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A RICCATI EQUATION
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In Memory of Professor H. S. Wall

Product integrals are used to show that, if dw, G, H and K
are functions from number pairs to a normed complete ring N
which are integrable and have bounded variation on [a, b] and
v ' exists and is bounded on [a, b], then the integral equation

B(x) = w(x)+(LRLR) f (BH + GB + BKB)

has a solution 8(x) = v~ '(x)u(x) on [a,b], where u and v are
defined by the matrix equation

[u(x), v =[w(a), 11.JT (I+ [st :g])

The above results are used to show that if p,q,h and r are
quasicontinuous functions from the numbers to N such that h is
left continuous and has bounded variation and p,q and h
commute, then the solution on [a,b] of the differential-type
equation f**+ f*p + fq =r is

f)=f@ [T (1= gamy+®) [ dz [T - pan),
where f(x)— f(a) = (L)fxf*dh, B is the solution of

B(x)=(L) f qdh +(LL) f B(-pdh)+(LR) f Bdhp,

and z is defined in terms of p,q,r,h and B.

1. Introduction. Adam [1] introduced the concept of con-
tinuous continued fractions and showed that the solution of y’'=
g'y*—f' could be given as a continuous continued fraction, provided f’
and g’ are continuous and positive. Wall [11] [12] showed that, if
F., F,,, F,; and F,, are continuous functions of bounded variation from
the real numbers to the complex numbers and |b — a| is sufficiently
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small, then the solution of

X

(]) W(X)=Z+f WzdF2|+fx Wd(Fzz_F”)_fx dF|2
b b

b

is wx)=[M,(x,b)z + M(x, b)I[M,(x,b)z + M»(x,b)]"', where F =

F” FIZ] [Mll MIZ
[Fz. Fr) 2 M, M,

y
1+ j M(x,s)dF(s). MacNerney, using the Stieltjes integral in [7] and

] is the function such that M(x,y)=

the subdivision-refinement-type mean integral in [8], extended Wall’s
results to some types of quasicontinuous linear transformations and
showed that the solution of Equation (1) can also be expressed as a
continuous continued fraction [8, Theorem 5.3]. In this paper the
product integral theory developed by MacNerney [8] [9] and the author
[3] is used to find and express (in §3) the solution of

B(x) = w(x)+(LRLR) f (BH + GB + BKB)

and to find and express (in §4) the solution of
fee+frp +fq =,

where w, p, q, r, G, H, K are quasicontinuous functions from numbers or
pairs of numbers to a normed complete ring N.

2. Definitions and notations. The symbol R denotes the
set of real numbers and N is a ring which has an identity element 1 and a
norm | - | with respect to which N is complete and |1| =1 (henceforth,
the symbol 1 will be used for this identity element). Functions from R
to N and from R X R to N will be represented by lower case letters and
upper case letters, respectively. All sum and product integrals are
subdivision-refinement-type limits. If G is a function from R X R to
N, the product integral of G exists on [a, b] iff there exists A € N such
that if € is a positive number then there is a subdivision D of [a, b] such
that if {x;}; is a refinement of D then |A = GG, - G,|<e€ where
G =G(x_,x) for i=1,2,---,n. The symbol ,[I"Gwill be used to
represent the limit A. A similar definition holds for the sum
integral. Upper case letters preceding an integral symbol show how

b
the integrand is to be evaluated: i.e., (LRLR)f (fH + Gf + fKf) =

b
f M, where for x <y
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M(x,y) =f(x)H(x,y)+ G(x,y)f(y) + f(x)G(x, y)f(y).

b b
Also, GE OA®on [a,b] ifff G exists andf |G -[G|=0; GeOM*
on [ab] iff JIPA+G) exists for a=x=y=b and
b
f [(1+G)—TI(1+ G)| =0; G € OB’ on [a, b] iff there is a number M

and a subdivision D of [a, b] such that, if {x;}; is a refinement of D ,then
2% |G (xi-1, x:)| = M ; the function v ™' exists on [a, b] means v(x)v(x)™' =
v(x)'v(x)=1for x €[a,b]. The function G' exists on [a, b] means
there is a subdivision {x;}; of [a,b] suchthatif 0<i=n and x;_,,=x <
y =x;, then G(x,y)'G(x,y)=G(x,y)G(x,y)"'=1. If {x} is a sub-
division, the symbols f._,, f, and G; will be used as shorthand notations
for f(xi.), f(x;) and G(x;-,x;), respectively. For additional details
pertaining to these definitions, see [3], [4], and [9]. The main results of
this paper will be designated as theorems; the supporting theorems will
be labeled as lemmas.

