A PRODUCT INTEGRAL SOLUTION OF A RICCATI EQUATION

Burrell W. Helton

In Memory of Professor H. S. Wall

Product integrals are used to show that, if $d w, G, H$ and K are functions from number pairs to a normed complete ring N which are integrable and have bounded variation on $[a, b]$ and v^{-1} exists and is bounded on $[a, b]$, then the integral equation

$$
\beta(x)=w(x)+(L R L R) \int_{a}^{x}(\beta H+G \beta+\beta K \beta)
$$

has a solution $\beta(x)=v^{-1}(x) u(x)$ on $[a, b]$, where u and v are defined by the matrix equation

$$
[u(x), v(x)]=[w(a), 1]_{a} \Pi^{x}\left(I+\left[\begin{array}{ll}
H & -K \\
d w & -G
\end{array}\right]\right)
$$

The above results are used to show that if p, q, h and r are quasicontinuous functions from the numbers to N such that h is left continuous and has bounded variation and p, q and h commute, then the solution on $[a, b]$ of the differential-type equation $f^{* *}+f^{*} p+f q=r$ is

$$
f(x)=f(a)_{a} \Pi^{x}(1-\beta d h)+(R) \int_{a}^{x} d z \prod^{x}(1-\beta d h)
$$

where $f(x)-f(a)=(L) \int_{a}^{x} f * d h, \beta$ is the solution of

$$
\beta(x)=(L) \int_{a}^{x} q d h+(L L) \int_{a}^{x} \beta(-p d h)+(L R) \int_{a}^{x} \beta d h \beta,
$$

and z is defined in terms of p, q, r, h and β.

1. Introduction. Adam [1] introduced the concept of continuous continued fractions and showed that the solution of $y^{\prime}=$ $g^{\prime} y^{2}-f^{\prime}$ could be given as a continuous continued fraction, provided f^{\prime} and g^{\prime} are continuous and positive. Wall [11] [12] showed that, if F_{11}, F_{12}, F_{21} and F_{22} are continuous functions of bounded variation from the real numbers to the complex numbers and $|b-a|$ is sufficiently
small, then the solution of

$$
\begin{equation*}
w(x)=z+\int_{b}^{x} w^{2} d F_{21}+\int_{b}^{x} w d\left(F_{22}-F_{11}\right)-\int_{b}^{x} d F_{12} \tag{1}
\end{equation*}
$$

is $w(x)=\left[M_{11}(x, b) z+M_{12}(x, b)\right]\left[M_{21}(x, b) z+M_{22}(x, b)\right]^{-1}$, where $F=$ $\left[\begin{array}{ll}F_{11} & F_{12} \\ F_{21} & F_{22}\end{array}\right]$ and $\left[\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right]$ is the function such that $M(x, y)=$ $1+\int_{x}^{y} M(x, s) d F(s)$. MacNerney, using the Stieltjes integral in [7] and the subdivision-refinement-type mean integral in [8], extended Wall's results to some types of quasicontinuous linear transformations and showed that the solution of Equation (1) can also be expressed as a continuous continued fraction [8, Theorem 5.3]. In this paper the product integral theory developed by MacNerney [8] [9] and the author [3] is used to find and express (in §3) the solution of

$$
\beta(x)=w(x)+(L R L R) \int_{a}^{x}(\beta H+G \beta+\beta K \beta)
$$

and to find and express (in §4) the solution of

$$
f^{* *}+f^{*} p+f q=r
$$

where $w, p, q, r, G_{,} H, K$ are quasicontinuous functions from numbers or pairs of numbers to a normed complete ring N.
2. Definitions and notations. The symbol R denotes the set of real numbers and N is a ring which has an identity element 1 and a norm $|\cdot|$ with respect to which N is complete and $|\mathbf{1}|=1$ (henceforth, the symbol 1 will be used for this identity element). Functions from R to N and from $R \times R$ to N will be represented by lower case letters and upper case letters, respectively. All sum and product integrals are subdivision-refinement-type limits. If G is a function from $R \times R$ to N, the product integral of G exists on $[a, b]$ iff there exists $A \in N$ such that if ϵ is a positive number then there is a subdivision D of $[a, b]$ such that if $\left\{x_{i}\right\}_{0}^{n}$ is a refinement of D then $\left|A=G_{1} G_{2} \cdots G_{n}\right|<\epsilon$, where $G_{i}=G\left(x_{i-1}, x_{t}\right)$ for $i=1,2, \cdots, n$. The symbol ${ }_{a} \Pi^{b} G$ will be used to represent the limit A. A similar definition holds for the sum integral. Upper case letters preceding an integral symbol show how the integrand is to be evaluated: i.e., $(L R L R) \int_{a}^{b}(f H+G f+f K f)=$ $\int_{a}^{b} M$, where for $x<y$

$$
M(x, y)=f(x) H(x, y)+G(x, y) f(y)+f(x) G(x, y) f(y) .
$$

Also, $G \in O A^{0}$ on $[a, b]$ iff $\int_{a}^{b} G$ exists and $\int_{a}^{b}\left|G-\int G\right|=0 ; G \in O M^{0}$ on $[a, b]$ iff ${ }_{x} \Pi^{\nu}(1+G)$ exists for $a \leqq x \leqq y \leqq b \quad$ and $\int_{a}^{b}|(1+G)-\Pi(1+G)|=0 ; G \in O B^{0}$ on $[a, b]$ iff there is a number M and a subdivision D of $[a, b]$ such that, if $\left\{x_{i}\right\}_{0}^{n}$ is a refinement of D, then $\Sigma_{1}^{n}\left|G\left(x_{i-1}, x_{i}\right)\right| \leqq M$; the function v^{-1} exists on $[a, b]$ means $v(x) v(x)^{-1}=$ $v(x)^{-1} v(x)=1$ for $x \in[a, b]$. The function G^{-1} exists on $[a, b]$ means there is a subdivision $\left\{x_{i}\right\}_{0}^{n}$ of $[a, b]$ such that if $0<i \leqq n$ and $x_{i-1} \leqq x<$ $y \leqq x_{i}$, then $G(x, y)^{-1} G(x, y)=G(x, y) G(x, y)^{-1}=1$. If $\left\{x_{i}\right\}_{0}^{n}$ is a subdivision, the symbols f_{i-1}, f_{i}, and G_{i} will be used as shorthand notations for $f\left(x_{i-1}\right), f\left(x_{i}\right)$ and $G\left(x_{i-1}, x_{i}\right)$, respectively. For additional details pertaining to these definitions, see [3], [4], and [9]. The main results of this paper will be designated as theorems; the supporting theorems will be labeled as lemmas.
3. A Riccati integral equation. In this section we derive a solution for the integral equation

$$
f(x)=w(x)+(L R L R) \int_{a}^{x}(f H+G f+f K f) .
$$

Since the $O A^{0}$ property plays an important role in this paper, please note that the function $G \in O A^{0}$ if at least one of the following conditions is satisfied:
(1) there is a function g such that

$$
G(x, y)=g(y)-g(x) ;
$$

(2) if $G(x, y)=f(x) H(x, y)$, where f is quasicontinuous and $H \in$ $O A^{0}$ and $O B^{0},[4$, Theorem 2];
(3) if G is an integrable function from number pairs to a real Hilbert space which is finite dimensional, [2, Theorem 2].

