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A DENSITY THEOREM ON THE NUMBER OF
CONJUGACY CLASSES IN FINITE GROUPS

EDWARD A. BERTRAM

For each finite group G with k(G) conjugacy classes and
order g, it is well known that g < 22*. On the other hand,
all groups with a given small k ( ^ 8) have been determined,
and these studies, along with the result that if G is nilpotent
then g < 2*, strongly suggest that the bound can be signifi-
cantly improved. We prove that for each c2 < log 2, almost
all integers g ^n, as n -»oo, have the property that for
each G of order g, k(G) > (log n)cκ

The question of whether there exist finite groups G of arbitrarily
large order | G \ with a fixed number of conjugacy classes k was
first asked by Frobenius, and answered in the negative in 1903 by
E. Landau [5], using the class equation. In 1919 G. A. Miller [6]
discussed a definite upper bound for \G\ in terms of k; in 1968
P. Erdos and P. Turan [3], and independently M. Newman [8] gave
proofs that k(G) > log2log21 G\, again all using Landau's method.
When G is a p-group, P. Hall (unpublished) and later J. Poland [9]
had already obtained a parametric equation for h(G), from which
it readily follows that if G is nilpotent, then k(G) > log2 |G|; how-
ever the latter inequality does not hold for all solvable groups.
R. Brauer [1, p. 137] has asked for a substantial improvement on
the bounds obtained by Landau's method, and our main theorem
shows that for "most" group orders there is indeed a substantial
improvement:

THEOREM. For each c2 < log 2, almost all integers g ^ n, as
n —> oo, have the property that if G is a group of order g, then
k(G)> (log n)cK

Thus, if we let N(n) denote the number of integers g ^ n such
that k(G) > (log n)c* for each group G of order g, we will prove that
l i m ^ N(n)/n = 1.

A cryptic remark by G. A. Miller [7, p. 361, line 21] led us1

to the following lemma, which has apparently never been formally
stated, but is basic to the entire discussion. Let d(m) denote the
number of divisors of m, G a finite group, of order | G | , and parti-
tioned into k{G) conjugacy classes; for p a prime P(p'; \ G |) denotes

1 The author would like to thank Professor Robert Gilman for helpful comments
here.
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the number of primes Φ p which divide | G | but do not divide
p — 1. For H a subgroup of G, N(H) denotes the normalizer of
H in G, and C(H) the centralizer, that is N(H) = {x e G \ xH = Hx]
and C(H) = {xeG\xh = hx for all heH). (x) denotes the sub-
group generated by x.

LEMMA 1. Suppose p\\G\. Then k(G) ^ m i n ^ . ! { ( p — ϊ)/m +

d(m)} + P(p'; I G |).

Proof. Suppose the prime p\\G\ and let a? be an element in G
of order p. To see how the elements of (x) are partitioned into
(parts of the) conjugacy classes of G, we examine N((x}) since, for
rf s^O (modp), z~ιxrz = $ s implies z"1^);? = <#>. Now C « # » is a
normal subgroup of N((x))', let m denote the index of C((x}) in

N((x}) = C « # » U Ĉ /i U C2/2 U U C /̂m-i. Then the maximum number
of elements in (x) which lie in the same conjugacy class in G is ^ m.
For if z~λxrz — xs, then z e N((x)) => z — c or cyά for some c e C((x)) =
C(ί^), and 1 ^ i ^ m — 1. Thus we have a mapping from the set of
all xr which are conjugate to x8 into the set of coset representatives
{β, Vu 2/2, , Vm-i} This mapping is well defined, since if zτ1xrzί = x8

and ^o"1^1*^ = xs, then ^(zrVzO^ 1 = a?r => z2zτι e C(xr) => Z^ZT1 e C{x),
that is z1 and z2 lie in the same coset of C((x)). The mapping is
also one-to-one, since if z~1xrz = xs = z^Wzo with r, s, ί ^ 0 (mod p),
then « = c2/<, z0 = co^i with c, c0 e C(ίc) => yTιxrVi = y71(c~1xrc)yi =
^ - ^ ^ = £ s = ^j"1^*^ = Vj^Wcotyj = yγxιy^ Thus T/̂  = #,• => α?* = α?r.
We have now shown that the elements of (x) are partitioned into
at least (p — ΐ)/m + 1 (subsets of) conjugacy classes in G, counting
the identity class.

Since N((x))/C((x)) is isomorphic to a subgroup of the cyclic
group of automorphisms of (x), the factor group is cyclic and
generated by yC(x), for some y e N((x}). Since N((x)) = (C(x), (y))
we have, either by counting or an Isomorphism Theorem, that

_

Hence m | | <τ/> |, (y) has a cyclic subgroup of order m, and for each
different divisor ί of m we have an element of order L Since
elements of different orders must lie in different classes of G, we
have d(m) — 1 additional conjugacy classes. These have not been
counted earlier since each nonidentity element in (x) has order p,
whereas each I \ p — 1. Finally, every prime q Φ p such that q \ \ G \
and q \ m provides at least one new class, and then the same is true
for each prime q Φ p such that q\\G\ and q \ p — 1. We have shown
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that for each prime p\ \G\, k(G) satisfies k(G) ^ (p — l)/m + d(m) +
P(pr) \G\) f o r s o m e m\p — 1. B u t t h e n k(G) ^ m i n ^ ^ {(p — ΐ)/m +
d(m)} + P(pf) \G\) and the proof of the lemma is complete.