3. A Riccati integral equation. In this section we derive a
solution for the integral equation

f(x) = w(x) +(LRLR) f (FH + Gf + fKf).

Since the OA° property plays an important role in this paper, please
note that the function G € OA° if at least one of the following
conditions is satisfied:

(1) there is a function g such that

Gx,y)=g(y)—gx);

2) if G(x,y)=f(x)H(x,y), where f is quasicontinuous and H €
OA° and OB°, [4, Theorem 2];

(3) if G is an integrable function from number pairs to a real
Hilbert space which is finite dimensional, [2, Theorem 2].

Also note that, if H, K, W, G are functions from R X R to N which
belong to OA® and OB®, then H{V G]
Q E0OA’ and OB’ and, by Lemma 3.1, Q € OM°.

represents a matrix Q such that

LemMA 3.1. If G is a function from R X R to a normed complete
ring and G € OB°, then the following statements are equivalent :

(1) GEOA® on [a,b] and

2) GE€OM’ on [a,b].
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This is Theorem 3.4 of [3].

THEOREM 3.2. Given. (1) [a,b] is a number interval. (2) wis a
function from R to N and H,G and K are functions from R XR to N
such that each of dw,H,G and K belongs to OA° and OB°.

(3) u and v are functions from R to N such that if x € [a,b] then
u(x) and v(x) are defined by the matrix equation

e, veol=tw@, 1T (1+[ 5 ZE))

and v~ exists and is bounded.

(4) fis a bounded function from R to N, f(a) = w(a) and f(x)=
v(x)'u(x) for x €la,b]. '

Conclusion. If x €[a,b], then
f(x)=w(x)+(LRLR) J' (fH + Gf + fKf).
Furthermore, if w is a constant function, then

fo=[ T a=6)1-w@wr) ["IT a+mK [T a-6)]
[w(a) T (1+H)] .
Proof. Let Q be the function such that Q = [c]i:: H 1 :g] ; then

Q-1€0A° and OB’ and, by Lemma 3.1, Q — 1€ OM°. Suppose
X €E(a,b] and {x;}; is a subdivision of [a,x]. If 0<i = n, then there
exist a¢; and b; € N such that

[v(x)f(x;), v(x)] = [u(x:), v(x)]
—w(a), 1.J]1"Q..[T Q

= [M(XI—I)’ U(xi—l)] x.—vl_lx‘ [(11:: H 1 :g]
- 1+H -K;
= [U;-1, vioi] [ Aw, 1 - Gz]+ [a, b;]

= Ui~l[fi—|s ]] [ AW I_G]+[an bl]
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= U4 [ft—l(l + H)+Aw, —‘fi—l K, +(1—-G)]+[a;,b;].

Therefore,
' w)fi=f. (0+H)+Aw +0v7' L a
and
v =i K+ 1-G +v ' by
hence,

(—f o Ki+1=G +v' b)), =f (I+ H)+Aw, + v a4
and
fi—fiao=Aw,+f_ H +Gf +f_ K fi—v ', bf+v"', a.
Since f,u, v and v~' are bounded and since =} (Ja;| + |b:|) can be made

arbitrarily small with an appropriate choice of a subdivision (since
Q € OM"), then the following integral exists and

f(x)— f(a) = w(x) - f(a)+ (LRLR) f (fH + Gf + fKf).

Since

n p' q,
Il (0 r,

=[pq
0 r

where p =11 pi, g = 2., 1, 'p)gq;(IL;.;.,"ri) and r =11,_,"r,, and since
all the following integrals and product integrals exist, then

[w(a).l]‘,n\{(l)+H l:§l=[W(a).1]{(/)‘ lf}

where A =_,II'(1+H), B =(LR) "X[(,H‘H- H)](1 - K)[,II* (1-G)]

and D = I (1= G); hence, if w is a constant function, then
f(x)=[w(a)B+ D] "'[w(a)Al.