Also note that, if H, K, W, G are functions from $R \times R$ to N which belong to $O A^{0}$ and $O B^{0}$, then $\left[\begin{array}{cc}H & K \\ W & G\end{array}\right]$ represents a matrix Q such that $Q \in O A^{\circ}$ and $O B^{\circ}$ and, by Lemma 3.1, $Q \in O M^{\circ}$.

Lemma 3.1. If G is a function from $R \times R$ to a normed complete ring and $G \in O B^{0}$, then the following statements are equivalent:
(1) $G \in O A^{0}$ on $[a, b]$ and
(2) $G \in O M^{0}$ on $[a, b]$.

This is Theorem 3.4 of [3].
Theorem 3.2. Given. (1) $[a, b]$ is a number interval. (2) w is a function from R to N and H, G and K are functions from $R \times R$ to N such that each of $d w, H, G$ and K belongs to $O A^{0}$ and $O B^{0}$.
(3) u and v are functions from R to N such that if $x \in[a, b]$ then $u(x)$ and $v(x)$ are defined by the matrix equation

$$
[u(x), v(x)]=[w(a), 1]_{a} \Pi^{x}\left(I+\left[\begin{array}{ll}
H & -K \\
d w & -G
\end{array}\right]\right)
$$

and v^{-1} exists and is bounded.
(4) f is a bounded function from R to $N, f(a)=w(a)$ and $f(x)=$ $v(x)^{-1} u(x)$ for $x \in[a, b]$.

Conclusion. If $x \in[a, b]$, then

$$
f(x)=w(x)+(L R L R) \int_{a}^{x}(f H+G f+f K f)
$$

Furthermore, if w is a constant function, then

$$
\begin{gathered}
f(x)=\left[\prod_{a}^{x}(1-G)-w(a)(L R) \int_{a}^{x} \Pi_{a}^{t}(1+H) K_{t} \Pi^{x}(1-G)\right]^{-1} \\
{\left[w(a)_{a} \Pi^{x}(1+H)\right] .}
\end{gathered}
$$

Proof. Let Q be the function such that $Q=\left[\begin{array}{lr}1+H & -K \\ d w & 1-G\end{array}\right]$; then $Q-I \in O A^{0}$ and $O B^{0}$ and, by Lemma 3.1, $Q-1 \in O M^{0}$. Suppose $x \in(a, b]$ and $\left\{x_{i}\right\}_{0}^{n}$ is a subdivision of $[a, x]$. If $0<i \leqq n$, then there exist a_{i} and $b_{i} \in N$ such that

$$
\begin{aligned}
& {\left[v\left(x_{i}\right) f\left(x_{i}\right), v\left(x_{i}\right)\right]=\left[u\left(x_{i}\right), v\left(x_{i}\right)\right]} \\
& \quad=[w(a), 1]_{a} \prod^{x_{i-1}} Q_{x_{i-1}} \prod^{x_{i}} Q \\
& \quad=\left[u\left(x_{i-1}\right), v\left(x_{i-1}\right)\right]_{x_{i-1}} \prod^{x_{i}}\left[\begin{array}{lr}
1+H & -K \\
d w & 1-G
\end{array}\right] \\
& \quad=\left[u_{i-1}, v_{i-1}\right]\left[\begin{array}{cc}
1+H_{i} & -K_{i} \\
\Delta w_{i} & 1-G_{i}
\end{array}\right]+\left[a_{i}, b_{i}\right] \\
& \quad=v_{i-1}\left[f_{i-1}, 1\right]\left[\begin{array}{cc}
1+H_{i} & -K_{i} \\
\Delta w_{i} & 1-G_{i}
\end{array}\right]+\left[a_{i}, b_{i}\right]
\end{aligned}
$$

$$
=v_{t-1}\left[f_{i-1}\left(1+H_{i}\right)+\Delta w_{i},-f_{i-1} K_{t}+(1-G)\right]+\left[a_{i}, b_{i}\right] .
$$

Therefore,

$$
\left(v^{-1}{ }_{i-1} v_{i}\right) f_{i}=f_{i-1}\left(1+H_{i}\right)+\Delta w_{i}+v^{-1}{ }_{i-1} a_{i}
$$

and

$$
v^{-1}{ }_{i-1} v_{i}=-f_{i-1} K_{i}+1-G_{i}+v^{-1}{ }_{i-1} b_{i} ;
$$

hence,

$$
\left(-f_{i-1} K_{i}+1-G_{i}+v^{-1}{ }_{i-1} b_{i}\right) f_{i}=f_{i-1}\left(1+H_{i}\right)+\Delta w_{i}+v^{-1}{ }_{i-1} a_{i}
$$

and

$$
f_{i}-f_{t-1}=\Delta w_{i}+f_{i-1} H_{i}+G_{i} f_{i}+f_{i-1} K_{i} f_{i}-v^{-1}{ }_{i-1} b_{t} f_{i}+v^{-1}{ }_{i-1} a_{i} .
$$

