
PACIFIC JOURNAL OF MATHEMATICS
Vol. 56, No. 1, 1975

ON GROUP ALGEBRAS OF CENTRAL
GROUP EXTENSIONS

C. M. EDWARDS AND P. J. STACEY

If A and G are separable locally compact topological
groups with A abelian, a central group extension G\ itself a
separable locally compact topological group, of A by G can be
defined for each Borel 2-cocycle / from G to A. The structure
of the group algebras of Gf has been studied for the case of
compact A. In this paper structure theorems for these group
algebras are obtained in the general situation.

For compact A it is shown in [9] that for each element a of the dual
group A of A there exists an idempotent Ra in the centralizer Δ(L,(G0)
of the Lrgroup algebra L1(G/) of Gf. In [8] it is shown that Ra

possesses a unique extension, also denoted by Ra, to an idempotent in
the centralizer Δ(C*(G')) of the C*-group algebra C*(Gf) of
Gf. Moreover the family {Ra: a G A} satisfies the conditions RaRβ =
δaβRa V α , | 8 e i and ΣaEA Ra = 1, the identity operator and where the
sum is the strong limit of the family of finite partial sums. However, it
is shown in [3] that Δ(C*(G0) is a C*-algebra *-isomorphic to the ideal
centre ^(C*(G')) of C*(Gf) (see [6]). Since G', and hence C*{Gf), is
separable S(C*(Gf)) is contained in the centre Z(C*(G')μ) of the Baire
*(or monotone σ-) envelope C*(G0μ of C*(G0 (see [1]). Denoting
the image of Ra under the isomorphism by rα, it follows that {ra: a G Λ}
is a family of mutually orthogonal projections in Z(C*(Gf)μ) such that
Σα<=Λ rα = 1, the identity in C*(Gf)μ where the sum is the least upper
bound of the family of finite partial sums. Moreover for each a G A,
ra - L,{GS) = L,(G\a) C L^) and ra C*(G0 = C*{Gf,a) C
C*(G0 Hence direct sum decompositions of L,(G0, C*(G0,
C*(GOμ and W*(G0, the W*-group algebra of G;, are defined.

The crucial observation allowing a theory to be developed for
noncompact A is that in the compact case A CLλ{A). Therefore in
general, instead of studying the mapping a -» ra from A to Z(C*(Gf)μ),
a mapping φ->r{φ) from LX(A) into Z(C*(G0 μ) should be
constructed. Since in general L,(Λ) does not contain idempotents, it
then becomes less obvious how direct sum decompositions can be
defined. The main result (Theorem 3.1) shows that such a mapping r
exists and has a unique extension, also denoted by r, to a σ- normal
*-isomorphism from C*(A)μ into Z(C*(Gf)μ). Direct sum decompos-
itions of C*(Gf)μ and W*(Gf) result from the abundance of idempo-
tents in C*(A)μ. Indeed the Fourier transform leads to a σ-
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isomorphism between the Boolean σ-algebra of idempotents in C*(A)μ

and the σ- algebra of Borel sets in A. Therefore every Borel set E in A
defines a central projection in C*(Gf)μ and hence direct sum decompos-
itions of C*(Gf)μ and W*(Gf). In particular the projections {ra: a E
A} constructed in the compact case are those arising from the Borel sets
in A consisting of single points.

The range r(C*G4)μ) of r is a commutative Baire *-
algebra. Therefore the range Π(r(C*(A)μ)) of the restriction of a
σ- normal essential representation Π of C*(Gf)μ on separable Hubert
space is a commutative W*- algebra (see [12]). Using this fact it is
shown in §4 that every such representation possesses an essentially
unique direct integral decomposition over A. There exists a bijection
between the set of such representations Π of C*(Gf)μ and the set of
continuous unitary representations π of Gf on separable Hubert
spaces. The second main result (Theorem 4.3) shows that almost all
the terms in the corresponding direct integral decomposition of π are of
the form (a,g)^a(a)πa(g) for some α θ i , where πa is a projective
representation of G with multiplier a °f.

Finally in §5 certain results associated with the compactness of A
are proved. In particular it is shown that ΣaGA rα = 1 if and only if A is
compact.

