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THE LOCAL RIGIDITY OF THE MODULI
SCHEME FOR CURVES

R. F. LAX

Let Y be a smooth, quasi-projective scheme of finite type
over an algebraically closed field of characteristic zero. Let X
be the quotient of Y by a finite group of
automorphisms. Assume that the branch locus of Y over X is
of codimension at least 3. In this note, it is shown that X is
locally rigid in the following sense: the singular locus of X is
stratified and, given a point on a stratum, it is shown that there
exists a locally algebraic transverse section to the stratum at the
point which is rigid. This result is then applied to the coarse
moduli scheme for curves of genus g, where g > 4 (in character-
istic zero).

1. Stratifying quotient schemes. Let k be an algebrai-
cally closed field. Let V be a smooth, irreducible quasi-projective
algebraic k-scheme. By a quotient scheme, we mean a scheme V =
V'lG, where G is a finite group of automorphisms of V. In [3], Popp
defines a stratification of such schemes.

Given a point P E V and a point P' E V lying over P, one may
define the inertia group of P':

I(P') = {σ E G I σx = JC mod MP>, for all x E OV.%P) .

If P" E V is another point lying over P, then I(P') and I(P") are
conjugate subgroups of G.

Let ZP denote the closed subscheme of Spec (0P) which is ramified
in the covering / : V —> V and let ZP be the inverse image of ZP in Spec
(0P>). Denote by Z!, ,Z'S those irreducible components of ZP of
dimension n - 1 (where n = dim V). Let H,, , Hs denote the inertia
groups of the generic points of Z5, ,Z'5 respectively and let H(Pf)
denote the subgroup of I(Pr) generated by the Hh i = 1,2, , s. (If
s =0, put tf(P') = (!).) Let

Ϊ(P') = I(P')IH(P')

and call this the small inertia group of P\ Under the assumption that
V is smooth, Popp shows that I(P') is independent of the cover; i.e.,
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for any smooth cover V"-> V, if P" E. V" is a point lying over P, then
/(P'1) = Z(P'). Thus, we may write J(P) and speak of the small inertia
group of P.

Let W be an irreducible subscheme of V and suppose P E
W. Then one says that V is equisingular at P along W if the following
two conditions hold:

(1) P is a smooth point of W
(2) Suppose P' is a point lying over P and W is the irreducible

component of f~\W) containing P\ Then the canonical homomorph-
ism 7(W')—^J(P') is a (surjective) isomorphism.

Let

Eqs (VIW) = {P E W | V is equisingular at P along W} .

Popp shows, under the assumption that k is of characteristic 0, that
this notion of equisingularity satisfies the axioms which any good notion
should (cf. [6]).

In particular, given Q E V, let MQ denote the family of closed,
irreducible subschemes W of V such that Q EEqs(V/W). Then the
family {Eqs(V7W)| W E MQ}, for fixed Q, has a greatest element called
the stratum through Q.

Another important property is that if E is a stratum and P Eί E, then
there exists a neighborhood U of P in V and a minimal biholomorphic
embedding ψ: U^>Ce (where e = ά\mMPIM2

P) such that ψ(U) is to-
pologically isomorphic to the direct product of ψ(U Π E) = % and a
locally algebraic transverse section to <? at ψ(P) (see [3] for details).

The above straification, in characteristic 0, is really quite neat: if E
is a stratum and PEE, then E ={Q\ Q is analytically isomorphic to P}.

2. The local rigidity of certain quotient schemes.

DEFINITION. Let V be a quotient scheme in characteristic
0. Stratify V as in §1. Then we will say V is locally rigid if given a
point P on a stratum £, then there is a locally algebraic transverse
section to E at P which is rigid.

PROPOSITION 1. Let a finite group I act by holomorphic au-
tomorphisms of Cm, leaving the origin fixed. If I acts freely outside
some I-inυariant complex subspace W (through the origin) of codimen-
sion ^ 3, then X = C'"// is rigid.

Proof. As is noted in [5], this is a valid generalization of Theorem
3 of [4].
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THEOREM 1. Suppose k is an algebraically closed field of charac-
teristic 0. Let Y be a smooth, quasi-projective algebraic k-scheme and
let G be a finite group of automorphisms of Y. Let X = Y/G. If the
branch locus of Y over X is of codimension at least 3, then X is locally
rigid.

Proof. Suppose x is a point of X. Let / denote the inertia group
of x. Note that since there is no ramification in codimension 1, we have
7 = 7. In a neighborhood of x, we can linearize the action of / (cf. [1],
[3]) so that X at x is locally analytically isomorphic to CnII at the point
Q which is the image of the origin under the canonical map C" —> CB/7.

Choose coordinates Zi, ,zπ in C" such that z,, ,z r span the
fixed space of I (we may do this since the fixed space is linear). Then

The stratum on which Q lies is

E = Spec(C[z,, ,zΓ])

and the transverse section we desire is

S=Spec(C[z Γ + I , ,z n ] f ) .

Locally at JC, the space X is isomorphic to E x S, not just
topologically, but analytically as well. It follows from this and our
hypotheses that the branch locus of the map Spec (C[zΓ+l, ,zπ])—>S
has codimension at least 3. Hence, applying Proposition 1, we may
conclude that S is rigid.

We may apply this theorem to Mg, the coarse moduli scheme for
curves of genus g, in characteristic zero. Mg is the quotient of the
smooth, higher-level moduli scheme JgMJ for n sufficiently large, by the
group GL(2g, Z/n) [2]. In [2], Popp computes the dimension of
ramification points of the map JgM —> Mg. An inspection of his compu-
tations shows that, for g > 4, the branch locus of this map has
codimension at least 3. Applying our theorem then yields:

PROPOSITION 2. Mg9 the coarse moduli scheme for curves of genus
g in characteristic 0, is locally rigid if g > 4.
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