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ON THE EQUIVALENCE OF TWO TYPES OF
OSCILLATION FOR ELLIPTIC OPERATORS

W. ALLEGRETTO

The strong oscillation of a second order symmetric elliptic
operator is shown to be equivalent to the oscillation of all
solutions of the associated homogeneous equation. Extensions
of a nonoscillation theorem and of an existence theorem are
obtained as applications.

Introduction* Let {En

9 °o} denote the topological space formed
by the standard one point compactification of ^-dimensional Euclidean
space E*. A real valued function u with domain in E* is said to be
oscillatory (at oo) iff oo belongs to the closure (in the topology of
{E%, oo}) of the set {x\xe En and u(x) = 0}. Let L denote a second
order symmetric elliptic operator with coefficients defined in an un-
bounded domain Ω of En. Following I. Glazman [6], we define L
to be strongly oscillatory (at oo) iff L has a nodal domain in NΠ Ω for
any given neighborhood N of oo. That is: Given any neighborhood
N of oo, there exists a bounded domain DaN Π Ω for which zero is
the smallest eigenvalue for L (corresponding to Dirichlet boundary
conditions). Since the classical Sturm-Kneser theorem can be extended
to partial differential equations by means of the Swanson-Picone iden-
tity, [14, p. 187], [2], it follows that if L is strongly oscillatory then
every C2 function v which is a solution of the equation Lu = 0 in
N n Ω, for some neighbourhood N of oo, must be oscillatory. This
connection between the strong oscillation of L and the oscillation of
the solutions to the equation Lu = 0 has been noted for some time,
beginning with results of K. Kreith [8], for special cases of L;
Headley and Swanson [7], for the general case; and, more recently,
several other authors. Further extensions of these concepts have
also been made to the case of elliptic systems [1], [16] and eigenvalue
problem [2], [3]. We refer the reader to the recent book by K. Kreith
[9], where these ideas are discussed and an extensive bibliography is
given.

It is our main purpose to show that the strong oscillation of a
second order elliptic operator L is equivalent to the oscillation of all
solutions u of the equation Lu = 0 in neighborhoods of oo, if the
coefficients of L and Ω are reasonably regular. This extends a result
which is obviously true for ordinary differential equations. As applica-
tions of our results, a nonoscillation theorem of C. A. Swanson is
strengthened and some related results of L. M. Kuks are clarified
and extended.
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We shall restrict our discussion to the case where Ω is an un-
bounded domain and L has regular coefficients. The analogues of our
results for the case where Ω is bounded but the coefficients of L are
singular at some boundary point of Ω will be obvious from the
presentation.

2* Assumptions and main results* As is usual, points of E*
will be denoted by x = (xu •••,$*) and differentiation with respect
to xi by Dt for ί = 1, •••,%. Let Ω denote an unbounded domain of
En. We shall use the following notation throughout:

ΩPvP = Ωf] {x\xeEn and ft < \x\ < p} ,

ΩPt00 = Ω Π {x\x e En and p < \x\} ,

where 0 < px < p < oo.
Let L denote the elliptic operator formally given by:

n

Lu = — Σ DildtjDju] + cu , aiό = α* .
ί.J=l

The coefficients α<y are assumed of class Cm+ί and c is assumed of
class Cm where m = 3[[3 + n/2]/2] in the closure of any bounded
subdomain of £?, where [g] denotes the largest integer not exceeding q.
L is assumed uniformly elliptic in any bounded subdomain of Ω.
These assumptions are more restrictive than what is needed for many
of the results, however they lead to a unified and simple presentation.
About Ω we shall only assume that ΩPvP is a domain for all ρu p
with Po < Pi < p < oo for some p0 > 0. Unlike most results for un-
bounded domains, no other restrictions are placed on Ω or on the
coefficients of L at oo or on the sign of c.

LEMMA 0. Let β be a positive constant and x0 a point in Ω so
that {x\ \x — xo\ <Ξ β} g Ω. Define the Qι~ι{Ω) function Ψ as

fls-Sol'-jST. if \x-xo\ύβ

0 , if \x-xo\^β.

