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MORE ON A GENERALIZATION OF COMMUTATIVE
AND ALTERNATIVE RINGS

MARGARET HumMM KLEINFELD

Let R be a ring such that in every subring generated by two
elements the following identities are satisfied:

(N (x,y%,x)=yo(x,y,x)
2) x,y,2) +(y,z,x)+(z,x,y)=0
3) ((x,y),x,x)=0,

where (a.b,c)=(ab)c —a(bc), (a,b)=ab —ba, and a°b =
ab + ba. This condition is satisfied by any alternative ring and
also by any commutative ring. Assume further that R is a
simple ring of characteristic not 2 or 3 and that R has an
idempotent ¢ such that (e,e,R)=0=(R,e,e) while
(e,R) #0. Itis proved in this paper that under these conditions
R must be alternative.

Main section. In [2] and [3], E. Kleinfeld has studied rings of
characteristic not 2 or 3 which satisfy identities (1), (2), and (3). In[2]it
is shown that if such a ring has no divisors of zero, it is either
associative or commutative. In [3] it is shown that if such a ring R is
simple with idempotent e such that (e,e, R) =0= (R, e,e) and (e, R) #0,
then R is associative. In [4] E. Kleinfeld considers rings of charac-
teristic not 2 or 3 in which identities (1), (2), and (3) are assumed only
locally, i.e., in subrings generated by two elements. Commutative
rings satisfy this condition as do associative rings, but now in addition
the new condition is satisfied by all alternative rings. In [4] it is proved
that if such a ring has no divisors of zero, it must be either commutative
or alternative. It remained to investigate the implications of the new
local condition in the case of a simple ring R with idempotent
considered in [3]. This is done in the present paper. Henceforth we
assume that R is a simple ring of characteristic not 2 or 3 with
idempotent e satisfying (e,e, R) =0=(R,e,e) and (¢,R) #0. We also
assume that identities (1), (2), and (3) hold locally in R.

The full linearizations of identities (1) and (3) are respectively

Aw, y,z,x)=(w,yoz,x)+(x,yoz,w)—yo(w,z,x)
—zo(w,y,x)—yo(x,z,w)—zo(x,y,w)=0
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and
B(w,y,2,x)=((w,y), %, 2) + (W, ¥), 2, X) + ((x,y), W, 2)
+((x,y),zzw)+((z,y),w,x)+((z,y),x,w) =0.
We will use the notation J(x, y,z) =(x,y,z)+(z,x,y)+(y, z, x) to simp-

lify some of the identities. Because (2) holds locally we have
J(xy,y,x)=0. Linearizing y gives

Cx,y,z,x)=J(xy,z,x)+J(xz,y,x) =0,
while linearizing x in J(xy, y,x) =0, gives
D(x,y,y,w)=J(xy,y,w)+ J(wy,y,x) =0.
We also have J(xy,x,y)=0. Linearizing y gives
E(x,y,x,2)=J(xy,x,z)+ J(xz,x,y) =0,
while linearizing x in J(xy, x,y) =0, gives
F(x,y,w,y)=J(xy, w,y)+J(wy,x,y)=0.
Now C(x,y,z,x) =0 can be linearized to obtain

Gx,y,z,w)y=J(xy,z,w)+J(wy, z,x)+ J(xz,y,w)
+J(wz,y,x)=0.

Since we are assuming characteristics not 3, the condition that (2) holds
locally implies (x, x, x) =0, which can be linearized to give J(x,y,z)+
J(x,z,y)=0. This means the sum of the six possible associators with
entries x, y, and z is zero. This fact will be used freely and referred to
simply as ‘‘third power associativity.”

As in [3] we use the techniques employed by A. A. Albert in his
paper on simple alternative rings [1], and we take the Peirce decomposi-
tion of R into the direct sum, R = R;,@® R\y@® Ry ® Ry, where ex;; = ix;
and x;e = jx;, for all x; ER;, i,j =0,1. First we compute the multipli-
cation table of the R;. Exactly as in [3] we can prove

4) RywR, =0
and
(5) R0|R00 = 0.
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The proof of RywR,,=0and R,,Re C R\, given in [3] has only one use of
identity (2), and we can get the same thing by taking 0 = C(e, yq. X0, €) =
J(eyuw, X1, €) + J(ex1o, Yoo €) = J(X10, Yoo €). Thus we have

(6) RwRx,=0
and
(7) R]()R()() C R]().