THeEOREM 3.3. Given. (1) [a.b] is a number interval ;
(2) wis a function from R to N and H, G and K are functions from
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R X R to N such that each of dw, H, G and K belongs to OA° and OB*;
(3) wu and v are functions from R to N such that, if x €[a,b], then
u(x) and v(x) are defined by the matrix equation

oo, vt = w1 (145~ &)

and v(x)™" exists;
4) f is a bounded function from R to N, f(a)=w(a),
(1-G;, - f-,K))"" exists and

f(x) = w(x)+(LRLR) f (fH + Gf + fKf)

for x €[a,b].
Conclusion. If x €[a,b], then f(x)=v(x)"' u(x).
Proof. Suppose x €[a, b] and {x;}; is a subdivision of [a,b]. If
0 <i = n, then there exists ¢ € N such that
£5) = w(x) +(LRLR) | (H +Gf + Kf)
=Aw, +fi+fi. Hi+ G fi+fi. Kifi + &

and fi=b7a, where bi=1-G, —f_ K, and a; =
fie(1+ Hi)+ (Aw; +¢). Fori=1,2,3,---,n,let R; be the 2 X2 matrix

_| 1+H, - Ki]. — —1- th n n
R = [Awi te ]_Gi], let a,= w(a) and b,=1; then {a;}; and {b;};
are elements of N such that, if 0<i =n, then f, = b7'a; and

[ai. b1 =[fi-. IR =[b7a;-y, 11R; = b7 [a;-,. bi_|]R..

Therefore

(awbu1= (1 b)) 5 1 TTR

1
i=n

and

M (IT b ) batfis 1= 1T bidan b1 = 1o 1T R.
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Let Q be the function from R X R to the set of 2 X 2 matrices such
that Q = [IIWH ] :g} Since f is quasicontinuous and since each

of dw, H, G and K belong to OA°and OB°,then Q —I and ~ G - fK €
OA° and OB° and it follows from Lemma 3.1 that Q — I and — G — K

b
belong to OM°, the corresponding product integrals exist, f |Q -TIQ| =
b
Oand | |(1-G—-fK)-TI(1-G —fK)|=0. For each subdivision {x;};

of [a, x], there exist elements d,, d,, and d, such that Equation (1) can be
rewritten

{) T a-6-m+dftr. n=1h (T @+di+a).

where 1 -G, — f._, K; is playing the role of b, and

¢=HU—G—LKW%UJTU—G<ML

and

i—1

d=1Tr-1Te=3(MTo)®-0) II &

i=1 i=1 i=1 \j=1 j=i+1

=

. 0 0
Since R, — Q, = L. 0
that each of |d;|, |ds and |d;| can be made arbitrarily small; hence
(L) P (1= G = fK)[f(x), 11 = [fo, 11.IFQ = [u(x), v(x)]. Tt fol-
lows from the meaning of equality for matrices that (L) I (1- G —
fK) = v(x), v(x)f(x)=u(x) and f(x)=v(x) " u(x).

], it follows from the OM® and OA° properties

LEMMA 3.4. If GEOB" on [a,b] and € >0, then there is a
number p € (a,b] such that, if {x;}; is a subdivision of [a,p]. then
3Gyl <e.

THEOREM 3.5. Given. H,W,K and G are functions from R X R
to N such that each of H, W, K and G belongs to OA°® and OB° on [a,b]
and u and v are functions from R to N and are defined by the matrix
equation

[u(x), v(x)]=[u(a), v(a)l .ﬂ (I+ “g ‘gb
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for x €la,b]. Conclusion. (1) If p&€(a,b] and 0<k <1 and
lv(a) = 1|+ 2} |ui-y Wi + v, G| < k for each subdivision {x;}; of [a,p],
then v~ exists and is bounded on [a,p]l. (2) If |v(a)—1|+
lu(a)W(a,a*)+ v(a)G(a,a*)| <1, then there exists p € (a, b] such that
v~ exists and is bounded on [a,p].

