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THE BOUNDARY OF A SEMILATTICE
ON AN n-CELL

A. Y. W. LAU

This paper presents a complete solution to the following
problem: if S is a topological semilattice on an n-cell (n ^ 2) and
B is the boundary, then B2 = S. Other problems of semilattices
are solved also.

A topological semilattice S is a Hausdorff space equipped with an
associative binary operation which is jointly continuous and satisfies the
equations xy = yx and x2 - x for all x, y. It is easy to see that x ^ y
defined by xy = x is a partial order which is closed in S x 5, and we shall
use L(x) = {y E S | y g jc jand M(x) = {y E S | y ^ J C } . If M(x) is con-
nected for each x E 5, then S is called an M-semilattice. The boundary
of an rc-cell in n -space is denoted by B(In) or just B if there is no
confusion, and / is the unit interval [0, 1].

Before we proceed to the theorems, we need some preliminary
notions. If / : [0, l]n -» X is a continuous function into a space X such

that f(B(In)) = p, then / goes homotopically to p (denoted by /—»p) if

there exists a continuous function // : In+] —> X such that H(x, 1) = f(x)
and H(JC,0) = p for all x E /" and H(B(Γ)x I) = p. The first lemma
could be found in [2].

LEMMA 1. If S is a compact connected subsemilattice of T where T
is a semilattice on an n-cell and B C S , then S = T.

LEMMA 2. // Γ is an (n + l)-ce// (n ^ 1) and β(T) C X C T and

ί/iere ejc/sfs p ELB such that /—>p /or e#cΛ continuous f : In —> B with

/(J3(/n))-p, ί/ierc X - T.

Proof. Let /:/"—> B be a continuous surjective function such
that f(B(Γ)) = p and / is one-to-one on Γ\B(In) into £ \ p . Then
there exists continuous H :Γ xl such that H(JC, !) = /(*) and //(JC,O) =
p for all JC E /" and H(B(Γ) x /) = p. We can put an equivalence
relation i? on / n + ! by identifying all the points on /" x{0}UB(/n)x
/. Then H induces a continuous function //* : In+]/R ~-> X such that
Γ+ιIR is topologically an (n + l)-cell and H* restricted to the boundary
of In+ι/R is a homeomorphism onto B.
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Suppose X/ T. Then there exists a retraction r :X—>B. Then
r o if* : In+ι/R —> β is an r-map1 which leads to a contradiction. Hence
X = T.

LEMMA 3. IfTis an (n + \)-cell (n ^ 1) and A is an arc contained
in T with end-points p and q such that A Π B = {q} and A U B C X C T

fftαί f-*p for each continuous f :Γ -> A U β vWίft f(B(In)) = p,
X = Γ.

Proof. For the sake of notation, we consider the n-cell /n to be
{x E J?" | | | x | |= 1}. Let A: be a continuous function from D =
{x GRn 11JC 11^ i} onto β such that k(B(D)) = q and it is 1 - 1 on
D\B(D) into B\q. Since A is an arc, we let /ι be a homeomorphism
form [i, 1] onto A such that ft® = q and ft(l) = p.

i f X G DLet f ix)-ί
L e t / U ) - ί f t ( | | j c | | ) if | |jc||^ί.

Then f-^p. Hence there exists H : Γ x I-> X such that H(xJ) =
f(x) and H(jc,0) = p for all x G /" and H(B(Γ)xI) = p. Define an
equivalence relation /? on /" x / by (x, y)R(a, b) iff (x, y) = (<2, b) or
{(x,y), (έi,fc)}C/" x{0}UB(/")x/ or y = b = 1 and ||x|| = | |α| |i?
i Then H again induces a continuous H*: In+ΪIR -* X such that
In+ιIR is topologically an (n + l)-cell and H* restricted to its boundary
is a homeomorphism onto B. By a similar argument to that in Lemma
2, we conclude that X = T.

We can now proceed to prove Theorems A and B which answer
Problem 44 in [1].

THEOREM A. // 5 is a topological semίlattice on an (n + \)-cell
(n ^ 1), then B2 = S.

Proof. Let 0 be the zero of S.

Case I. Suppose OEB. Let / : In —> B be a continuous function
such that /(β(Γ)) = 0. Then one can define H:Γ+ί-+B B by

) = f(x)f(xy) where xy =(*,,• ,xj;y =(x,y, •• ,xmy). Then H
B2

is the appropriate function to make /—»0. Since β C β 2 , then by
Lemma 2, β 2 = S.