When we reverse subscripts we can replace the use of (2) by
0=E(e,yu. e, xq) =J(eyn, e xo)+ J(exo, e, yi) =J(yu. e xp),

and so we have

(8) R“Rm = O
and
9) RyR, C Ry

The proof in [3] of R,,R\, C Ry, also has only one use of identity (2)
which can be replaced by using F(yy, e, x,;, ¢) = 0, and where subscripts
are reversed, D(xy, e, e, yy) =0. Thus we have

(]0) R, R, CRy
and
(1 ]) RooRm C Ro.

Exactly as in [3] we can prove

(12) x:;'o=0=x|o)’|o+)’mxlo
and
(13) X§ =0= X0 Yo+ YoXoi-

We cannot hope to prove R, R, =0 = Ry R, as in [3], since this is true
only for associative rings and not in general for alternative rings, and
our hypotheses are satisfied by alternative rings. We can prove
however that R,,R,, C R,; and RyR,, C R, which is what happens in
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alternative rings. These are the only two places where our multiplica-
tion inclusions will differ from those proved in [3]. We have 0 =
B(e,x1,y0,€) = ((€,X0), Yo, €) + ((€,X10),€,¥10) + (Y0, X10),€,€) +
((¥10,X10), €, €) + ((e, x10), €, ¥10) + ((e, x10), Y10, €) =
2(X10, Y10, €) +2(x10,€,y0). Thus we have (xy,Yi0,€)+(X10,€ Y10) =
0. Expansion gives X;oy,0: € — X10¥10 = 0 so that

(14) X10Y10° € = X10Y10-

Also we have 0= A (xy, Y. 6, €) = (X10,Y0°€€) + (€, yp°e X)) —
Yo (X, e,€) — e°(Xi,Y0,€) — Yoole,e,xn) — ec(eyio,X0) =
(X10,Y10,€) + (&, Yi0,X10) — €°(Xi0,¥10,€) — ec(e ¥y, Xp). Thus we
have (X1, Y, €) + (€, Y10, X10) = e °[(x10, Y10, €) +
(e,y10,Xx10)]. However, expansion gives (X, Yn,€) + (€ Yo, X10) =
XwYo'€e + YXio — €-YoXn = e-X,Yno, because of (12) and

(14). Substituting this in the previous equation we get e - X,y =
eo(e-x,yn). Since (e,e,R)=(R,e,e)=0, which also implies
(e, R, e) =0, the previous equation reduces to e - x,,¥;- ¢ =0, which in
view of (14) gives

(15) e 'X|0y10=0.

Combining (14) and (15), we see that we have proved

(16) RIORIO C ROI'

The same substitutions with subscripts reversed yield a proof of

a7 RoRoi C Ry

The proof of R, Ry, C R,, in [3] has only one use of (2) which can be
replaced by Cf(e, xy,Yo,e)=0, and with subscripts reversed by
F(xy,e,¥0,e)=0. Thus we have

(18) R, Ry CRy,
and
(19) R0|R|0 C Roo.

We now wish to consider products of the type RoR,; and R;;Ry,. We
have 0= F(y., e, Xow, €) =J(yne, xpn,€) + J(Xo&, yi,€) = J(Yi1, Xoo»€),
and 0=E(e,yn,e,x0) = J(eyu,e,x0) + J(exe,e,y1) =
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J(yu, e x0). Thus we have J(y, X0, €) =0and J(y,;, e,xo) =0. Using
these two equations, we can proceed exactly as in [3] to prove

(20) XY 11 = YuXeo € Reo+ Ry

We now consider products of the form R,,R,. From third power
associativity we have (x,,, yi,e) + (&, X1, y1) + (Y. e, x) + (¥, X1, €)
+ (e,yu,Xn) + (xn,6,y,)=0. Expanding and simplifying we get
(xXuyn+yuxn)e —e(xyyn+ynxy) =0, which can be rewritten as
(xy°y1,e)=0. This implies

2n X °yu € Ry + R

Now A(xy,yn,e,e)=0 gives 2(xy,ym,e) +  2(eyu,xn) =
eo(xy,yn.e)+ec(e y,,x;). Expanding and simplifying gives
2xpyn-e — XuyYn * YnXuy — €-YynXy) = €-Xpyn'e — e-Xpyy +
YuXu-e — e-yux,-e. Now if we let x,,y,, = a; + a,+ aq + ay, then
because of (21) we have y,;x,, = b,,— a,,— ao, + by. Substituting these
in the preceding equation yields —2a¢— a,0— do+2byp=0. By the
directness of the Peirce decomposition this gives a; = a, =0 and
de = be. Thus we have