Then given ε, 0 < ε < 1/2, there is a l0 = lo(xo, β, ε) such that for each
positive integer I ̂  lQ, the following hold:

( i ) LΨ(x)^0 for eβ^\x-xo\
(ii) LΨ(x)>0 for eβ ^ \x - xo\ ̂  (1 - ε)β .

The proof of Lemma 0 follows easily from the locally uniform
ellipticity of L and the local boundedness of the coefficients of L.

As an immediate consequence of Lemma 0, we note that given
any arbitrarily large q > 0 and any sufficiently small ε > 0 we can
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construct a function ^ o e Q(Ωq,q+2ε) such that L(φ0) ^ 0(^0) in Ωq+ε>q+2ε.
Given any bounded subdomain D of Ω we introduce the space

Cι{D) of all continuously differentiate functions in D and the space
Hι(D) which is the completion of Cι(D) in the norm:

\\n\\l= [ JΣ(A^) 2 + u2\dΩ .

By Hi(D) we denote the closure in the || | i rnorm of the space
C™(D), of all infinitely differ en tiable functions with compact support
in D.

We shall not distinguish in notation between the equivalence
classes which form the elements of H\D) and functions chosen from
various equivalence classes.

Given any function ueHo(D), we define u to be nonnegative in
the Ho1 sense iff there exists a sequence of nonnegative Q(D) functions
which converges to u in the || | | r norm. If u, v e Hi(D), we write u ^ v
iff u — v ^ 0 in the Ho sense. Let G denote the function from B1 to
B1 given by:

^t x [x x^O
G(x) =

(0 x < 0 .

For any ueHo(D), we set u+ = Gou,u~ — G°(~-u) and define \u\ by

The form 5(^, 9) given by:

is naturally associated with the operator L and subdomain D. A

function u e HX{D) is called subsolution with respect to L in D iff

•B(M, 9) ^ 0 for φ e C~(D), Φ^O. A generalized solution of Lu = /

is a function u in ί ί^D) such that B(u, φ) = (/, ^) for all ό G CΓ(J5)

where, as usual, we set (/, φ) = \ fφ.

The above terminology was introduced in [13] where the following
two results were established (in much greater generality):

LEMMA 1 [13, p. 18]. If u is a member of Hl{D) then so are
uJ> and u~ and*.

f O ^ O (0 ^ 0 ^
a.e.D; D^w = \ a.e.D .

LEMMA 2 [13, p. 75]. If u, v are subsolutίons in D and the form
B is coercive over HQ(D) then max (u, v) is also a subsolution.
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If u e Hl(D) then clearly u+ and u~ are nonnegative in the
sense.

The next two lemmas show that if L has no nodal domains in
Ωm>co then there exists a positive C2 function u such that Lu(x) ~
0 for all \x\ sufficiently large. Such a function u is obtained as the
limit of solutions of suitable boundary value problems involving
bounded subdomains of Ωm>co.

LEMMA 3. Let L have no nodal domain in ΩmjODfor some integer
m > pQ and let φ0 e C'l(Ωmjm+2ε) be a function constructed by the above
procedures (for some e > 0) such that LoQ >̂ 0(^0) in Ωm+ε,m+2ε. Then
for each integer k > m + 2ε there exists a function uk in Hi(Ωm+ε,k)
such that Luk = Lφ0 in a generalized sense. Furthermore, if kt > k2 >
m + 2e then ukl ^ uk2 ^ 0.

Proof. Since L has no nodal domains in Ωm>co then for each
integer k, k > m + 2ε, there exists a positive constant 7 such that
for all functions φ£C~(Ωm+eik) we have:

(Lφ, Φ) ̂  Ύ(φ, Φ) .