Results related to those in this paper, but of a rather different
nature have been obtained by Insel [11].

2. Preliminaries. Throughout this paper G denotes a separ-
able locally compact topological group with unit element e and m
denotes a left invariant Haar measure on G. Let M{G) denote the
measure algebra of G, let δe denote its identity and let Lλ(G) denote the
L r group algebra of G. For the definitions of these and related terms
the reader is referred to [10]. Lλ(G) is isometrically *-isomorphic to
the closed two-sided *-ideal Ma{G) of elements of M{G) absolutely
continuous with respect to m, by means of the mapping η —> mη defined
for η e Lλ{G) by dmη = ηdm. Let C*{G) denote the C*-envelope of
LX{G), the C*-group algebra of G, and let W*(G) denote the W*-
envelope of C*(G), the W*-group algebra of G. For these definitions
the reader is referred to [4, 5, 17]. C*(G) will be identified throughout
with its universal representation and therefore will be regarded as a
weak* dense subalgebra of W*(G). The measure algebra M(G) will
also be identified with a subalgebra of W*(G\ [18].

Let C*(G)hμ be the smallest subset of W*(G) containing the set
C*{G)h of self-adjoint elements of C*{G) and which contains the least
upper bounds and greatest lower bounds of its uniformly bounded
monotone sequences. Then C*(G)hμ + iC*(G)hμ is a C*-algebra,
known as the Baire* envelope of C*(G) and denoted by C*(G)μ. For
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details see [14].
There exist bijections between the families of essential representa-

tions of L](G), essential representations of C*{G), essential σ-normal
representations of C*(G)μ and essential normal representations of
W*(G), the bijections being defined by restricting a given essential
normal representation of W*(G) to L,(G), C*(G) and C*{GY
respectively. Moreover there exists a bijection π —> Π from the set of
continuous unitary representations of G onto the set of essential
representations of Lλ{G) defined for η EL^G), ξl9 ξzEH^ the rep-
resentation space of TΓ, by

(2.1) (U(η)ξuξ2)= ί η(g)(τr(g)ξuξ2)dm(g).
JG

Each of these bijections maps primary and irreducible representations
into primary and irreducible representations respectively and preserves
unitary equivalence.

Let A be a separable locally compact abelian group with unit
element 0, let n be an invariant Haar measure on A and let A be the
dual group of A. A is discrete if and only if A is compact. The
Fourier transform F on LX{A) is defined for φ EL|(A), a GA by

= ί a(a)φ(a)dn(a).
, JA

F extends to an isometric ^-isomorphism from C*(A) onto C0(A)9 the
algebra of continuous functions on A which take arbitrarily small
values outside compact sets, equipped with the supremum norm
[16]. F also extends uniquely to a σ-normal isometric ^-isomorphism
from C*(A )μ onto F®(A), the algebra of bounded Borel functions on A
[12]. Both these extensions will be denoted by the same symbol F.

A Borel function / from G x G to A satisfying

f(g,e) = f(e,g) = 0 V g € G ,

g3) V g , , g 2 , g 3 e G

is said to be a Borel 2-cocycle from G to A In the special case A = T,
the multiplicative group of complex numbers of unit modulus, a Borel
2-cocycle is said to be a multiplier on G. For each Borel 2-cocycle /
from G to A and each a E Λ, a °f is a multiplier on G.

To each multiplier ω on G there exists a 'twisted' convolution and
involution on LX{G) with respect to which it forms a Banach *-algebra
Lx{G,ω) with bounded approximate identity. C*(Gyω), C*(G,ω)μ
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and W*(G, ω) respectively denote the C*, Baire* and W*-envelopes of
Lx(G,ω). There exist bijections between the families of essential
representations of Lλ(G,ω), essential representations of C*(G,ω),
essential σ-normal representations of C*(G,ω)μ and essential normal
representations of W*(G, ω). In this case (2.1) sets up a bijection
between the set of essential representations of Lλ{G,ω) acting on a
separable Hubert space and the set of projective representations of G
with multiplier ω acting on a separable Hubert space. Each of the
bijections maps primary and irreducible representations into primary
and irreducible representations respectively and preserves unitary
equivalence. See [7, 8, 9] for details.

