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PRODUCTS OF TERMINATING 3F2(1) SERIES

GEORGE GASPER

It is shown that a well-known formula of Bailey for the
product of two hypergeometric functions in terms of an F4

Appell function has a discrete analogue of the form

b, — x ; ,b, - y

( I )
_ Γ a, b : — x, y + e — y, x 4- d

I
_

d, e : c a + b - c + 1

where x, y = 0,1, and the F-function on the right-hand side
is a double hypergeometric series. Additional formulas are
derived, including a discrete analogue of an important transfor-
mation formula of Watson, and discrete analogues of some more
general formulas due to Burchnall and Chaundy.

In [10] it was shown that Watson's well-known formula [13] for the

product of two terminating hypergeometric functions in terms of an F 4

Appell function

(2)

(c)n

2 F, [ - n,n + a\c\z]2Fx[- n,n + a c Z]

^— F4[ - n, n + ίi c, α - c + 1 zZ, (1 - z)(l - Z ) ] ,

admits a generalization of the form

-Λ, n+a, b'Λ

(3)
= ( - \)n(a - c

(c)n
rf,/: c ; α - c - f l ;

where the F-function is defined as in Burchnall and Chaundy [8] by

7 : D , , ,£>fc;c,, , c m ;
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and, as elsewhere, the arguments z and Z are not displayed when they
are both equal to 1. To obtain Watson's formula from (3) one needs
but set b = rfz, e - dZ, f' = d and then let d -»<».

Just as (2) was the main tool used by Bailey in [4] to derive a
representation for the Poisson kernel for Jacobi polynomials in terms of
a positive F4 function, formula (3) was. the main tool used in [10] to
derive a double series representation for a discrete Poisson kernel for
the Hahn polynomials

Γ - n , n + α + / 8 + 1 , - J C Ί ,N

(a discrete analogue of Jacobi polynomials) from which the nonnegativ-
ity of the discrete Poisson kernel and of some other kernels in [11] can
easily be established.

Bailey showed in [6, §9.6] that (2) follows easily from the case
a = - n of his formula ([1], [2])

2F, [α, b c z ] 2F, [α, b a + b - c + 1 Z]
(4)

- z)],

which is valid inside simply-connected regions surrounding z = 0, Z = 0
for which

Since formulas (2) and (3) were so useful, this suggested that it
might be of interest to show that Bailey's formula (4) has a discrete
analogue of the form (1). Note that (4) follows from (1) by setting
x = - dz, y = - dZ, e = d, and letting d-**>. Since (4) is a special case
of the general formula

F 4 [α,fc;c,c';z(l-Z), Z ( l - z ) ]

Ua + b - c - c1 + 1)Γ ^ r
2 Z

x 2 F , [ r + (3, r + b r + c\z]2F^[r + a,r + b r + c' Z],

which is due to Burchnall and Chaundy ([7, p. 257]; see also [5]), we
shall also show that (5) has a discrete analogue of the form
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a,b : -x,y +e; -y,x + d;
'; Jd, e : c c

(f\ _ " ^ (fl)r(fc)r(fl + fr - c - c' + l)r (~x)r(-y)r
W r4o r ! ( c ) Γ ( c ' ) r (dUe)r

3 2 [ r + c,r + d Γ 2[ r + c',r + e J '

where jt,y =0,1, . Clearly (6) reduces to (1) when c' =
a +b - c + 1.

In addition, we shall derive the transformation formula

P\a,b: -x,y + e; -y,x+d]
L d,e: c; b; J

_(d - a)x(e - a ) , Γ ϊ a, -x : 1 + α - c , - y c - f c ; 1
(rf)χ(«)̂  Lc, 1 + α - d - x : 1 + α - e - y ; J

(7)

for x, y = 0,1, , which is a discrete analogue of the following formula
of Bailey [3]

(8)
= (l-zy(l-ZyFι[a;c-b,l + a-c;c;

2. Formulas (1) and (6)

Since (1) is a special case of (6) it suffices to prove (6). The
simplest way to prove (6) seems to be by means of the following
extension of the proof which Bailey gave in [5] for formula (5). First
put