Since f, u, v and v^{-1} are bounded and since $\sum_{i}^{n}\left(\left|a_{i}\right|+\left|b_{i}\right|\right)$ can be made arbitrarily small with an appropriate choice of a subdivision (since $Q \in O M{ }^{\eta}$), then the following integral exists and

$$
f(x)-f(a)=w(x)-f(a)+(L R L R) \int_{a}^{x}(f H+G f+f K f) .
$$

Since

$$
\prod_{1}^{n}\left[\begin{array}{ll}
p_{1} & q_{1} \\
0 & r_{1}
\end{array}\right]=\left[\begin{array}{ll}
p & q \\
0 & r
\end{array}\right],
$$

where $p=\Pi_{i}^{1} p_{i}, q=\sum_{j=1}^{n}\left(\Pi_{i=1}{ }^{\prime-1} p_{i}\right) q_{i}\left(\Pi_{i=j+1}{ }^{n} r_{i}\right)$ and $r=\Pi_{i=1}{ }^{n} r_{i}$, and since all the following integrals and product integrals exist, then

$$
[w(a), 1]_{a} \Pi^{\prime}\left|\begin{array}{lr}
1+H & -K \\
0 & 1-G
\end{array}\right|=[w(a), 1]\left|\begin{array}{ll}
A & B \\
0 & D
\end{array}\right|,
$$

where $\quad A={ }_{a} \Pi^{\prime}(1+H), \quad B=(L R) \int_{a}^{x}\left[{ }_{a} \Pi^{\prime}(+H)\right](1-K)\left[\Pi^{x}{ }^{x}(1-G)\right]$ and $D={ }_{"} \Pi^{\wedge}(1-G)$; hence, if w is a constant function, then

$$
f(x)=[w(a) B+D]^{-1}[w(a) A] .
$$

Theorem 3.3. Given. (1) $[a, b]$ is a number interval:
(2) w is a function from R to N and H, G and K are functions from
$R \times R$ to N such that each of $d w, H, G$ and K belongs to $O A^{\circ}$ and $O B^{0}$;
(3) u and v are functions from R to N such that, if $x \in[a, b]$, then $u(x)$ and $v(x)$ are defined by the matrix equation

$$
[u(x), v(x)]=[w(a), 1]_{a} \Pi^{x}\left(I+\left[\begin{array}{cc}
H & -K \\
d w & -G
\end{array}\right]\right)
$$

and $v(x)^{-1}$ exists;
(4) f is a bounded function from R to $N, f(a)=w(a)$, $\left(1-G_{i}-f_{i-1} K_{i}\right)^{-1}$ exists and

$$
f(x)=w(x)+(L R L R) \int_{a}^{x}(f H+G f+f K f)
$$

for $x \in[a, b]$.
Conclusion. If $x \in[a, b]$, then $f(x)=v(x)^{-1} u(x)$.
Proof. Suppose $x \in[a, b]$ and $\left\{x_{i}\right\}_{0}^{n}$ is a subdivision of $[a, b]$. If $0<i \leqq n$, then there exists $\epsilon_{i} \in N$ such that

$$
\begin{aligned}
f\left(x_{i}\right) & =w\left(x_{i}\right)+(L R L R) \int_{a}^{x_{i}}(f H+G f+f K f) \\
& =\Delta w_{i}+f_{i-1}+f_{i-1} H_{i}+G_{i} f_{i}+f_{i-1} K_{i} f_{i}+\epsilon_{i}
\end{aligned}
$$

and $f_{i}=b_{i}^{-1} a_{i}$, where $b_{i}=1-G_{i}-f_{i-1} K_{i} \quad$ and $a_{i}=$ $f_{i-1}\left(1+H_{i}\right)+\left(\Delta w_{i}+\epsilon_{i}\right)$. For $i=1,2,3, \cdots, n$, let R_{i} be the 2×2 matrix $R_{t}=\left[\begin{array}{cc}1+H_{i} & -K_{i} \\ \Delta w_{i}+\epsilon_{i} & 1-G_{i}\end{array}\right]$; let $a_{0}=w(a)$ and $b_{0}=1$; then $\left\{a_{i}\right\}_{0}^{n}$ and $\left\{b_{i}\right\}_{0}^{n}$ are elements of N such that, if $0<i \leqq n$, then $f_{i}=b_{i}^{-1} a_{i}$ and

$$
\left[a_{i}, b_{i}\right]=\left[f_{i-1}, 1\right] R_{i}=\left[b_{i-1}^{-1} a_{i-1}, 1\right] R_{i}=b_{i-1}^{-1}\left[a_{i-1}, b_{i-1}\right] R_{i} .
$$

Therefore

$$
\left[a_{n}, b_{n}\right]=\left(\prod_{i=n}^{1} b_{i-1}^{-1}\right)\left[f_{0}, 1\right] \prod_{i=1}^{n} R_{i}
$$

and

$$
\begin{equation*}
\left(\prod_{i=1}^{n} b_{i-1}\right) b_{n}\left[f_{n}, 1\right]=\prod_{i=1}^{n} b_{i-1}\left[a_{n}, b_{n}\right]=\left[f_{0}, 1\right] \prod_{i=1}^{n} R_{i} . \tag{1}
\end{equation*}
$$

Let Q be the function from $R \times R$ to the set of 2×2 matrices such that $Q=\left[\begin{array}{cc}1+H & -K \\ d w & 1-G\end{array}\right]$. Since f is quasicontinuous and since each of $d w, H, G$ and K belong to $O A^{0}$ and $O B^{0}$, then $Q-I$ and $-G-f K \in$ $O A^{0}$ and $O B^{0}$ and it follows from Lemma 3.1 that $Q-I$ and $-G-f K$ belong to $O M^{0}$, the corresponding product integrals exist, $\int_{a}^{b}|Q-\Pi Q|=$ 0 and $\int_{a}^{b}|(1-G-f K)-\Pi(1-G-f K)|=0$. For each subdivision $\left\{x_{i}\right\}_{0}^{n}$ of $[a, x]$, there exist elements d_{1}, d_{2}, and d_{3} such that Equation (1) can be rewritten

$$
\left\{(L)_{a} \prod^{x}(1-G-f K)+d_{1}\right\}\left[f_{n}, 1\right]=\left[f_{0}, 1\right]\left(\prod_{a}^{x} Q+d_{2}+d_{3}\right)
$$

where $1-G_{i}-f_{i-1} K_{i}$ is playing the role of b_{i} and

$$
\begin{aligned}
& d_{1}=\prod_{i=1}^{n}\left(1-G_{i}-f_{i-1} K_{i}\right)-(L){ }_{a} \prod^{1}(1-G-f K) \\
& d_{2}=\prod_{i=1}^{n} Q_{i}-{ }_{a} \prod^{N} Q
\end{aligned}
$$

and

$$
d_{3}=\prod_{i=1}^{n} R_{i}-\prod_{i=1}^{n} Q_{i}=\sum_{i=1}^{n}\left(\prod_{j=1}^{i-1} Q_{j}\right)\left(R_{i}-Q_{i}\right) \prod_{j=i+1}^{n} R_{j}
$$

Since $R_{i}-Q_{i}=\left[\begin{array}{ll}0 & 0 \\ \epsilon_{i} & 0\end{array}\right]$, it follows from the $O M^{0}$ and $O A^{0}$ properties that each of $\left|d_{i}\right|,\left|d_{2}\right|$ and $\left|d_{3}\right|$ can be made arbitrarily small; hence $(L){ }_{u} \Pi^{x}(1-G-f K)[f(x), 1]=\left[f_{0}, 1\right]{ }_{a} \Pi^{x} Q=[u(x), v(x)]$. It follows from the meaning of equality for matrices that $(L){ }_{a} \Pi^{x}(1-G-$ $f K)=v(x), v(x) f(x)=u(x)$ and $f(x)=v(x)^{-1} u(x)$.