Let / be a Borel 2-cocycle from G to A and for (augι), (a2,g2) E
A x G, let

(au g{) (a2, gi) = {ax + a2 + f(gι,g2), gxgi)-

With this multiplication A x G is a group which possesses a separable
locally compact topology, the Borel structure of which coincides with
the product Borel structure and with respect to which A x G is a
topological group. This group is said to be the central group extension
of A by G corresponding to / and is denoted by Gf. The measure
n x m is a left invariant Haar measure on Gf [13].

If 31 is a complex Banach algebra, the set Δ(2l) of bounded linear
operators W on 21 satisfying

is said to be the centralizer algebra of 91.
Let 21 be a C*-algebra, let 21μ be its Baire* envelope and let 21** be

its W*-envelope. With 21, 2ίμ regarded as being embedded in 2ί**, the
idealizer 3̂ (21) of 2ί is the largest C*- subalgebra of 2ί** in which 21 is an
ideal. Let 2ίm denote the set of self-adjoint elements of 21** which can
be reached by increasing nets from 2l~ the C*-subalgebra of 21**
obtained by adjoining the identity 1 of 21** to 2ί. If 2Im = - 2ίm, then
the self-adjoint part of sD((2ί) equals 2ίm Π 2ίm (1). Further Δ(2ί) is a
commutative C*-algebra with identity and the mapping W-» W**l is a
*-isomorphism from Δ(2I) onto the centre Z0Dΐ(2ί)) of
9K(2t). Moreover Z(3K(9I)) = ̂ (21), the ideal centre of 2ί [2, 3, 15]. If
2ί is separable, 2ίm C 2P, 1 E 2ί̂  and hence 3K(2I) C 2ίμ, ^(2ί) C Zί?^),
the centre of 2ίμ.

Throughout the paper the multiplication and involution in W*(Gf)
and, for a E A, in W*(G, α °/) are denoted by , * respectively.
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3. The structure theorem. In this section the main
theorem concerning the structure of the group algebras of Gf is
proved. It is shown that C*(A)μ can be embedded in the centre of
C*(Gf)μ. Since C*(A)μ possesses many idempotents, this result leads
to direct sum decompositions of C*(GOμ and W*(Gf). The condi-
tions under which similar decompositions of LX{GS) and C*(Gf) also
exist are examined in §5.

The section begins with a statement of the main theorem and its
corollaries.

THEOREM 3.1. For φ E Lj(A) define r(φ) - nφ x 8e where
nφ E M{A) is defined by dnφ = φdn and 8e is the identity in M(G). If
C*(Gf) and M(Gf) are regarded as subalgebras of W*(Gf), then the
mapping r: φ->r(φ) extends uniquely from LX{A) to a σ-normal
*-isomorphism from C*(A)μ into the centre Z(C*(Gf)μ) of C*(Gf)μ.

The extension of r to C*(A)μ will also be denoted by r.

COROLLARY 3.2. For E E 93(A), the σ-algebra of Borel subsets of
A, define r(E) = r(F~xχE) where χE is the characteristic function of E,
F~ι is the inverse Fourier transform and r is defined above. Then
f: E-+ f{E) is a σ-isomorphism from ^&{A) into the Boolean σ-algebra
of central projections in C*(GOμ

COROLLARY 3.3 (i) For each Borel subset E of A with complement
Ec there exist monotone sequentially closed two-sided ideals
r(E)C*(Gf)μ, r(Ec)C*(Gf)μ in C*(Gf)μ such that C*(G0μ =
(f(E) - C*(Gf)μ)Θ(f(Ec) C*(Gf)μ). ^

(ii) For each Borel subset E of A with complement Ec there exist
weak* closed two-sided ideals r(E)W*(Gf), f(Ec)-W*{Gf) in
W*(Gf) such that W*(Gf) = (r(E)- W*(Gf)) φ (r(£ c ) W*(Gf)).

(iii) The algebraic direct sums

e (?({<*}) c*(G')μ), Θ (f(M) w*(Gf))

are two-sided ideals in C*(Gf)μ, W*(Gf) respectively.