Consequently L is uniformly positive definite in C~(Ωm+είk) and we
can form the Friedrichs extension of L (also denoted by L) whose
domain is contained in the completion of C™(Ωm+ε,k) in the || ||L-norm?

where \\Φ\\l = (φ, Lφ). We note t h a t if φeC~(Ωm+ε,k) then \\φ\\2

L ^

M\\φ\\l for some constant M which depends on the coefficients of L,
and, conversely,

where λ denotes a positive lower bound on the smallest eigenvalue
of (ai3(x)) and i V = s u p | c ( » ί for xeΩm+ε>k. Consequently, the || ||L-
norm and || | | r norm are equivalent for C~(Ωm+8tk) and the completion
of Cϊ(Ωm+e,k) in the || j|L-norm is Hi(Ωm+ε>k). By the results stated, for
example, in [12, Chapter 1] there exists a unique function uk in
Ho(Ωm+εjk) which is a generalized solution of Luk ==• Lφ0 in Ωm+ε>k and
is further characterized as the function which minimizes the functional:

J(Φ) = \\φ\\l-2(φ,LφQ)

over the space Hi(Ωm+εtk). By Lemma 1, it follows that \uk\e Hi(Ωm+ε,k),

kl)2 = (DiUky, and \uk\
2 = u\ a.e. Ωm+ε,k. Consequently,

J( | uk!) - J(uk) - 2( (uk - 1 uk \)Lφ0 £ 0
Q k
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since Lφ0 ^ 0 in Ωm+St0O. By the uniqueness of the minimizing function
uk it follows that uk = \uk\ a.e. and consequently uk ^ 0. If kx> k2>
m + 2ε then uk2 — ukl is a solution in H1(Ωm+ε>k2) of Lu — 0 and

since the the constant function Ϊ Ξ O Ϊ S also a solution of Lv = 0 then
max (uk2 — ukl, 0) = {uk2 — ukl}

+ is a subsolution (in Hί(Ωm+ε>k2)) by Lemma
2. Consequently,

B({uk2 - ^fcl}
+, ?) ^ 0 ,

for all nonnegative ψ in C~(Ωm+8tks) and by continuity:

5 ( K - ukl}
+, {uk2 - ^ J + ) ^ 0 .

It follows that {uk2 — ukl}
+ = 0 and hence ukl ^ uk2.

LEMMA 4. Lei ίftβ conditions of Lemma 3 fcoZd. Then there
exists a positive function u e C2(i3m+2ε,oo) such that Lu(x) = 0 for x e

Proof. Consider the sequence {%Ji>m+2e with ut set identically
equal to zero outside Ωm+£fi. This is a minimizing sequence for the
functional J in the space formed by completing Cτ(Ωm+ε>Oΰ) in the || ||L-
norm since if ψ e C™(Ωm+£}OO) then J(φ) ^ J{u3) for any j chosen so that
supp φ c Ωm+εJ. We note that the expression | | ^ | | | = (φ, Lφ) defines a
norm even for φ e C~(Ωm>aJ since L has no nodal domains in i2W)0O.
Consequently, the Cauchy-Schwartz inequality shows that the map φ —•
(Φ, Lφ0) is a bounded linear functional on the space Cτ(Ωm>00) (and
hence on C"(βw+ε>0O)), with respect to the || ||L-norm. By means of
the Riesz representation theorem, we conclude that the minimum of
J is achieved in the completion of C~(Ωm+ε)OO) (with respect to the
|| ||L-norm) and it follows that the sequence {wj converges in the
|| ll^-norm, [12, Chapter 1]. If φ denotes any function in Cl(Ωm,J) we
again employ the Cauchy-Schwartz inequality to conclude that {(uίf

LΦ)} converges. Let x denote any point of Ωm+ε>QO. Since Ωm+εyOO is
connected, it is possible to find a finite number of spheres {SJJU such
that: Lφ0 > 0 in Sx; the center of Si+1 belongs to £<; x e Sk; and \JUiSt c
Ωm+£f0O. As noted above, the sequence {(uif Lφ0)} converges. Since
Lφ0 ^ 0 in βw+ε,oo then {ut} is L1 cauchy in Sλ. Let φι be a Cl(Ωm>O0)
function constructed by the above procedures such that Lφ1 > 0 in
S2 — Sλ and Lφx ^ 0 in the complement of SL. Since:

(uif Lφ,) = \ uJLφ, + \ uiLφι
JSi JΩ-Sι

we conclude that {ut} is L1^) cauchy. By induction, it follows that
{Ui} is cauchy in L^Sh). We set u = s u p ^ and conclude that u is
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of class L\0e(Ωm+StOO) and that for all φ e C~(βm+εjCO) we have (u, Lφ) =
(φ, Lφ0). Clearly if supp φ does not intersect Ωm+ε,m+2ε then (u, Lφ) =
0. Let K denote a regular subdomain with K a compact subset of
Ωm+ε>co which does not intersect Ωm+ε,m+2ε. Following a standard re-
gularity argument (see, for example, [4, p. 195]), we employ the
Sobolev embedding theorem as follows: Let φeC~(K) then:

u
K

It follows that the map φ —> (u, Φ) is a bounded linear functional
on the space H[