Lemma 3.4. If $G \in O B^{0}$ on $[a, b]$ and $\epsilon>0$, then there is a number $p \in(a, b]$ such that, if $\left\{x_{i}\right\}_{0}^{n}$ is a subdivision of $[a, p]$, then $\sum_{2}^{n}\left|G_{i}\right|<\epsilon$.

Theorem 3.5. Given. H, W, K and G are functions from $R \times R$ to N such that each of H, W, K and G belongs to $O A^{0}$ and $O B^{0}$ on $[a, b]$ and u and v are functions from R to N and are defined by the matrix equation

$$
[u(x), v(x)]=[u(a), v(a)]_{a} \Pi^{\wedge}\left(I+\left[\left.\begin{array}{cc}
H & W \\
K & G
\end{array} \right\rvert\,\right)\right.
$$

for $x \in[a, b]$. Conclusion. (1) If $p \in(a, b]$ and $0<k<1$ and $|v(a)-1|+\sum_{1}^{n}\left|u_{i-1} W_{i}+v_{i-1} G_{i}\right|<k$ for each subdivision $\left\{x_{i}\right\}_{0}^{n}$ of $[a, p]$, then v^{-1} exists and is bounded on $[a, p]$. (2) If $|v(a)-1|+$ $\left|u(a) W\left(a, a^{+}\right)+v(a) G\left(a, a^{+}\right)\right|<1$, then there exists $p \in(a, b]$ such that v^{-1} exists and is bounded on $[a, p]$.

Proof. Since H, W, K and $G \in O A^{0}$ and $O B^{0}$ on $[a, b]$, then $\left[\begin{array}{ll}H & W \\ K & G\end{array}\right] \in O A^{0}$ and $O B^{0}$ on $[a, b]$ and, by Lemma 3.1, $\left[\begin{array}{ll}H & W \\ K & G\end{array}\right] \in$ $O M^{0}$ on $[a, b]$; also, u and v are quasicontinuous and bounded on $[a, b]$.

We now prove Conclusion 1. Let $x \in[a, p]$ and let $\left\{x_{i}\right\}_{1}^{n}$ be a subdivision of $[a, x]$. For $i=1,2, \cdots, n$, there exist a_{i} and $b_{i} \in N$ such that

$$
\begin{aligned}
{\left[u\left(x_{i}\right), v\left(x_{i}\right)\right] } & =[u(a), v(a)]_{a} \Pi^{x_{1}}\left(I+\left[\begin{array}{cc}
H & W \\
K & G
\end{array}\right]\right) \\
& =\left[u_{i-1}, v_{i-1}\right]_{x_{i}-1} \Pi^{x_{i}}\left(I+\left[\begin{array}{cc}
H & W \\
K & G
\end{array}\right]\right) \\
& =\left[u_{i-1}, v_{i-1}\right]\left[\begin{array}{cc}
1+H_{i} & W_{i} \\
K_{i} & 1+G_{i}
\end{array}\right]+\left[a_{i}, b_{i}\right] \\
& =\left[u_{i-1}\left(1+H_{i}\right)+v_{i-1} K_{i}, u_{i-1} W_{i}+v_{i-1}+v_{i-1} G_{i}\right]+\left[a_{i}, b_{i}\right]
\end{aligned}
$$

and

$$
v_{i}-1=\left(v_{i-1}-1\right)+u_{i-1} W_{i}+v_{i-1} G_{i}+b_{i}
$$

hence, by iteration and the norm properties,

$$
\begin{gathered}
|v(x)-1|=\left|v_{n}-1\right| \leqq\left|v_{0}-1\right|+\sum_{1}^{n}\left|u_{i-1} W_{i}+v_{i-1} G_{i}\right|+\sum_{1}^{n}\left|b_{i}\right| \\
<k+\sum_{1}^{n}\left|b_{i}\right| .
\end{gathered}
$$

Let $r=(k+1) / 2$. Since $\left[\begin{array}{cc}H & W \\ K & G\end{array}\right] \in O M^{0}$ and u and v are bounded on $[a, b]$, then there is a subdivision $\left\{x_{i}\right\}_{0}^{n}$ of $[a, x]$ such that $\Sigma_{1}^{n}\left|b_{i}\right|<r-k$ and, hence, $|v(x)-1|<r<1$. Let v denote $v(x)$; then $v=1+(v-1)$, v^{-1} exists, and

$$
v^{-1}=1-(v-1)+(v-1)^{2}-(v-1)^{3}+\cdots
$$

$$
\left|v^{-1}\right| \leqq(1-|v-1|)^{-1} \leqq(1-r)^{-1} .
$$

Therefore, v^{-1} exists and is bounded by $[1-(k+1) / 2]^{-1}$ on $[a, p]$.
Since u and v are bounded and G and $W \in O B^{0}$ on $[a, b]$, then there exist numbers p and k satisfying Conclusion 1 , provided $\mid v(a)-$ $1\left|+\left|u(a) W\left(a, a^{+}\right)+v(a) G\left(a, a^{+}\right)\right|<1\right.$; hence, Conclusion 2 follows as a corollary to Conclusion 1.

Lemma 3.6. If G is a function from $R \times R$ to N such that $G \in O A^{0}$ and $O B^{0}$, then $|G| \in O A^{0}$.

A proof for this lemma is given in [6].
Lemma 3.7. If G is a function from $R \times R$ to N, and $G \in O A^{0}$ and $O B^{0}$, then $\left|\int_{a}^{b} G\right| \leqq \int_{a}^{b}|G|$.