(22) RR;, CR; i+ Ry
and
(23) (XYoo = (YuXi)oo-

Reversing subscripts yields a proof that

24) RwRep C R, + Ry
and
(25) (x00¥00)11 = (YooXoo)11-

From B(e, X1, Y11, Zo0) = 0 one can prove X * 2o =0= X0 Zgo¥V11, €X-
actly as in [3]. Using this, (4), and (7) we have (xg, Y11, 20) =0 =
(X10, Z0o» Y11)- Also, using (4) and (6), we see that (zg, X10, ¥i1) =0. Now
from A(Zo, yi,€,X10) =0 we get 2(ze, Yi, X10) +  2(X10, Y11, Zoo) =
€ °(Zow, Y11, X10) + €°(X10, Y11, Zo0) + Y11°(Z00, €, X10) + Yi1°(X10,€,200). We
already know (X, Y11, Zoo) = 0 and using (6) we see that (zq, e, x,) =0
while clearly (x,, e, ze) =0. We are left with
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(26) 2(Zo0, Y115 X10) = € °(Z00, Y115 X 10)-

On the other hand, expanding and using (6), (10), and (20) we see that
(Zoo» Y115 X10) € Rp, so that we have

27) e °(Zo0, Y11, X10) = (Zoo, Y115 X10)-

Combining (26) and (27) we conclude that (zg, Y11, X10) =0. Now ex-
panding and using (6), (10), and (20) gives (Y11, Zoos X10) = Y1iZoo" X0 =
Zoo¥11 * X10 = (Zoo, Y11, X10) = 0. We have now shown that five of the six
possible associators involving y,;, Zyp and x,, are zero. By third power
associativity the remaining one, (y,;, X0, Zoo), must be zero also. We
have proved

(X105 Y115 Z00) = (Y115 Zo0s X10) = (Zoos X105 Y1)

28
(28) = (200> Y11 X10) = (Y115 X105 Zoo) = (X105 Zoos Y1) = 0.

The same substitutions with subscripts reversed yield a proof of

(Xo1, Y115 Z0o) = (Y11, Zoo» Xo1) = (Zoos Xo1, Y11)

29
(29) = (Zoo» Y115 Xo1) = (Y115 Xo1, Zoo) = (Xo15 Zoo, Y11) = 0.

AS in [3] we ]et A ={a||+a00/a”R|0=Rma”=0= a()oRm:
Ryaw}. We can prove exactly as in [3] that

(30) R,/Ry CA and RykR, CA.

We now wish to show that all associators with two elements from R;
and one element from R; vanish. From B(x,,e, y,,z,;) =0 we get
0=(x10, Y1, 21) + (X10,211, Y1) = — Xio(ynzn+znyn). Using (22) and
23), let yyzpu=a,+aew and z,y,=b,,+a, Then we have 0=
Xw(ynzu+zuynw) = xwlan+bi+2aw) = 2xa0. Thus we have
X040 = 0. But this implies that (x,y, yi1,211) = —X(an+ ae) =0 and
so also (xi,z1,¥yn)=0. Now from A(x,eYy1,z0)=0 we get
2(zi, Y, X10) = eo(zu, Yu,X,0) but since (zy;, yi1, X10) € Ry, this implies
(zu, Y, X10) =0. The same argument with z,, and y, interchanged
proves that (y,, zi1, X,0) = 0 and because of (4) and (10) we have directly
that (z,), X0, Y1) = 0 =(y11,X10,211). Thus we have

