in g_1 \lor \cdots \lor g_{r-k} \lor W \lor \cdots \lor W$ and hence $\langle g_1 \rangle = \langle y' \rangle$, $y' \in W$. This implies $g_1 \in W$, a contradiction. If T(H) is contained in a type r subspace $\bigvee^r W$, then

$$\dim \left(igvee ^r S_{\scriptscriptstyle 1} \cap H
ight) = 2 \Longrightarrow \dim \left(T(igvee ^r S_{\scriptscriptstyle 1}) \cap igvee ^r W
ight) \geqq 2 \;, \ \dim \left(igvee ^r S_{\scriptscriptstyle 2} \cap H
ight) = 2 \Longrightarrow \dim \left(T(igvee ^r S_{\scriptscriptstyle 2}) \cap igvee ^r W
ight) \geqq 2 \;.$$

Since $T(\mathbf{V}^r S_1)$ and $T(\mathbf{V}^r S_2)$ are both type r subspaces, it follows that $T(\mathbf{V}^r S_1) = \mathbf{V}^r W = T(\mathbf{V}^r S_2)$, a contradiction to our hypothesis. Hence T(H) is a type 1 subspace of $\mathbf{V}^r U$. Since $y'^r \in T(H)$, it follows that

$$T(H) = y' \vee \cdots \vee y' \vee U.$$

By Lemma 3, let $x_1^{r-1}, \dots, x_t^{r-1}$ be a basis of $\bigvee^{r-1} U$. Note that $3 \leq \dim U < r+1$ implies that $r \geq 3$. Clearly if $i \neq j$ then x_i and x_j are linearly independent. Consider any type one subspace $D = z_1 \vee \cdots \vee z_{r-1} \vee U$. Let $z_1 \vee \cdots \vee z_{r-1} = \sum_{i=1}^t \lambda_i x_i^{r-1}$ where $\lambda_i \in F$ and $i = 1, \dots, t$. We shall show that T(D) is a type 1 subspace. Suppose to the contrary that

(i) $T(D) \subseteq \bigvee^r S$ or

(ii) $T(D) \subseteq w_1 \lor \cdots \lor w_{r-k} \lor S \lor \cdots \lor S, 2 \leq k < r,$

for some two dimensional subspace S of U and some $w_1, \dots, w_{r-k} \in U-S$. Let $T(x_i \lor \cdots \lor x_i \lor U) = x'_i \lor \cdots \lor x'_i \lor U$, $i = 1, \dots, t$. Note that $T(x_i^r) = \eta_i x_i'^r$ for some $\eta_i \in F$, $i = 1, \dots, t$. For $i \neq j$, $\langle x_i^r, x_j^r \rangle$ is a two dimensional subspace of $\bigvee^r U$ implies that $T(\langle x_i^r, x_j^r \rangle) = \langle x_i'^r, x_j'^r \rangle$ is a two dimensional subspace of $\bigvee^r U$. Hence x'_i and x'_j are linearly independent if $i \neq j$.

Consider case (ii). Choose a vector w of U such that

M. H. LIM

$$w
otin \langle w_1
angle \cup \cdots \cup \langle w_{r-k}
angle \cup S \cup \left(igcup_{i
eq j} \langle x_i', \, x_j'
angle
ight).$$

Let $u \in U$ such that $T(x_1^{r-1} \vee u) = x_1'^{r-1} \vee w$. For each $i \ge 2$, let $T(x_i^{r-1} \vee u) = x_i'^{r-1} \vee u_i$. We shall show that $\langle u_i \rangle = \langle w \rangle$ for $i \ge 2$.

Since $\langle x_i^{r-1} \lor u, x_i^{r-1} \lor u \rangle$ is a decomposable subspace for $i \ge 2$, $\langle x_i'^{r-1} \lor w, x_i'^{r-1} \lor u_i \rangle$ is also a decomposable subspace. By our choice of w, $\langle x_i', w, x_i' \rangle$ is three dimensional. Hence $\langle x_i'^{r-1} \lor w, x_i'^{r-1} \lor u_i \rangle$ is contained in a type k subspace A for some $1 \le k < r$. If A is of type k where $1 \le k \le r-2$, then we have $\langle x_i' \rangle = \langle w \rangle$ or $\langle x_i' \rangle = \langle x_i' \rangle$ which is a contradiction. Hence A is of type r-1. This implies that $\langle u_i \rangle = \langle w \rangle$, $i \ge 2$.

Let $u_i = a_i w$ where $a_i \in F$, $i \ge 2$. Then

$$egin{aligned} T(z_1 ee \cdots ee z_{r-1} ee u) &= T\Big(\sum\limits_{i=1}^t \lambda_i x_i^{r-1} ee u\Big) \ &= \lambda_1 x_1'^{r-1} ee w + \sum\limits_{i=2}^t \lambda_i x_i'^{r-1} ee (a_i w) \ &= \Big(\lambda_1 x_1'^{r-1} + \sum\limits_{i=2}^t \lambda_i a_i x_i'^{r-1}\Big) ee w \ &= g_1 ee \cdots ee g_r
eq 0 \end{aligned}$$

for some $g_i \in U$, $i = 1, \dots, r$. In view of Lemma 2, $\langle g_j \rangle = \langle w \rangle$ for some $j, 1 \leq j \leq r$. Since

$$g_1 \lor \cdots \lor g_r \in w_1 \lor \cdots \lor w_{r-k} \lor S \lor \cdots \lor S$$
,

we have $\langle w \rangle = \langle w_i \rangle$ for some *i* or $w \in S$. This contradicts our choice of *w*. Hence

$$T(D) \not\subseteq w_1 \lor \cdots \lor w_{r-k} \lor S \lor \cdots \lor S.$$

Similarly $T(D) \nsubseteq \bigvee^r S$. Therefore T(D) is a type 1 subspace. In view of Theorem 2 of [3], T is induced by a nonsingular linear transformation on U.

Combining Lemmas 4 and 5 we have the following main result:

THEOREM 2. Let $T: \bigvee^r U \to \bigvee^r U$ be a decomposable mapping. If $3 \leq \dim U < r+1$ then either T is induced by a nonsingular transformation on U or $T(\bigvee^r U)$ is a type r subspace. In particular, if T is nonsingular, then T is induced by a nonsingular transformation on U.

We have so far not been able to determine whether there does in fact exist a decomposable mapping on $\bigvee^r U$ such that its image is a type r subspace when $3 \leq \dim U < r + 1$. The author is indebted to Professor R. Westwick for his encouragement and suggestions. Thanks are also due to the referee for his suggestions.

References

1. H. Boerner, Representations of Groups, North-Holland, Amsterdam, 1963.

2. L. J. Cummings, Decomposable symmetric tensors, Pacific J. Math., 35 (1970), 65-77.

3. ____, Transformations of symmetric tensors, Pacific J. Math., 42 (1972), 603-613.

4. S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965.

Received October 3, 1973 and in revised form September 18, 1974.

UNIVERSITY OF MALAYA, KUALA LUMPUR, MALAYSIA