Outline of proof.

$$
\left|\int_{a}^{b} G\right| \leqq \sum_{1}^{n}\left|\int_{x_{i}, 1}^{x_{i}} G-G_{i}\right|+\sum_{1}^{n}\left|G_{i}\right| .
$$

Lemma 3.8. Given. H and G are functions from $R \times R$ to R and c is a number such that $H \geqq 0, G \geqq 0,1-G \geqq c>0$, and H and $G \in O A^{0}$ and $O B^{0}$ on $[a, b] ; f$ is a bounded function from R to R and k is a number such that $f(x) \leqq k+(L R) \int_{a}^{x}(f H+f G)$ for $x \in[a, b]$.

Conclusion. If $x \in[a, b]$, then $f(x) \leqq k_{a} \Pi^{x}(1+H)(1-G)^{-1}$. This is Theorem 4 of [4].

Lemma 3.9. If $G \in O A^{0}$ and $O B^{0}$ and f is quasicontinuous on [a, b], then $f G$ and $G f \in O A^{0}$ on $[a, b]$.

This is a special case of [4, Theorem 2].
Theorem 3.10. Given. (1) $[a, b]$ is a number interval;
(2) $\quad w$ is a function from R to N and H, G and K are functions from $R \times R$ to N such that each of $d w, H, G$ and K belongs to $O A^{0}$ and $O B^{0}$ on $[a, b]$;
(3) f and g are bounded functions from R to N and c is a number such that $1-|B| \geqq c>0$, where $B(x, y)=G(x, y)+g(x) K(x, y)$ and on $[a, b]$ each of f and g is a solution of the integral equation

$$
f(x)=w(x)+(L R L R) \int_{a}^{x}(f H+G f+f K f)
$$

Conclusion. If $x \in[a, b]$, then $f(x)=g(x)$.
Proof. Since f and g are bounded and since $d w, H, G$ and $K \in$ $O A^{0}$ and $O B^{0}$, then each of f, g and $|f-g|$ is a quasicontinuous function. Let A be the function $A(x, y)=H(x, y)+K(x, y) f(y)$ for $a \leqq x<y \leqq b$; then it follows from Lemmas 3.6 and 3.9 that $A, B,|A|$ and $|B| \in O A^{0}$ and $O B^{0}$ and that $(L R) \int_{a}^{b}[|f-g||A|+|B||f-g|]$ exists. If $x \in[a, b]$, then

$$
\begin{aligned}
& |f(x)-g(x)|=\left|(L R) \int_{a}^{x}[(f-g) A+B(f-g)]\right| \\
& \leqq 0+(L R) \int_{a}^{x}[|f-g||A|+|B||f-g|] \quad \text { (Lemma 3.7). }
\end{aligned}
$$

It follows from Lemma 3.8 that

$$
|f(x)-g(x)| \leqq 0 \cdot{ }_{a} \prod^{x}(1+|A|)(1-|B|)^{-1}=0
$$

Therefore, if $x \in[a, b]$, then $f(x)=g(x)$.
The restrictions $1-|B| \geqq c>0$ and $\left(1-G_{i}-f_{i-1} K_{i}\right)^{-1}$ cannot be deleted from the hypothesis of Theorem 3.10 and Theorem 3.3, respectively. Consider the following example. Let u, v, and g be functions from R to R such that $u(x)=0$ for $x \in[0,2], v(x)=g(x)=0$ for $x \in[0,1]$ and $v(x)=g(x)=1$ for $x \in(1,2]$. Each of u and v is a solution on [0,2] for the equation $f(x)=(R) \int_{0}^{x} f d g$. See [5] for solutions of equations in which the restriction $1-|B| \geqq c>0$ does not hold.

Theorems similar to Theorems 3.2, 3.3 and 3.10 can be proved for $f(x)=u(x) v(x)^{-1}$,

$$
f(x)=w(x)+(R L R L) \int_{a}^{x}(f G+H f+f K f)
$$

and

$$
\left[\begin{array}{l}
u(x) \\
v(x)
\end{array}\right]={ }_{a} \Pi^{x} Q\left[\begin{array}{c}
w(a) \\
1
\end{array}\right],
$$

where $Q=\left[\begin{array}{cc}1+H & d w \\ -K & 1-G\end{array}\right]$ and

$$
{ }_{a} \Pi^{x} Q=\lim Q\left(x_{n-1}, x_{n}\right) \cdots Q\left(x_{1}, x_{2}\right) Q\left(x_{0}, x_{1}\right) .
$$

We will now compare the Riccati equation for Riemann-Stieltjes integrals with the Riccati equation for the ($L R L R$)-integral. In this and the next paragraph, G is continuous at p means $G\left(p^{-}, p\right)=0=$ $G\left(p, p^{+}\right)$; also, the symbol $(R S) \int_{a}^{b} E(f)$ is used to denote a Riemann-Stieltjes-type integral: i.e., for each subdivision $\left\{x_{i}\right\}_{0}^{n}$ of $[a, b]$, the approximating sum has the form $\sum_{1}^{n} E\left[f\left(c_{i}\right)\right]$, where $x_{i-1} \leqq c_{i} \leqq x_{i}$ for $i=1,2, \cdots, n$. Suppose that w, H, G and K satisfy the hypothesis of Theorem 3.2. If f is the solution of the Riccati equation

$$
f(x)=w(x)+(R S) \int_{a}^{x} f H+(R S) \int_{a}^{x} G f+(R S) \int_{a}^{x} f K f
$$

on $[a, b]$, then f is the solution of

$$
\begin{equation*}
f(x)=w(x)+(L R L R) \int_{a}^{x}(f H+G f+f K f) \tag{1}
\end{equation*}
$$

on $[a, b]$. If f is a solution of

$$
\begin{equation*}
f(x)=w(x)+(R S) \int_{a}^{x}(f H+G f+f K f) \tag{2}
\end{equation*}
$$

on [a, b] and either f is continuous on $[a, b]$ or each of H, G and K is continuous on $[a, b]$, then f is the solution of Equation 1 on [a, b]. Equation 2 can have a solution f on $[a, b]$ even though each of f, w, H, G and K has a discontinuity.