_ (d)x(e)y F\a,b : -x,y + e; -y,x
(d - a)Λe - b)y

 Γ [ d,e: c; c';

and observe that

= (d)Λe)y y (a)r+s(b)r+s(-x)Λy+e)Λ-y)Λx
(d -a)Λe - b)y Mo r!ί

UΛ-xU-y)Λ~ l)r+s

άo Πsl(c)r(c'),d + a - d -x) r(l + b - e -y),

s - y,b + r + s
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s ) , ( b + r + s ) k ( ~ \ ) r + '
r l s l j l k \ ( c ) r ( c ' ) , ( \ + a - d - x ) r + l ( \ + b - e - y ) Λ + A

-ttΌ n=o (1 + a - d - x ) m ( l + b - e - y)n

(a)r+s(b)r+s(a + r + s)m-r(b+

where in the second line Vandermonde's theorem was employed to
write

(-1)' r — αc,

and this expression with α, d, JC, r, s replaced by b, e, y, s, r,
respectively. From [5, p. 13] we have

(9)

y y yu)r+sκv)r+s(a + r + s)m_r(fc + r + s ) w - 5 ( - ί)r+s

Γ = O S — 0 * l3 \ f * l ' I 9 \§ I IJ 9 m \Ks M f \\*s / c

= (α)m(fo)n(c>-α -m)»(c -fr -n)m

m!n!(c')n(c)m

^(a)m(fc)n(c'-a)n(c-^)m F [ β + i ) - c - c ' + l , - f f l . - π ;
m\n\(c')Λc)m

 3 2\\-c + b-mJ-c' + a-n

(a)m(b)n(c - b)m(c' - a)Λ~x)m(- y)n
'a^om\n\(c)AC)Λ\ + a-d-x)m{\ + b-e-y)n

χ

 m i n^" ) (a + b - c - c' + \)r(- m)r(- n)r

H e n c e

f& r\(\-c+b-m)r(l-c' + a-n)r '

and so, putting m = r + s, n = r + t and changing the order of summa-
tion, we get

b - c — c' + l)r(- x ) r ( — y ) r

x & \r + ca/+\~+a

r-dX- x 1 *Fl \r lc' br + \ + b-Γ-

which, on using the relation

α, fo, - n ] _ (d -_a)n p ϊ a,c -b,-n\ 1
3 2[c,ί + a~d-n\'do)
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gives (6). Formula (10) is the realtion between Fp(0) and Fn(4) in [6, p.
22].

It should be observed that (1) can be used to prove (3). From (1)
we have

(Π)

„ Γ-n, n +a, - x l ^ Γ - ft, n + a, - y
F Ί c 9 d h F 2 | a-c + \J

Γ-ft,ft + α :

' Ί 4/:
-x, y + / ; -y,x + rf;

c α - c + 1;

for n, x, y = 0,1, . Since both sides of this identity are polynomials
in x and in y, (11) holds for all complex values of JC and y and so setting
x = - b, y = e -/, and using (10) to see that

- ft, n + a,f - e;
a-c+lj ( α - c

— n, ft -I- «, e ;

we get (3). Conversely, (3) can be used to prove (1) by reversing the
above steps and noticing that if JC and y are nonnegative integers then
both sides of (11) are polynomials in the variable ft.

3. F o r m u l a (7). To prove (7) we proceed as in §2 and use the
first identity in (9) to obtain

{d)Λe\
(d -a)x(e -

= f f <Z

a,h : - JC, y + e - y, x + d
d, e : c b

(-x)A~y)n
(1 + b - e -y)n

y (a)r+s(b)r+s(a + r + s)m-r(b + r + s)n-s(- \)r+s

ίti r\s\(m -r)\(n-s)\(c)Λb)%

\m(b - a - m)n(c - b - n)m{-x)m(- y)n
\n\(c)m(\ + a- d- x)m(\ + b - e -y)n

(a)m(c -b)m(-x)m _. f b -a-mj + b -c, -y;

)Λc - b)m{-x)m(e - a)

{\ + a-d-x)m(e-l
3

— c — ftt, \ + b — e — v

l+fl-c, -m, -y;

- b)y m40 r̂ o m !r !(c) m ( l + b - c - m)r{\ + a - d - x)m(\ + α - e - y)r
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on using Example 7 of [6, p. 98]. Setting m = r + s, the above sum
becomes

(e - a - c ) r ( - y ) r ( c -fo).
- b)y h hr\s !(c)Γ + ί(l + α - d - JC)Γ+,(1 + α - e - y)r