EXAMPLES. | G | = 60 => k(G) ^ 5 ; | G | = 156 => k(G) ^ 6.

Let v(n) denote the number of distinct prime factors of n, and
d(m) the total number of divisors of m; p3- is the jth prime.

LEMMA 2. (Hardy and Wright, [4, § 18.1]). Given ε > 0,
( a ) there exists a constant c(e) > 1 such that d(n) < c(e)nε for

all n ^ 2; αmϊ
( b ) d(ri)<nε for all sufficiently large n.

LEMMA 3. Given ε > 0, there exists a positive constant co(ε) < 1
such that

min \d(m) + — 1 > co2
(1-c)^(%) for all n ^ 2 .

Furthermore, for sufficiently large v(n), this minimum is

Proof. We prove the first part; the second is proved similarly.
If v(n/m) g εv(n) then d(m) ^ 2y(m) ^2 v ( % )- v ( % / m ) ^ 2{1~ε)v{n). If v(%/m) >
εv(^i then d(n/m) ^ 2^(%/m) > 2εv{n). But now from (a) of Lemma 2,
c(e).(n/m)ε> d(n/m)> 2εv{n) or w/m > (l/(c(ε)))1/ε2vW. Thus the ine-
quality to be proved holds with co(ε) = (l/(c(ε)))1/ε. That 1 - ε may
not be replaced by 1, no matter how small c0 > 0, is seen by con-
sidering the sequence n = Πi=i PJ a s ^ ~~* °° If w e le^ w = Πi=ι-^i PJ?
i; to be chosen such that, for example I — v = [VI ], then

min \d{m) + ~ g 2 "

So

i=ΪPi < 4̂ -̂°. Now p^v < 3/2(2 — v) log (ί — t;), for all large
enough I, and then I - 2pt_v > I - S(l - v) log (I - v) > (21)β. Thus
Z — v and Z — 2pt_v each —> oo, and we are finished.

From Lemmas 1 and 3 follows immediately our first theorem.

THEOREM 1. For each ε > 0, there exists a positive constant
co(ε) < 1 such that for each prime p dividing | G ] , k(G) > co2

{1~ε)v{p~ι).

THEOREM 2. (P. Erdδs, [2]). Given an arbitrarily small posi-
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tive ε, then for almost all primes p ^ n, i.e., except for o(n/\ogn)
of the primes g n, as n —> co,

(1 — ε) log log n < v(p — 1) < (1 + ε) log log n .

THEOREM 3. (S. Selberg, [10]). Let ^ he a set of primes,
C > 0 and h ^ 1 constants, such that

^ 1 . log log n r

P^n p k
pe & x

Then there exists a constant D (depending only on h and C) such
that, if A(n, ^) denotes the number of integers g ^ n and not
divisible by any prime in ^, A(n, ^)/n < D/(log n)llh.

In particular, if the inequality in the hypothesis can be shown
to hold for all n large enough, we may conclude that, as n —> oo,
"almost all" integers g g n are divisible by at least one prime in
£^. We now state and prove our main theorem:

THEOREM 4. For each c2 < log 2 almost all integers g ^ n, as
n —> co, have the property that each group G of order g satisfies
k(G) > (log ri)cκ

Proof. For each fixed ε > 0 we know that for sufficiently large
v(p - 1), if p I |G] then k(G) > 2(1-ε/2)1'(ί)-1), by Lemmas 1 and 3. Thus
we need only show that, as n —* co, almost all g ^ n are divisible
by a prime p satisfying v{p—l) > (1 — (l/2)ε) log log n.

For any fixed positive ε, let & be the set of all primes p ^n
such that v(p — 1) > (1 - 2ε) log log n. Then, if nr + 1 = the least
integer Ξ> exp (log1""^) we obtain

Σ - ^ Σ -
v(p—1)^(1—ε)lθglθgp x

since in the latter sum

(1 - ε) log log p ^ (1 - ε) log log (nf + 1)

2̂  (1 — ε)2 log log n > (1 — 2ε) log log n .

Let N(l, ε) denote the cardinality of the collection of all primes
p ^ I such that v(p — 1) ^ (1 — ε) log log p. Then the smaller sum
above is

, ε) — N(l — 1, ε) _ v N(l, ε) _ v N(l, ε)

y N(l, ε) _ 1
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Now by the theorem of Erdδs, for each I > lo(e), N(l, έ) > (3/4)ί/logί.
Hence for all n (and thus nf and I) large enough, we find that
(1/(1 + 1)) > 2/3 and)

N(l, e) ^ 3
/ I 7 / 7 , t \ ^ A ' l

1(1 + 1 ) 4 I=*'+i (ϊ + 1) log

>4T : π ^ 4
2 J»'+i tlogt 2

Now that Σpe^Ί/JP > — log log ^ — 1, for sufficiently large w, we

may apply Selberg's theorem to our ^ , obtaining the conclusion
desired.

Finally, the author acknowledges with gratitude the comments
of Professor Patrick X. Gallagher, which resulted in this improve-
ment of the original theorem, announced in the Notices of the
A.M.S., August, 1974.
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