Example. Suppose that N is a field, $a<p \leqq b$, and g is a function of bounded variation which is continuous on $[a, p)$ and on $[p, b] ; f$ is the function such that

$$
f(x)=1+(L R L R) \int_{a}^{x}(f d g+d g f+f d g f)
$$

for $x \in[a, p)$ and

$$
f(x)=-2-f\left(p^{-}\right)+(L R L R) \int_{p}^{x}(f d g+d g f+f d g f)
$$

for $x \in[p, b]$; also,

$$
g(p)-g\left(p^{-}\right)=-2\left[1+f\left(p^{-}\right)\right] / f\left(p^{-}\right)\left[f\left(p^{-}\right)+2\right]
$$

The function f is the solution on [a, b] of Equation (2) with $d g=H=$ $G=K$; however, f is not the solution of Equation (1) unless $f\left(p^{-}\right)=$ -1 . Furthermore, if $g(p)$ is defined differently, then Equation (2) has no solution on $[a, p]$.

In order for the Riemann-Stieltjes equation to have a solution which is not a solution of the ($L R L R$)-equation, there must be an interdependence between the functions w, H, G and K. The following discussion illustrates this. Suppose that N is a field and that w, H, G and K are functions that satisfy the hypothesis of Theorem 3.2 and that on $[a, b]$ the function f is a solution of Equation (2) but is not a solution of Equation (1); then there is a number $p \in[a, b]$ such that f is not continuous at p. For convenience suppose that $f\left(p^{-}\right) \neq f(p)$ and, in the following manipulations, let $f_{1}, f_{2}, \Delta w, H, G$ and K denote $f\left(p^{-}\right), f(p)$, $w(p)-w\left(p^{-}\right), H\left(p^{-}, p\right), G\left(p^{-}, p\right)$ and $K\left(p^{-}, p\right)$, respectively. Then

$$
\begin{aligned}
f(p) & =f\left(p^{-}\right)+\Delta w+(R S) \int_{p^{-}}^{p}(f H+G f+f K f), \\
f_{2} & =f_{1}+\Delta w+f_{1} H+G f_{1}+f_{1} K f_{1} \\
& =f_{1}+\Delta w+f_{2} H+G f_{2}+f_{2} K f_{2} \\
& f_{2} H+G f_{2}+f_{2} K f_{2}=f_{1} H+G f_{1}+f_{1} K f_{1}
\end{aligned}
$$

and

$$
\left(f_{2}-f_{1}\right)\left(H+K f_{2}\right)+\left(G+f_{1} K\right)\left(f_{2}-f_{1}\right)=0
$$

Since $f_{2}-f_{1} \neq 0$ and N is a field, then

$$
H+G+K f_{2}+f_{1} K=0
$$

Substituting for f_{2} and simplifying, we obtain

$$
\begin{equation*}
K^{2} f_{1}^{2}+(2+H+G) K f_{1}+(H+G+\Delta w K)=0 . \tag{3}
\end{equation*}
$$

Since $f_{1}=f\left(p^{-}\right)=w\left(p^{-}\right)+(R S) \int_{a}^{p^{-}}(f H+G f+f K f)$, then the value of $f\left(p^{-}\right)$depends only on the values of w, H, G and K on the half open interval [a, p); however, Equation (3) depends on the values of w, H, G and K on the closed interval $[a, p]$. Hence, these functions cannot be defined independently. For example, if $K \neq 0$ and a different value is assigned to $w(p)$, then Equation (3) is no longer true and the RiemannStieltjes equation has no solution on $[a, p]$ unless compensating values are assigned to $H\left(p^{-}, p\right), G\left(p^{-}, p\right)$ and $K\left(p^{-}, p\right)$. However, the new $(L R L R)$-Riccati equation will have a solution on $[a, p]$.
4. A differential-type equation. In this section we find the solution of $f^{* *}+f^{*} p+f q=r$, where f^{*} and $f^{* *}$ are defined as follows. If $[a, b]$ is a number interval and h is a left continuous function from R to N such that $d h \in O B^{0}$, then $D(h, a, b)$ denotes the set of ordered pairs of functions such that $(f, g) \in D(h, a, b)$ iff g is a quasicontinuous function from R to N such that $f(x)-f(a)=$ (L) $\int_{a}^{x} g d h$ for $x \in[a, b]$. If $(f, g) \in D(h, a, b)$, then g is denoted by f^{*}. Also,
$f^{* *}=\left(f^{*}\right)^{*}$ and $f \cong w$ iff $(L) \int_{a}^{x} f d h=(L) \int_{a}^{x} w d h$ for $x \in[a, b]$. In this section all integrals and product integrals are Cauchy-left-type integrals unless indicated otherwise.

Lemma 4.1. If $\left(f, f^{*}\right)$ and $\left(g, g^{*}\right) \in D(h, a, b)$, then $\left(f+g, f^{*}+g^{*}\right) \in D(h, a, b)$.

Lemma 4.2. If $\left(f, f^{*}\right)$ and $\left(g, g^{*}\right) \in D(h, a, b), g^{*}, h$ and g commute and z is the function such that $z(x)=g\left(x^{+}\right)-g(x)$ for $x \in[a, b]$, then $\left(f g, f^{*} g+f g^{*}+f^{*} z\right) \in D(h, a, b)$.

Indication of proof. Since $\left(g, g^{*}\right)$ and $\left(f, f^{*}\right) \in D(h, a, b)$, then g is left continuous and $d f \in O B^{0}$; hence,

$$
\begin{aligned}
\int_{a}^{x} d f d g & =(L) \int_{a}^{x}(d f) z \\
(L) \int_{a}^{x}(d f) g & =(R) \int_{a}^{x}[(d f) g-(d f)(d g)]
\end{aligned}
$$

and
$(L) \int_{a}^{x}\left(f^{*} g+f g^{*}+f^{*} z\right) d h=(L L L) \int_{a}^{x}[(d f) g+f d g+(d f) z]$

$$
\begin{aligned}
& =(R L L) \int_{a}^{x}[(d f) g+f d g-(d f) d g+(d f) z] \\
& =(R L) \int_{a}^{x}[(d f) g+f d g] \\
& \quad=f(x) g(x)-f(a) g(a)
\end{aligned}
$$

Lemma 4.3. Given. $[a, b]$ is a number interval; f and h are functions from R to N such that $f(a)=h(a)$ and $d h \in O B^{0} ; G$ is a function from $R \times R$ to N such that $G \in O B^{0}$ and $O A^{0}$