Proof. Since HW,K and G € OA°® and OB® on [a,b], then
[H WlEOA0 and OB° on [a,b] and, by Lemma 3.1 [H W]E
K G ’ ’ " IK G
OM"°on [a, b]; also, u and v are quasicontinuous and bounded on [a, b].
We now prove Conclusion 1. Let x €[a,p] and let {x;}; be a
subdivision of [a,x]. Fori=1,2,---,n, there exist a; and b; € N such
that

[u(x;), v(x)] =[u(a),v(a)] ”n" (I+ [Ilg VC‘;/D

=[u;_y, vi_] x.-ﬂx" (I + H{I v(‘;/D

= s, 0] [' }'(H 1 J‘:VG ] +1as bi]

= [, (1 + H) + v, K;, uio, W, + v+ 0,.,Gi ] + [a, bi]
and
v — 1= —D+u_ W, +v_,G +b;;

hence, by iteration and the norm properties,
‘U(x)_ ll = ll),, - II §’U(,— l'+ 2 !u,-_, W, + U,-_, G,l+ 2 ’b,,
1

<k+i |b;].
1

s . [H W
Let r =(k + 1)/2. Smce[K G

[a, b], then there is a subdivision {x;}; of [a, x] such that =} |b;|<r —k
and, hence, [v(x)—1|<r<1. Let v denote v(x);then v =1+ (v — 1),
v~ exists, and

] € OM°® and u and v are bounded on

v'=1-(v-DH+@—-1Y—-(—-1V +---

and
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= =fo=1pT=a-r"

Therefore, v~' exists and is bounded by [1 —(k +1)/2]"' on [a,p].

Since u and v are bounded and G and W € OB® on [a, b], then
there exist numbers p and k satisfying Conclusion 1, provided |v(a)—
1|+|u(a)W(a,a*)+ v(a)G(a,a")| < 1; hence, Conclusion 2 follows as a
corollary to Conclusion 1.

LEMMA 3.6. IfGis a function from R X R to N such that G € OA°
and OB°, then |G| € OA".

A proof for this lemma is given in [6].
LeEMMA 3.7. If G is a function from R X R to N, and G € OA® and
b b
OB, then f G[ gf IG|.

Outline of proof.

b n
a 1

fx' G—G,.|+i IGi|.
Xeo1 1

LEMMA 3.8. Given. H and G are functions from R X Rto R and c
is a number such that H=0,G=z0,1-G=c¢ >0,and Hand G € OA°
and OB°® on [a,b]; f is a bounded function from R to R and k is a

number such that f(x) =<k +(LR)fx(fH +{G) for x €[a,b].

Conclusion. 1If x €[a,b], then f(x)=k,J*(1+ H)(1—-G)™". This
is Theorem 4 of [4].

LEMMA 3.9. If G € OA° and OB°® and f is quasicontinuous on
[a,b], then fG and Gf € OA® on [a,b].

This is a special case of {4, Theorem 2].

THEOREM 3.10. Given. (1) [a,b] is a number interval ;

(2) wis a function from R to N and H, G and K are functions from
R X R to N such that each of dw, H, G and K belongs to OA°® and OB’
on [a,b];

(3) fand g are bounded functions from R to N and c is a number
such that 1—|B|=c >0, where B(x,y)=G(x,y)+g(x)K(x,y) and on
[a,b] each of f and g is a solution of the integral equation
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£(x) = w(x)+ (LRLR) f (fH + Gf + {K).

Conclusion. If x €[a,b], then f(x) = g(x).

Proof. Since f and g are bounded and since dw,H,G and K €
OA° and OB°, then each of f,g and |f —g| is a quasicontinuous
function. Let A be the function A(x,y)= H(x,y)+ K(x,y)f(y) for
a =x <y =b; then it follows from Lemmas 3.6 and 3.9 that A, B, |A|

b
and |B|€OA® and OB® and that (LR)f Uf =gl |Al+1B| If -2l
exists. If x €[a, b], then

fo0 g = LR [ -014 + B~
=0+(@R) ["1If-gllA|+|B|If~g]] (Lemma 3.
It follows from Lemma 3.8 that
) -g)]=0-JT (+|Apa-|B) =o.

Therefore, if x €[a,b], then f(x) = g(x).