0

nl2]+1(K). By the Riesz representation theorem we
have:

(μ9 φ) = (u0, (-iy»m+W»m"φ) ,

for some u0 in Htl2Ί+1> where Htl2Ί+ι(K) is now considered as the
completion of C™(K) in the (equivalent) norm:

It follows that:

(u, Φ) = fro, (-iyj'φ),

and, consequently,

= 0

for some to in L\K) and all ^ in Cϊ(K), where ί - [l/2[(w + 6)/2]].
Since the coefficients of L are of class C3 t + 1 and C3ί respectively, we
conclude by a classical result (see, for example, [5, p. 56]) thatα/roe
C2t+2(K) and consequently that ue C\K). Hence u is a classical solu-
tion of Lu — 0 in βw+2s>co. Since ^ is obviously nonnegative, then u
must be positive [10].

It is interesting to note that the conclusion of Lemma 4 cannot
be strengthened to read: "there exists a function u solution of Lu ~
0 in Ω and positive in Ωm+etOO", as the following counterexample shows.
Let Ω = E2 and let c denote any regular nonpositive function with
support in {x\ \x\ < 1} such that the operator formally defined by
Lu — — Δu + cu has no nodal domains in {x \ | x \ < 2}. L has no nodal
domains in Ω1}OO since if φeC™(Ω1}O0) then Lφ — —Jφ. Assume that
there exists a function v such that Lv = 0 in E2 and t; > 0 in Ω1+ε>co

with 0 < ε < 1. If v vanishes at some point of E2 then it must
change sign [10]. By Lemma 1, (—v)+ e Ho({x\ \x\ < 2}) and by Lemma
2 (—v)+ is a subsolution. Consequently, we have

v)+, (-v)η £ 0 .
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If (—v)+ Φ 0 then we have a contradiction to the assumption that L
has no nodal domains in {x\ \x\ < 2}. It follows that v is positive in E2

and therefore Δv == cv ̂  0. But, by Liouville's theorem, any function
which is bounded below and superharmonic in the whole of E2 is a
constant. If c is nontrivial, this is a contradiction.

THEOREM 1. L is strongly oscillatory iff every C2 function u,
solution of Lu — 0 in some neighborhood of oo, is oscillatory.

Proof. If L is strongly oscillatory then, given any neighborhood
JV of oo it follows by the standard theory of eigenvalue problems
that there exists a bounded domain DczN Π Ω and a function ω e
Hi(D) such that (ω, Lω) < 0. By arguments involving the Swanson-
Picone identity (see, for example, [14, p. 205], [2]) we conclude that
all solutions u of Lu — 0 in D must change sign in D. Consequently,
all solutions of the equation Lu = 0 in some neighborhood of co are
oscillatory. Conversely, if L is not strongly oscillatory, then, by
Lemma 4, there exists a positive solution to the equation Lu == 0 in
some neighborhood of oo.

The proofs of the lemmas and of Theorem 1 would be even simpler
if the fact that L had no nodal domains in ΩmfOO implied that, for
ε > 0, the eigenvalues of L in the bounded subdomains of Ωm+ε)OO were
uniformly bounded below by a positive constant. Simple examples
can be constructed to show that this is, in general, false.

As an application of Theorem 1 it is possible to give strengthened
versions of known nonoscillation theorems. As an example we give
the following corollary which strengthens a result of C. A. Swanson
[15], which is itself an extension of a result of Glazman.

COROLLARY 1. Assume that Ω is the complement of a sphere in
E%, let λ0 > 0 denote the ellipticity constant of L (i.e. Σ*,i=i aίό(x)^i^' =
λoΣLifi for all (#, fi, •••, ?») in Ω x En), and let g(r) denote the
minimum of c(x) on {x\\x\ — r). If

lim inf r2g{r)

then there exists a positive solution in a neighborhood of oo to the
equation Lu — 0.