Conclusion. The following statements are equivalent:
(1) if $x \in[a, b]$, then $f(x)=h(x)+(L) \int_{a}^{x} f G$; and
(2) if $x \in[a, b]$, then

$$
f(x)=f(a)_{a} \Pi^{x}(1+G)+(R) \int_{a}^{x} d h_{t} \Pi^{x}(1+G) .
$$

This lemma is a special case of Theorem 5.1 of [3].
Theorem 4.4. Given. (1) $[a, b]$ is a number interval; (2) h, p, q, u, v, β and s are functions from R to N such that h is left continuous, $d h \in O B^{0}, p$ and q are quasicontinuous on $[a, b]$ and, if $x \in[a, b]$, then $u(x)$ and $v(x)$ are defined by the matrix equation

$$
[u(x), v(x)]=[0,1](\dot{L}){ }_{a} \Pi^{x}\left(I+\left[\begin{array}{rr}
-p & -1 \\
q & 0
\end{array}\right] d h\right),
$$

$v(x)^{-1}$ exists, $\beta(x)=v(x)^{-1} u(x)$ and $s(x)=\beta\left(x^{+}\right)-\beta(x) ;$ also, v^{-1} is bounded on $[a, b]$; (3) if $a \leqq x \leqq y \leqq b$, then $p(x), p(y), q(x), q(y)$, $h(x)$ and $h(y)$ commute; (4) fand r are functions from R to N and r is quasicontinuous.

Conclusion. The following statements are equivalent.
(1) There exist functions f^{*} and $f^{* *}$ such that (f, f^{*}) and $\left(f^{*}, f^{* *}\right) \in D(h, a, b)$ and such that on $[a, b]$

$$
f^{* *}+f^{*} p+f q=r .
$$

(2) If $x \in[a, b]$, then

$$
f(x)=f(a)(L)_{a} \Pi^{x}(1-\beta d h)+(R) \int_{a}^{x} d z(L), \Pi^{x}(1-\beta d h),
$$

where $\quad \alpha=p-\beta-s, \quad z(x)=f(a)+(L) \int_{a}^{x} w d h, \quad g(x)=$ $f^{*}(a)+(L) \int_{a}^{x} r d h$ and

$$
w(x)=f^{*}(a)(L)_{a} \Pi^{x}(1-\alpha d h)+(R) \int_{a}^{x} d g(L)_{,} \Pi^{x}(1-\alpha d h) .
$$

Proof. Since $d h \in O B^{0}$ and h is left continuous and since p and q are quasicontinuous, then u and v are left continuous and
quasicontinuous. Since v^{-1} is bounded and $\beta=v^{-1} u$, then β is left continuous, quasicontinuous and commutes with h. If $x \in[a, b]$, it follows from Theorem 3.2 that

$$
\beta(x)=(L) \int_{a}^{x} q d h+(L L) \int_{a}^{x} \beta(-p d h)+(L R) \int_{a}^{x} \beta d h \beta .
$$

Let α, s and k be the functions such that $s(t)=\beta\left(t^{+}\right)-\beta(t), \alpha=$ $p-\beta-s, k(a)=0$, and $k=q+\beta^{2}-\beta p+\beta s$; then, for $x \in[a, b]$,

$$
\begin{aligned}
(L) \int_{a}^{x} k d h= & (L) \int_{a}^{x}\left(q+\beta^{2}-\beta p+\beta s\right) d h \\
= & (L) \int_{a}^{x} q d h+\left[(L R) \int_{a}^{x} \beta d h \beta-(L) \int_{a}^{x} \beta d h d \beta\right] \\
& +(L L) \int_{a}^{x} \beta(-p d h)+(L L) \int_{a}^{x} \beta s d h .
\end{aligned}
$$

Since β is left continuous, then

$$
(L) \int_{a}^{x} \beta d h d \beta=(L L) \int_{a}^{x} \beta s d h
$$

$\int_{a}^{x} k d h=\beta(x)-\beta(a)$ and $(\beta, k) \in D(h, a, b) ; k$ will be denoted by β^{*}. Note that $\beta, \alpha, \beta^{*}, p, q$ and h commute on $[a, b]$ and that $q=\beta^{*}+\beta \alpha$.

Proof of $1 \rightarrow 2$. Since the triple $\left(f, f^{*}\right),\left(\beta, \beta^{*}\right), s$ satisfies the hypothesis of Lemma 4.2, then $\left(f \beta, f^{*} \beta+f \beta^{*}+f^{*} s\right) \in$ $D(h, a, b)$. Hence,

$$
\begin{aligned}
& \left(f^{*}+f \beta\right)^{*}+\left(f^{*}+f \beta\right) \alpha \\
& \quad \cong f^{* *}+f^{*} \beta+f \beta^{*}+f^{*} s+f^{*} \alpha+f \beta \alpha \\
& \quad=f^{* *}+f^{*}(\beta+s+\alpha)+f\left(\beta^{*}+\beta \alpha\right) \\
& \quad=f^{* *}+f^{*} p+f q=r
\end{aligned}
$$

and

$$
\left(f^{*}+f \beta\right)^{*} \cong r-\left(f^{*}+f \beta\right) \alpha
$$

If we integrate each member of the preceding equation with respect to h and recall that $\beta(a)=0$, we obtain

$$
\left(f^{*}+f \beta\right)(x)=g(x)+(L) \int_{a}^{x}\left(f^{*}+f \beta\right)(-\alpha d h),
$$

where $g(x)=f^{*}(a)+(L) \int_{a}^{x} r d h$. It follows from Lemma 4.3, $1 \rightarrow 2$, that

$$
\left(f^{*}+f \beta\right)(x)=f^{*}(a)_{a} \Pi^{x}(1-\alpha d h)+(R) \int_{a}^{x} d g{ }_{t} \Pi^{x}(1-\alpha d h)
$$

for $x \in[a, b]$. Let $w(x)$ respresent the right member in the preceding equation. If $x \in[a, b]$, then $f^{*}(x)=w(x)-f(x) \beta(x)$ and by integrating both members we obtain

$$
f(x)=z(x)+(L) \int_{a}^{x} f(-\beta d h),
$$

where $z(x)=f(a)+(L) \int_{a}^{x} w d h$ and $z(a)=f(a)$. It follows from Lemma 4.3, $1 \rightarrow 2$, that

$$
f(x)=f(a)_{a} \Pi^{x}(1-\beta d h)+(R) \int_{a}^{x} d z_{t} \Pi^{x}(1-\beta d h) .
$$

Proof of $2 \rightarrow 1$. Functions $f^{* *}$ and f^{*} will be defined such that $\left(f, f^{*}\right)$ and $\left(f^{*}, f^{* *}\right) \in D(h, a, b)$ and such that on $[a, b] f^{* *}+f^{*} p+$ $f q=r$.