The restrictions 1—|B|=c¢ >0 and (1-G; —f_,K;)"' cannot be
deleted from the hypothesis of Theorem 3.10 and Theorem 3.3,
respectively. Consider the following example. Let u,v, and g be
functions from R to R such that u(x) =0 for x €[0, 2], v(x)=g(x)=0
for x €0, 1] and v(x)=g(x)=1forx€(1,2]. Eachof u andv isa

solution on [0,2] for the equation f(x)=(R) J’xfdg. See [5] for solu-
0

tions of equations in which the restriction 1 —|B| = ¢ > 0 does not hold.
Theorems similar to Theorems 3.2, 3.3 and 3.10 can be proved for

f(x)=ux)v(x)™",
f(x)=w(x)+(RLRL) j (fG + Hf + {Kf).

and
o= e "],
where Q = [l_+1£-l 101%] and

T Q =1imQGar, x2) -+ Q(x1, x)Q (X0, x1).
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We will now compare the Riccati equation for Riemann-Stieltjes

integrals with the Riccati equation for the (LRLR )-integral. In this and
the next paragraph, G is continuous at p means G(p ,p)=0=

b
G(p.p*); also, the symbol (RS)[ E(f) is used to denote a Riemann-

Stieltjes-type integral: i.e., for each subdivision {x;}; of [a,b], the
approximating sum has the form X} E[f(c;)], where x;_,=c¢; =x; for
i=1,2,---,n. Suppose that w, H,G and K satisfy the hypothesis of
Theorem 3.2. If f is the solution of the Riccati equation

fe=we)+®S) [+ ®RS) [ G+ ®S) [ g
on [a, b], then f is the solution of
() f(x) = w(x)+ (LRLR) [ (fH + Gf + fKf)
on [a,b]. If f is a solution of
@) f(x) = w(x) +(RS) j (fH + Gf + fKf)

on [a, b] and either f is continuous on [a,b] or each of H,G and K is
continuous on [a,b], then f is the solution of Equation 1 on
[a,b]. Equation 2 can have a solution f on [a, b] even though each of
frw,H,G and K has a discontinuity.

ExaMPLE. Suppose that N is a field, a < p = b, and g is a function
of bounded variation which is continuous on [a, p) and on [p, b]; f is the
function such that

f(x)=1+(LRLR) f " (fdg + dgf + fdgf)
for x €[a,p) and
f(x)= =2~ ")+ (LRLR) [ (fdg + def + fdgf)

for x €[p, b]; also,

g(p)—gp)= =201+ f(pHlf(pIf(p7) +21.



124 BURRELL W. HELTON

The function f is the solution on [a, b] of Equation (2) with dg = H =
G = K ; however, f is not the solution of Equation (1) unless f(p~) =
— 1. Furthermore, if g(p) is defined differently, then Equation (2) has
no solution on [a,p].

In order for the Riemann-Stieltjes equation to have a solution
which is not a solution of the (LRLR)-equation, there must be an
interdependence between the functions w, H, G and K. The following
discussion illustrates this. Suppose that N is a field and that w, H,G
and K are functions that satisfy the hypothesis of Theorem 3.2 and that
on [a, b] the function f is a solution of Equation (2) but is not a solution
of Equation (1); then there is a number p € [a, b] such that f is not
continuous at p. For convenience suppose that f(p ™) # f(p) and, in the
following manipulations, let f, f,,Aw, H,G and K denote f(p"), f(p),
w(p)—w(p’), H(p~,p), G(p~,p) and K(p~,p), respectively. Then

f(p) = f(p)+Aw +(RS) f (fH + Gf + fKf),

fr=fi+Aw+ fH + Gf, + f,Kf),
=fi+Aw + f,H + Gf, + f,Kf,,
f-H + Gf,+ f.Kf, = fiH + Gf, + f,Kf,

and
(f:— fO(H + Kf,) +(G + [ K)(f.— f)) = 0.
Since f,—f, #0 and N is a field, then
H+ G+ Kf,+f,K =0.
Substituting for f, and simplifying, we obtain

3) K2+ 2+ H + G)Kf,+(H + G + AwK) =0.