(e - α) y — c , — y c — f c ;

which gives (7).
Note that as special cases of (7) we have, for x, y = 0,1,

a,b: - JC, y + e - y,

and

(12)

d, ̂  :

(d-a)Λe~a)y a, 1 + a — b, — x, — y
(d)Ae)y

 4 \b, \ + a -d -x, \ + a-e-y

= (d - a)x(e -
{d)Λe)y

x,y + e; -y,x

- x : \, -y a-b;
Y+a-d-x:\+a-e-y\

= (d-b)Λe-a),
(d)x(e)y

which are discrete analogues of the formulas

( l-zKl - Z ) l

and

(13)

F 4 \a, b α, ί> -
(l-z)d-Z)'

respectively (see [3, p. 42] or [6, p. 102]). Equation (1) on page 14 of [6]
may be used to transform the last sum in (12) into a multiple of a
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Saalschϋtzian 3F2(1) series which can then be summed when y + e - a
(or x + d - b o r d + e — α — ft — 1) is a nonnegative integer to give

: -x,y + e; -y,x
d9e: a; b;

(14)

(d)Λe)y Γ(\ + b+y-d- x)Γ(d + e - a - b)'

Since (13) can be employed to quickly derive [12, §140] the
following useful generating function for Jacobi polynomials

(15) Σ P^β)(z)tn = 2a+βp-\\+t+p)-β.(\-t+py\Σ
n=0

where p = (1 - 2zt +12)112, one would expect to be able to use (14) to
derive an appropriate discrete analogue of (15) for Hahn polynomials,
but the change of variables needed seems to preclude this.

4. Additional formulas. Formula (6) has an inverse expan-
sion of the form

- a - b - i)Γ( - x)r( ~ y)r
r\{c)r{c')r{d)r{e)r

pϊr + a,r + b :r - x,y + e\r - y,x +

where x, y = 0,1, , This is a discrete analogue of

2F][a,b;c;z]2Fι[a,b;cf;z]

_ Y (a)r(b)r(c +cr-a-b-\)r _rηrr

~k rl(c)Λc')r

 ZZ

x F4[r + α, r -f fc r + c, r + c' z(l - Z), Z(l - z)],

which is the inverse expansion of (5) due to Burchnall and Chaundy [7,
p. 257]. Just as in the proof of (17) given in [7, p. 260], (16) can be
proved by substituting for the F-function on the right from (6), summing
diagonally, and then using Vandermonde's theorem to obtain the left
side of (16).
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In [6, p. 100] Bailey noted that (4) and [6, §1.4 (1)] can be used to
derive the formula

(18) ιF&a, b c; z]2Ft[a,b c Z]

Γ(c)Γ(c -a -b)
Γ(c - α)Γ(c - b)

Γ(c)Γ(α +b-c)
Γ(a)Γ(b)

F4[a,b;,c,a + ft - c 4- l;

{(1 -

- z)

x(l-Z)]

- Z ) ] ,

which is a generalization of (2) that had been discovered by Watson [13,
p. 194] by means of contour integrals of Barnes' types. To obtain the
analogue of (18) for terminating 3F2(1) series, we first observe that the
formula [6, §1.4 (1)] used by Bailey is a limiting case of [6, §3.8 (1)]; so
that using the latter formula, Ex. 7 on p. 98 of [6], and then using (1) we
find that the required analogue of (18) is

#, ft, — JC; a,b, - y
c, e

: - x, - y y + e, x + d
? : c a + b - c + \;

^Γ(c)Γ(c - a - b) '
Γ(c - a)Γ(c - b)

(19)
+ b-c) (c+ d-a-b)x(c+e-a-b)yH-

x F

Γ(a)Γ(b)

c — a,c — b : — x, —y y + c + e

c+d-a-b,c + e - a - b : c; c — 0 - ft + 1

where it is assumed that x,y, — y — e, and 0 + f t - y - c - e are non-
negative integers. This formula can easily be used to derive a discrete
analogue of the formula Watson gave in [13, p. 193] connecting four F4

series with two products of hypergeometric functions.
It should also be pointed out that by using the known [6] cases in

which 3F2(1) series may be summed (e.g., if Sallschϋtzian) one can sum
the double series in (1) and (3) for serveral special cases; thus supplie-
menting the double sum formulas in Carlitz [9].
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