Cose II. Suppose 0 £ β . Let α G β. Then there exists an arc
chain K from a to 0. Let q = inf (X Π β). Then A = L(g) Π K is an

1 A discussion of r-map could be found in K. Borsuk's "Theory of Retracts".
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arc chain from q to 0 such that A Π B = {q}. If / : / " - > A U B is a
continuous function such that /(B(Jn)) = 0, then
H : In+ι-*(A UB)'(AUB) defined by H(x, y) = f(x)f(xy) is again the
appropriate function. By Lemma 3, (A U B ) 2 = S . But ( A U B ) 2 C
L(q)UB2CL(a)UB2. Hence for each a E B, we have 5 C
L(a)UB2.

Suppose JC E S and x^O. If B C M(JC), then the compact con-
nected subsemilattice generated by B, U^iB", is contained in
M(JC). By Lemma 1, that would make S CM(x), which implies that
JC = 0. So it must be that there exists a E B such that a& M{x). In
other words, x£L(a). But S QL(a)UB2. Hence J C E B 2 . If each
nonzero x belongs to B2, then S = B2 since B2 is closed and 0 is a limit
point of nonzero elements.

THEOREM B. There exists a topological semilattice on a two-cell
such that there is an element x E B and if y E B, then jry^ 0.

Proof. Let A be a topological semilattice on an arc such that A
has zero as a cutpoint and an identity as an endpoint (e.g., the
subsemilattice of / x / given by {(JC, y)\x = 0 or y = 0 or JC =•!}). Then
A x A is a semilattice on a two-cell with coordinate
multiplication. Consider (1, 1) E B and if (α, b) E B, then (1, l)(α, fc) =
{a,b)j^ (0, 0), since (0, 0) is not on the boundary. Hence (1,1) has no
zero-divisor on the boundary.

Theorem C (its corollary) and D are related to questions raised in
[2] on M-semilattices, namely, a converse of Lemma 2 and a generaliza-
tion of Lemma 1 in [2].

THEOREM C2. // S is a semilattice on an n-cell such that for each
x E S, M(x) Π B is connected, then S is an M-semilattice.

Proof Let K be the component of M(ab) containing M(ab) Π B
where a,b E B. Since K is a subsemilattice of M(ab), then ab E: K2C
K. Let x E M ( ώ ) . Then x ^ y for some maximal element y in
M(ab). Hence y is also maximal in S. Thus y GB ΠM(ab)C
K. But x, flb E KJC which is a connected set contained in M(ab). We
have M(ab) connected. By Theorem A, each element in S can be
written as a product of some a,b G B. Hence S is an M-semilattice.

COROLLARY. // 5 is a semilattice on a two-cell such that if
a,b EB =[a,b]U[b,a], then [a,b]QM(ab) or [b,a] C M(αfc), then
S is an M-semilattice.

2 The author is grateful to the referee for this generalization.
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Proof. If JC, y E B, then denote the counter-clockwise arc from x
to y on B by [JC, y]. Let α, fo G R We claim that M(ab)ΠB is
connected. If it is not connected, then there exist r, ί E M(αb)Π B
such that r ^ ί and [rJ)Π(M(ab)Π b) = {rj}. Note that M(rt)C
M(ab). Since [r,ί]CM(rί), then [i,r]CM(ri)CM(aft). We have
M(ab) Π β = [ί, r] which is connected.

The proof of Lemma 1 in [2] relies on the existence of arc-chains in
compact M-semilattice. Theorem D applies to topological M-
semilattices.

THEOREM D. // S is an M-semilattice and f is a continuous
homomorphism from S onto a semilattice T, then T is an M-semilattice
and f is a monotone function.

Proof Let y E T and a, b E M(y). Since / is surjective, there
exist c,d<ΞS such that f(c) = α, f(d) = b. Then f(cd) = f(c)f(d) =
ab^y. Hence f(M(cd))CM(y). But c,d<EM(cd) which is
connected. Hence /(c), /(rf) belong to a connected set f(M(cd))
which is contained in M(y). Thus M(y) is connected.

To show / is monotone, one has to show f~ι(y) is connected. Let
α, b E/" !(y) and a^b. Since M(α) is connected, then 6 M(α) is
connected. If JC GM(a), then a - ab ^xb ^b which yields nf(a)^
f(xb)^f(b), i.e., f{xb) = y. Hence b M(α) is contained in f~\y) and
contains a, b. If a^ b, then ab ^a and ab ^b and /(αb) = /(α )/(fc) =
y2 = y. In this case, there exists connected sets in f~ι(y) which contain
{ab, a} and {ab, b}. Hence f~\y) is connected.

It would be interesting to generalize the concept of boundary (by
homotopy or cohomology) to general semilattices (e.g., as in [4]) such
that B2 = S still holds. Also, there is no structure theorem concerning
semilattices on a two-cell which are not M-semilattices.
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