31 Yiis 2115 X10) = (V11> X105 201) = (X105 Y11, 211) = 0.

The same substitutions with subscripts reversed yield a proof that

(32) (Xo15 Y005 Z00) = (Yoo Xo1> Z00) = (Yoos Zoo» Xo1) = 0.
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We now show that all associators with two entries from R; and one
entry from R; vanish. From B(x,e, yi, zi1) =0 we get (xo, Y11, 21) +
(Xo1, 211, Yu) =0. Because of (8) and (9) we have directly that
Vi, Xo1, 211) =0 =(2y1, Xo1, yu). It follows by third power associativity
that (Yi1s Z1is Xo) + (z11, Y Xor) = 0. Expanding gives
(ynzu+zpyn)xa=0. Using (22) and (23), let y,z,, =a,+ae and
ZuyYn = b, + aqe. Substituting this in the preceding equation gives
(an+b,+2ap0)xe =0, and hence dagpxey=0. We now have
Vi Zi, Xo1) = 0= (211, Y1, Xor). Now AXo, e, ¥11,21) =0 gives
2(Xo1, Yi1, 211) = € °(Xo1, Yu1» Zn1), but (xo1, Y11, 211) € Ry because of (5), (9),
and (22). Thus (x¢, Y11, 21n) =0. We have now shown

(33) (Xo1, Yi1s Z10) = (V11> Xo1, Z11) = (Y115 Z11, Xor) = 0.
Reversing subscripts yields a proof of

(34) (X105 Y00s Z00) = (Yoos X105 Z00) = (Yoos Zoo» X10) = 0.

We can now prove exactly as in [3] that A is an ideal of R and that since
R is simple and (¢, R) # 0, we must have A =0. Since R;;R,, C A and
RyR,; C A by (30), we have

(35) R iRy = RwR =0.
Also using (31)-(34) we can prove easily that if y,,z,, = a,; + aq, then

ap€ A and if yewzep=c;+cy then ¢, € A, in fact our proofs ‘of
equations (31)—(34) contain this information. Thus we have

(36) RHRII CRII
and
37 RooRg C Ry

We now have the same multiplication table as in an alternative ring,
i.e., R;R, C 8;Ry except for the case R;R; where we have R;R; C
R;. We will now show that R must be alternative by considering all
possible associators (Rj, Ry, R..) and showing that they obey the
alternative law. An associator (x,y,z) obeys the alternative law if
(xo, yo,zo) =sgno(x,y,z) for all six permutations o of x,y, and z
within the associator. Using (31), (33), (35), and (36) it is obvious that
all associators with exactly two entries from R; vanish, i =0,1. Thus
assuming i# j we have
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(38) (R0, Rio, RijO') = (R;o, R;o, Rj.'U') = (R;o, R;0, Rjjo') =0.

In the case where exactly one entry is from R;, we see that if one or both
of the remaining entries are from Rj, the associator vanishes by either
(28), (29), or (38). There are three other possibilities for the remaining
two entries, both from R;, both from R;, or one from R; and the other
from R;. We consider the last of these first. We have immediately on
expansion that (xy;, Yo, Z10) =0, (Yo, Z1o, X)) =0 and (210, X115 Yor) =
0. Now from B(yo, e, X1, z10) =0 we get (Yo, Xi1, Z10) + (Yoi, Zios X11) —
(z10, Yor. X11) — (2Z10-X11,Yo) =0. The second and fourth terms vanish
leaving  (Yoi, X115 Z10) = (Z105 Yoi, X11)» but (Yoi, X1, Z10) E Ry~ While
(z10» Yoo X11) € R,;, hence we must have (yq, X1, Z10) = 0 = (240, Yor. X11). It
follows from third power associativity that (x,,, z,, ¥o;) = 0 also. Since
we could repeat this with subscripts reversed, we have

(39) (R,',‘O', R,-,'O', R,','O') = O.
Now consider associators of the form (R0, R\y0, R\,o). Using (4),

(]0), and (]2) we See that (x”,ym,zm)=x”y,0~z,0= _Zl().xllyl() =
(210, X115 Y10), SO we have

(40) (X115 Y105 Z10) = (Z10, X115 Y10)-

Since y,, and z,, are interchangeable, it follows from (40) that

(41) (X115 2105 Y10) = (Y105 X115 Z10)-

We also have (y,.2Z10. X)) = YiZio X = —ZwYw  Xu= —(Zi. Yo X11).
Thus we have

(42) (Y105 Z10, X11) = — (Z105 Y10» X11)-
Using third power associativity we have (X, Y0, Z10) + (Z10, X115 Y10) +
(Y10- Z10> X11) + (X115 Z105 Y10) + (Yi0s X115 Z10) + (Zi0s Yior X)) =

0. Substituting in this equation (40), (41), and (42), we find this reduces
to 2(xy1, Y10, Z10) + 2(X 11, Z10, Y10) = 0, so we have