Proof. It is shown in [15] that condition (1) is sufficient for L
to have no nodal domains in a neighborhood at oo. The conclusion
then follows from Theorem 1.

It is obviously possible to obtain other such results by using
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known nonoscillation criteria, but we do not pursue this point.
In conclusion we note that L. M. Kuks has stated related results

which, as given in [11], appear valid only under the implicit assumption
that the (open) domain Ω and the coefficients of L are such that the
standard existence and uniqueness theories apply to the whole of Ω.
Specifically, it is stated in [11] that a necessary and sufficient condition
for the unique solvability of the Dirichlet problem in the subdomains
of Ω is that there exists a positive solution to the inequality Lu ^ 0
(cf. Definition 2 and Theorem 3 of [11]). However, this is false for
the (open) domain Ω even if Ω is bounded and regular, unless some
restrictions are placed on the coefficients of L up to the boundary of
Ω, as the following example indicates: Let Ω = (0, 1) x (0, 1) and let
L be formally given by:

J - i ϋ ) + A(_L du) + 2LL + J
x2 dx / δy \ y2 δy I L x^ y

Then u(x, y) = (x2 — x/n)(y2 — y/n) solves Lu = 0 and vanishes on the
boundary of (0, 1/n) x (0, 1/ri). Consequently, the Dirichlet problem
does not have unique solutions in the subdomains of (0, 1) x (0, 1).
Yet the function v{x, y) = xy satisfies Lv = 0 and is positive in Ω.
Analogous examples are possible for unbounded domains. If the
"domain" of [11] is not assumed open, i.e., if Ω = Q U P with Q some
open set and P a nonempty subset of the boundary of Q, then
clearly Theorem 3 of [11] is again false, for if the smallest eigenvalue
for L in Q is zero and conditions are sufficiently regular then by the
Swanson-Picone identity every solution of the inequality Lu ^ 0 must
vanish in Ω even though the Dirichlet problem has a unique solution
in each (proper) subdomain of Ω. It follows that, as claimed above,
Theorem 3 of [11] is valid (for open sets) only under global regularity
assumptions and, consequently, it does not imply Theorem 1. We state
a result which is, in form, a local version of Theorem 3 of [11].

COROLLARY 2. There exists an integer m such that the Dirichlet
problem for L has a unique (generalized) solution in any bounded
subdomain of ΩmjOO iff there exists an integer mΫ such that the equation
Lu — 0 has a positive solution in Ωm,^.

Proof. If there exists a positive solution u to the equation Lu =
0 in Ωm,yθa then by Theorem 1, L has no nodal domains in Ωm,y0O.
Consequently, the Dirichlet problem for any bounded subdomain of
Ωm>%ao has a unique solution. Conversely, if the Dirichlet problem for L
in the bounded subdomains of Ωm>co has a unique solution then L has no
nodal domains in Ωm>0O. The existence of a positive solution in a
neighborhood of oo follows from Theorem 1.
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If Ω and the coefficients of L are such that, for some ε > 0, it
is possible to regularly extend the coefficients of L to the open set
β«-ε,«> of En in such a way that the extension has no nodal domains in
β»-β,oo then we choose m' = m in Corollary 2 and in this case we have:

COROLLARY 3. The Dirichlet problem for L has a unique solution
in any bounded subdomain of ΩmtOO iff there exists a positive solution
in Ωmy0Q to the equation Lu — 0.

Note that if Ω Φ En we may replace "Ωm,J' by "Ω" in the state-
ment of Corollary 3 and hence we have, for this special case, an
analogue of Theorem 3 of [11] for our unbounded domain. Even
though it is easy to give simple sufficient conditions for the exten-
of L, as required in Corollary 3, to be possible, necessary and sufficient
conditions for such an extension are not known to the author at this
time.

Added in Proof. The significance to spectral theory of the
equivalence of the two types of oscillation has been considered by
J. Piepenbrink in his recent paper: "Nonoscillatory Elliptic Equations",
J. Differential Equations, 15, 541-550 (1974). Theorem 1 answers in
the affirmative the question posed by J. Piepenbrink at the end of
his paper.
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