Let $f^{*}=w-f \beta$. Since f satisfies the second statement of the conclusion, it follows from Lemma 4.3, $2 \rightarrow 1$, that for $x \in[a, b]$

$$
\begin{aligned}
f(x) & =z(x)+(L) \int_{a}^{x} f(-\beta d h) \\
& =f(a)+(L) \int_{a}^{x} w d h+(L) \int_{a}^{x} f(-\beta d h) \\
& =f(a)+(L) \int_{a}^{x} f * d h
\end{aligned}
$$

and $\left(f, f^{*}\right) \in D(h, a, b)$.
Let $f^{* *}$ be the function such that

$$
f^{* *}=r-\left(f^{*}+f \beta\right) \alpha-\left(f^{*} \beta+f \beta^{*}+f^{*} s\right) .
$$

Since $\beta(a)=0$ and

$$
\begin{aligned}
\left(f^{*}+f \beta\right)(x) & =w(x) \\
& =f^{*}(a)_{a} \Pi^{x}(1-\alpha d h)+(R) \int_{a}^{x} d g_{t} \prod^{x}(1-\alpha d h)
\end{aligned}
$$

for $x \in[a, b]$, it follows from Lemma $4.3,2 \rightarrow 1$, that

$$
\left(f^{*}+f \beta\right)(x)=g(x)+(L) \int_{a}^{x}\left(f^{*}+f \beta\right)(-\alpha d h)
$$

and, hence,

$$
f^{*}(x)=g(x)+(L) \int_{a}^{x}\left(f^{*}+f \beta\right)(-\alpha d h)-f(x) \beta(x)
$$

Since $\left(f \beta, f^{*} \beta+f \beta^{*}+f^{*} s\right) \in D(h, a, b)$ and $\beta(a)=0$, it follows from the definition of $f^{* *}$ that

$$
\begin{aligned}
(L) \int_{a}^{x} f^{* *} d h & =(L) \int_{a}^{x}\left[r-\left(f^{*}+f \beta\right) \alpha-\left(f^{*} \beta+f \beta^{*}+f^{*} s\right)\right] d h \\
& =-f^{*}(a)+\left[g(x)+(L) \int_{a}^{x}\left(f^{*}+f \beta\right)(-\alpha d h)\right. \\
& =f^{*}(x)-f^{*}(a)
\end{aligned}
$$

for $x \in[a, b]$; hence, $\left(f^{*}, f^{* *}\right) \in D(h, a, b)$.
Since

$$
\begin{aligned}
f^{* *}+f^{*} p+f q= & {\left[r-\left(f^{*}+f \beta\right) \alpha-\left(f^{*} \beta+f \beta^{*}+f^{*} s\right)\right] } \\
& +f^{*}(\alpha+\beta+s)+f\left(\beta^{*}+\alpha \beta\right)=r
\end{aligned}
$$

then the triple $f, f^{*}, f^{* *}$ satisfies the given equation.
Suppose that on $[a, b]$ the functions h, p and q are defined as in Theorem 4.4 except for the restrictions pertaining to v^{-1}. If $h \in C^{0}$, it follows from Theorem 3.5 that there is a subdivision $\left\{x_{i}\right\}_{0}^{n}$ of $[a, b]$ and functions $\left\{\beta_{i}\right\}_{1}^{n}, \quad\left\{u_{i}\right\}_{1}^{n}$ and $\left\{v_{i}\right\}_{1}^{n}$ such that for $i=1,2, \cdots, n$ and $x \in\left[x_{i-1}, x_{1}\right]$

$$
\left[u_{i}(x), v_{i}(x)\right]=[0,1]_{x_{t-1}} \Pi^{x}\left(I+\left[\begin{array}{rr}
-p & -1 \\
q & 0
\end{array}\right] d h\right)
$$

$\beta_{i}(x)=v_{i}(x)^{-1} u_{i}(x)$, and v_{i}^{-1} exists and is bounded on $\left[x_{i-1}, x_{i}\right]$. Hence, for $i=1,2, \cdots, n$, Theorem 4.4 gives the solution of $f^{* *}+f^{*} p+f q=r$ on $\left[x_{i-1}, x_{i}\right]$ which is unique for a given pair $f^{*}\left(x_{i-1}\right)$ and $f\left(x_{i-1}\right)$. Therefore, Theorem 4.4 can be used to find a unique solution on $[a, b]$ for given values of $f(a)$ and $f^{*}(a)$.

A theorem similar to Theorem 4.4 can be stated and proved for the equation $f^{* *}+p f^{*}+q f=r$; however, Theorem 5.2 of [3] would be used in the proof instead of Lemma 4.3. If $\left(f, f^{*}\right)$ means $f(x)-f(a)=$ $(R) \int_{a}^{x} f^{*} d h$ and h is right continuous, a theorem similar to Theorem 4.4 can be stated and proved.

References

1. P. Puig Adam, Los fracciones continuas de cocientes incompletos differenciales y sus aplicaciones, Revista Mat. Hisp. Amer. II, (1951), 180-190.
2. W. D. L. Appling, Interval functions and real Hilbert spaces, Rend.-Circl. Mat. Palermo, Ser. 2, 11 (1962), 154-156.
3. B. W. Helton, Integral equations and product integrals, Pacific J. Math. 16 (1966), 297-322.
4. -. A product integral representation for a Gronwall inequality, Proc. Amer. Math. Soc., 23 (1969), 493-500.
5. Solutions of $f(x)=f(a)+(R L) \int_{a}^{x}(f H+f G)$ for rings, Proc. Amer. Math. Soc., 25 (1970), 735-742.
6. Jon C. Helton, An existence theorem for sum and product integrals, Proc. Amer. Math. Soc., 39 (1973), 149-154.
7. J. S. MacNerney, Stieltjes integrals in linear spaces, Ann. of Math., (2) 61 (1955), 354-367.
8. - Continuous products in linear spaces, J. Elisha Mitchell Sci. Soc., 71 (1955), 185-200.
9. -_, Integral equations and semigroups, Illinois J. Math., 7 (1963), 148-173.
10. Alfred Stohr, Über einen integralartigen Grenzubergang bei Kettenbruchen, Math. Nachr., 6 (1951), 103-107.
11. H. S. Wall, Concerning continuous continued fractions and certain systems of Stieltjes integral equations, Rend. Circ. Mat. Palermo, (2), 2 (1953), 73-84.
12. -, Concerning harmonic matrices, Archiv. der Math., V (1954), 160-167.

Received September 12, 1973 and in revised form June 11, 1974.
Southwest Texas State University