(43) (X115 Y105 Z10) = — (X115 Z105 Y10)-

Combining (40), (43), and (41) we see that four of the associators are
related by
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(Z10s X115 Y10) = (X115, Y105 Z10) = — (X11, Z10, Y10)

44
(@4) = = (Y10, X115 Z10)»

and the remaining two are related by (42). We need only link one of the
first four to one of the second two in the proper way to have the full
alternative relation. For this we use G(x;,e 21,¥0)=0 to get
(X115 210, Y10) + (Yi0s X115 210) + (Z10, Y10, X11) + (X11210, €, Y10) + (Y10, X112105 €)
+ (&Y, Xnuzw) + (YiZis€Xn) + (X, Yz, €) + (€ X, YiZn)=
0. Expanding the associators and using the multiplicative relations, we
see that the last three associators vanish. Using this and expanding the
associators containing the product x,,z,, gives (X1, Z10, Y10) + (V10> X115 Z10)
+ (Z10, Y10, X11) = X1iZio* Yot Yio* XuZiwo + Yo Xnuziw=0. Using (4), (10),
and (12) we see that —XuZwo" Yo = Yio* X11Z10 =
— (Y10, X115 Z10). Substituting this in the preceding equation gives
(X115 Z10, Y10) + (Y105 X115 Z10) + (Z10, Y10, X11) — 3(Y10s X115 210) = 0. By (41)
and (44) this yields —(xy,Zi0, ¥10) +(Z10, Y10, X11) =0. We have now
shown

(45) (R;o, Ryo, Ryo) = sgn o (R, Ry, Ry).

We now consider the possibility of one entry in R,, and two entries in
R,. This works very similarly to the preceding argument. By ex-
panding and using (8), (9), and (13), we quickly get (zo, Yo, X11) =
(Yo1, X115 Zo1), (Yoi> Zots X11) = (Zor, X115 Yor) and (X115 Yoi, Zo1) =
— (X1, Zo1, Yor). Substituting this in third power associativity one gets
(Zot, X11, Yo) = — (Yo, X1, Zo). Thus we have

(Zors Yo, X11) = (Yor, X11, Zo1) = — (Zo1, X115 Yor)

46

(46) = = (Yots Zot, X11)

and

(47) (X115 Yor, Zor) = — (X11, Zot, You)-

The final link is provided by G (e, x,;, Zo1, Yar) = 0, which gives (x,;, Zo1, Yor)
+ Yo, Xi,20) + (Zows Yo, Xu) + (YauXu, Zo,€) + (e, yoxi, Zo) +
(Zot, € Yuxn) + (YoiZo, X1, €) + (€ YuZoi, Xu) + (X11,€ YuzZo) =0. The
last three terms can be shown to vanish by expansion. Expanding the
associators involving y,x,,, the preceding equation becomes (x,,, Zo:, Yo:)
+ (Yoo, X1, Zo)  + (Zows Yors X11) = YorXu1 * Zo1 — YoXu 2o t Zot YouXy =
0. Using (8) and (13) this gives (x;,ZonYo) + (Yoi. X1 201) +
(Zors Yo, X11) = 3(Yor, X 11, z) = 0. Using (46) this reduces to (x,,, Zor, Yor) —
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(Yor. X1, Zor) = 0. Since subscripts can be reversed in this proof. we
have proved

(48) (Rio, Rio, R;o) = sgn o (R;;, R, R;).

This completes the case where exactly one entry comes from R;. Next
we consider the case where all entries are from R,,. From
A (Yo 210, X10) =0 we get (¥i, Z10, X10) + (X10, Z10, Y10) = € ° (Y105 Z10» X10)
+ zpo(Yio. € X0) + eo°(Xp,Zi, Yi0) + Zio°(Xw,€ y0). Expanding we
see that z,°(yi,€,X10) + Z1°(X10,6,¥10) = Z10°(— YiXio— X10¥10) =0
because of (12). Thus we are left with

(Y105 Z10s X10) + (X105 Z105 Y 10)

(49 = e o [(¥10, Z10, X10) + (X105 Z10, Y10)]-

Expanding will show that (R, Rio, Ris) C Rii+ Re. Let (¥10, Z10, X10) +
(X1, Z10, Y10) = @11+ ag.  Then e [(¥i0,Z10, X10) + (X105 Z10, Y10)] =
2a,,. Comparison with (49) yields 2a,, = a,, + ay which implies a,, =
0 = ay, so that we have