Since f,=f(p7)= w(p‘)+(RS)fp_(fH + Gf + fKf), then the value of

f(p~) depends only on the values of w, H,G and K on the half open
interval [a, p); however, Equation (3) depends on the values of w, H, G
and K on the closed interval [a,p]. Hence, these functions cannot be
defined independently. For example, if K# 0 and a different value is
assigned to w(p), then Equation (3) is no longer true and the Riemann-
Stieltjes equation has no solution on [a, p] unless compensating values
are assigned to H(p~,p), G(p~,p) and K(p~,p). However, the new
(LRLR)-Riccati equation will have a solution on [a,p].
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4. A differential-type equation. In this section we find
the solution of f**+ f*p + fq = r, where f* and f** are defined as
follows. If [a,b] is a number interval and & is a left continuous
function from R to N such that dh € OB°, then D(h, a, b) denotes the
set of ordered pairs of functions such that (f,g) € D(h,a,b) iff g is a
quasicontinuous function from R to N such that f(x)—f(a)=

X
(L)J gdh for x €(a,b]. If (f,g) € D(h,a,b), then g is denoted by f*.
Also,
f¥* =(**and f = w iff (L)f fdh = (L)fx wdh for x €[a,b]. Inthis

section all integrals and product integrals are Cauchy-left-type integrals
unless indicated otherwise.

LEmmA 4.1. If . and (g,g¥)ED(h,a,b), then
(f+g f*+g*)€D(h,a,b).

LemMma 4.2, If (f,f*) and (g,g*)€ D(h,a,b), g*, h and g com-
mute and z is the function such that z(x) = g(x*)—g(x) for x €[a, b],
then (fg,f*g +fg*+f*z) ED(h,a,b).

Indication of proof. Since (g,g*) and (f, f*) € D(h,a,b), then g is

left continuous and df € OB’; hence,

[ dpdg =) [y,
@) " (dpg =®) [ 1dpg - ey
and
@) [" (g +fg*+ r2)dh = (LLL) [ (g + fdg + ()
~RLL) [ (df)g +fdg ~ (df)dg +(d)2]

~RL) | [(dfg +fdg)
=f(x)g(x)—f(a)g(a)
Lemma 4.3. Given. [a,b] is a number interval; f and h are

functions from R to N such that f(a) = h(a) and dh € OB°; G is a
function from R X R to N such that G € OB® and OA°
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Conclusion. The following statements are equivalent:
(1) if x €[a,b], then f(x) = h(x)+(L)jfo; and
(2) if x E[a,b], then

foy=f@) JT 0+6)+®) f dan JT (1+6G).

This lemma is a special case of Theorem 5.1 of [3].
THEOREM 4.4. Given. (1) [a,b] is a number interval; (2)
h,p,q,u,v,3 and s are functions from R to N such that h is left

continuous, dh € OB°, p and q are quasicontinuous on [a,b] and, if
x €Ela,b], then u(x) and v(x) are defined by the matrix equation

(), w01 = (0. 1) T (1+] 70 7 fan).

v(x)™" exists, B(x)=v(x)'u(x) and s(x)=B(x")—B(x); also, v is
bounded on [a,b]; (3) if a=x =y =b, then p(x), p(y), q(x), q(y),
h(x) and h(y) commute; (4) f and r are functions from R to N and r is
quasicontinuous.

Conclusion. The following statements are equivalent.

(1) There exist functions f* and f** such that (f,f*) and
(f*,f**)€ D(h,a,b) and such that on [a, b]

fre+f*p +fq =r.

2) If xE[a,b], then

) = faxL) JT (1-Bdh)+(R) f dz(L) [T (1- Bdh),

where a=p-—B-s, z(x)=f(a)+(L)wadh, gx)=
f4(a)+(L) f rdh and
W) = Pra) JT (- ad)+ R) [ de(@) JT (1 adh).

Proof. Since dh € OB’ and h is left continuous and since p and g
are quasicontinuous, then u and v are left continuous and
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quasicontinuous. Since v~' is bounded and B = v7'u, then B is left
continuous, quasicontinuous and commutes with h. If x €[a,b], it
follows from Theorem 3.2 that

) =) [ qan +(LL)]xﬁ(—pdh)+<LR>[x Bdhp.

Let a,s and k be the functions such that s(t)=B(t")—B(t), a =
p—B—s, k(a)=0, and k = q + B*— Bp + Bs; then, for x E[a,b],

@) [ kdn =) ["q+p7~pp +ps)an
=(L) f qdh + [(LR) f Bdhg — (L) f Bdhdﬁ]
+(LL) j B(~pdh)+(LL) f Bsdh.
Since B is left continuous, then

(L) f Bdhdg = (LL) f Bsdh,

xkdh = B(x)—pB(a) and (B,k) € D(h,a,b); k will be denoted by B*.
Note that B, @, B*, p,q and h commute on [a, b] and that g = B* + Ba.
Proof of 1—2. Since the triple (f,f*), (B,B%*), s satisfies the
hypothesis of Lemma 4.2, then (fB,.f*B+fB*+f*s)e
D(h,a,b). Hence,
(f*+B)*+([f*+1B)a
=f**+ [*B + B+ f*s + f*a + [Ba
=f**+f*B+s+a)+f(B*+Ba)
=f**+f*p +fg=r

and
f*+Bry=r—(f*+1B)a.

If we integrate each member of the preceding equation with respect to h
and recall that B(a) =0, we obtain
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(F*+ f8)0) = )+ (L) [ (7 + f8)(— adh),

where g(x)=f*(a)+(L)f rdh. 1t follows from Lemma 4.3, 1—2,
that

(F* + 18)(x) = f*(@) JJ] (1-adh)+(R) j dg [T (- adh)

for x €[a,b]. Let w(x) respresent the right member in the preceding
equation. If x €[a, b], then f*(x) = w(x)—f(x)B(x) and by integrat-
ing both members we obtain

f) =200 +@) [ f(-pan),

where z(x)=f(a)+(L)f wdh and z(a)=f(a). It follows from
Lemma 4.3, 1 — 2, that

f0)=f@) JT (1= Bdh)+(R) f dz JT (1 - gdn).

Proof of 2— 1. Functions f** and f* will be defined such that
(f,f* and (f*,f**)€ D(h,a,b) and such that on [a,b] f**+ f*p +

fq=r.
Let f*=w —fB. Since f satisfies the second statement of the

conclusion, it follows from Lemma 4.3, 2— 1, that for x €[a, b]

fx) =200 +L) [ f(- pan)
=f(a)+(L)fx wdh +(L)fxf(—/3dh)

= f@+ (@) [ e

and (f,f*)€ D(h, a,b).
Let f** be the function such that

==+ Bl = (F*B + fB* + f*s).
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Since B(a)=0 and
(f*+ fB)(x) = wi(x)
= f*a) JJT (1-adh)+(R) f dg T (1-adh)

for x €[a, b}, it follows from Lemma 4.3, 2— 1, that
(7 + 18)00) = g () + (L) [ (5% + 1)~ adh)
and, hence,
£ = g0 +(L) [+ B)(— adh) = F0B ().

Since (fB,f*B +fB*+ f*s)e D(h,a,b) and B(a)=0, it follows from
the definition of f** that

(L) [ feean =Ly [T =5+ 1B = (F*B + 1B+ £*5)1dh

= — 1@+ g+ @) | 8= ah)
—f(x)g(x)]
=f*(x)—f*(a)
for x €[a, b]; hence, (f*, f**) &€ D(h,a,b).
Since
f**+f*p +fqg =[r = (f*+ fBla —(f*B + fB*+ [*s)]
+fHa+B+s)+f(B*+aB)=r,
then the triple f, f*, f** satisfies the given equation.
Suppose that on [a, b] the functions h,p and q are defined as in
Theorem 4.4 except for the restrictions pertaining to v™". If h € C’, it
follows from Theorem 3.5 that there is a subdivision {x;}; of [a,b] and

functions {B:}i, {w}i and {v;}i such that for i=1,2,---,n and
X €[xi-, x.]

(), w01 =10, 11, 0T (1] 70 7 g an).
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Bi(x)=v;(x)" u;(x), and v 7' exists and is bounded on [x;_;, x;]. Hence,
for i =1,2,---,n, Theorem 4.4 gives the solution of f**+ f*p +fg =r
on [xi,, x;] which is unique for a given pair f*(x,_,) and
f(xi_;). Therefore, Theorem 4.4 can be used to find a unique solution
on [a, b] for given values of f(a) and f*(a).

A theorem similar to Theorem 4.4 can be stated and proved for the
equation f** + pf* + qf = r; however, Theorem 5.2 of [3] would be used
in the proof instead of Lemma 4.3. If (f,f*) means f(x)—f(a)=

(R) | f*dh and h is right continuous, a theorem similar to Theorem 4.4

a

can be stated and proved.
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