(50) (Y105 Z10s X10) = — (X105 Z105 Y10)-

From B(x0, Y10, € 210) =0, we get (X0, Y10), €, 210) + ((X10, Y10), Z10,€) +
(e, ¥10), X10,210) + ((€, ¥10), Z10, X10) + ((Z10, Y10)> X10-€) + ((Z10, Y10)5 €, X10) =
0. The first two terms and the last two terms vanish because of
(39). We are left with (19, X10, Z10) + (V105 Z10, X10) = 0 which gives

(&2))] (Y105 X105 Z10) = — (Y105 Z10» X 10)-

Since all entries are from R, and since any two transpositions generate
the full symmetric group on three elements, (50) and (51) are sufficient to
imply the full alternative law for associators of this type. Since the
same argument works with subscripts reversed, we have proved

(52) (Ryo, Rija', R;) =sgn O'(Rij, Rij» Rij ).

Now we consider the case of one entry from R, and two entries from
R,. Using (12), (13), and various multiplicative relation we have
(Xor, 10,2100 = (Yio» Z1os Xo),  (Xo1, Y10, Z10) = — (Xo1, Z10, Y1o), and
(X015 Z10 Y10) = (Z10, Y10» Xo1). Thus we have four of the associators prop-
erly related by

(X015 Y105 Z10) = (Y105 Z105 Xo1) = — (Xo15 Z105 Y10)

(53) = —(Z10, Y10> Xo1)-
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From third power associativity we now get

(54) (Y105 Xo1> Z10) = — (Z10, Xo15 Y10)-

The necessary link is provided by G(xy, €, Z10, Y10) = 0 = (X1, Z10, Y10) +
(Y10s Xo1,210)  +  (Zios Yios Xor) + (X012, € ¥0) + (Yo, Xo1Zi0,€) +
(€, ¥10,X01Z10) + (YZiw» € Xo1) + (Xoi, Yi0Zio,€) + (€, Xo1, ¥Y10Z10). In this
equation all the associators having entry x,,z,, vanish because of (19)
and (28). We are left with (X1, 210, ¥10) + (V105 X015 Z10) + (Z105 Y10, Xo1) +
Yi0Z10* Xo1 — Xo1 * Y10Zi0— Xo1 * Y10Zio=0. This  gives  (Xo1, Z10, Y10) +
(Y105 Xo1, 210) + (Z10, Yio» Xo1) + 3(Xo1, Y10, 210) = 0. Using (53) this reduces
to (Xo1, Y10, Z10) + (Y10> X1, Z10) = 0, which completes the case. Since we
can reverse subscripts in this proof we have proved

(55) (R,—,O', R(jU', R,’,’U‘) = Sgn O'(Rij, R,‘j, Rj,').

We are now left with only the cases where all three entries come from
the same R;. We will show that R,, and R, are associative subrings of
R. Asin[1],it follows easily from the multiplicative relations of the R;
that B =R, Ry + R+ Roy+ RyR,, is an ideal of R. Since we are
assuming (¢, R) # 0, we have R, + R, # 0, so that B#0. Hence by the
simplicity of R we have B = R. This implies that R,, = R,R,, and
Ry =RyuR,,. Now consider the associator (x,,, ¥i;,2,). Since R, =
R Ry, we can write (x,;, ¥,1,2;,) as a sum of associators of the form
(awbo, yn,zy). In an arbitrary ring we have the Teichmiiller
identity  (wx, y,z)—(w,xy,z) + (w,x,yz) = w(xyz) +
(w,x,y)z. Using this gives (awboi, Yi,zu) — (@i, boiyi,zn) +
(@i, boi, yuzn) = aw(bo, yi,z0) + (aw, boi, yi)z. However, by (39)
associators of the type (R, Roi, R;) vanish and by (33) those of the type
(Roi, R\, R,) vanish also. We are left with (aobo, y11,2,) =0 and
hence (x,,, y,z,) =0 so that R,, is associative. A similar argument
proves that R, is associative. We have proved the following:

THEOREM. If R is a simple ring of characteristic not 2 or 3, which
has an idempotent e such that (e,e,R) =0= (R, e, e) and (e,R) #0, and
if every subring of R generated by two elements satisfies (1), (2), and (3),
then R is alternative and hence either associative or a Cayley Dickson
algebra [1].
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