The proof of Theorem 3.1 depends upon several results, some of
which are of independent interest.

PROPOSITION 3.4. For μ EM (A) let R(μ) be the linear operator
on L1(G/) defined by
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= (μ Xδe)'Ψ

Then the mapping R: μ-^>R(μ) is an isometric ^-isomorphism from
M(A) into

Proof. The mapping μ ^ μ x δ , is an isometric ^-isomorphism
from M(Λ) into the centre Z(M(Gf)) of M(Gf). But, by Theorem 6.1
of [9], there exists an isometric ^-isomorphism X—> Wx from Z(M(Gf))
onto Δ(L,(G')) defined by WXΨ = X Ψ, V Ψ E L,(G0.

COROLLARY 3.5 For φ E L,(A) let R(φ) be the linear operator on
L{(Gf) defined by

R(φ)Ψ = (nφxδe)-Ψ V ΨE Lx(Gf).

Then the mapping R: φ-*R(φ) is an isometric *-isomorphism from
LX{A) into

Proof. This follows immediately from Proposition 3.4 by regard-
ing Lλ{A) as an ideal in M(A).

LEMMA 3.6 For φ<ELx{A) let R(φ)G^L](Gf)) be defined as
above. Then R(φ) extends uniquely to an element, also denoted by
R(φ), of Δ(C*(Gf)) such that, when C*(Gf) and M(Gf) are regarded as
subalgebras of W*(Gf),

R(φ)**ψ = (nφ xδe) Ψ V Ψ E W*(Gf).

Proof. Let π be an irreducible representation of Gf on the Hubert
space H and let Π be the representation of M(Gf) defined for
X<ΞM(Gf) by

(3.0) (Y\(X)ξ],ξ2)=ί (π(a,g)ξuξ2)dX(a,g) Vf,,f2EH.
Jcf

The irreducibility of π implies that there exists a E.A such that
τr(a,e) = a(a)lH Va £ A. Therefore, by (3.0)

from which it follows that

(3-D \\U(nφxδc)\\ = \(Fφ)(a)\.
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Therefore, for Ψ

\\U(R(φ)Ψ)\\^\\Tl(nφxδe)\\\\τi(Ψ)\\

= \(Fφ)(a)\\\U(Ψ)\\

since F is an isometry from C*(A) onto C0(A). By taking the
supremum over all irreducible representations Π of Lx{Gi), it follows
that

(3.2) | |l?(φ)Ψ|| c, ( G^|μ|| c, ( A ) | |Ψ|| c* ( G/ ).

Therefore R(φ) extends uniquely to a bounded linear operator, denoted
by the same symbol, on C*(Gf) such that | |JR(φ)| |^ | |φ ||C (A). Simple
limit arguments show that R(φ)eΔ(C*(Gf)).

The double adjoint R (φ)** of R (φ) acting on W*(Gf) is the unique
weak* continuous extension of R(φ) from L^G*) to
W*(Gf). However, by 1.7.8 of [17], the multiplication in W*(Gf) is
weak ^-continuous and so the mapping Ψ-^(nφ x δe) Ψ is also a weak
^-continuous extension of R(φ) to W*(Gf). It follows that
R(φ)**ψ = (nφ x δe) Ψ, VΨE W*(Gf).

LEMMA 3.7 The mapping R:φ->R(φ) from L,(Λ) into
Δ(C*(G;)) defined in Lemma 3.6 possesses a unique extension to an
isometric ^-isomorphism from C*(A) into Δ(C*(Gf)).

Proof. (3.2) shows that R possesses a unique extension to a norm
nonincreasing mapping from C*(A) into Δ(C*(G/)). Simple limit
arguments show that the extension, also denoted by R, is a *-
homomorphism. For φ E LX{A),

= sup{||Π(nφxδβ)||: UElrr(Gf)}

by (3.1), where Irr (GO denotes the set of irreducible normal representa-
tions of W*(G0,

by Lemma 3.6,
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Hence R is isometric on Lλ{A).
Let φ'eC*(A) satisfy R(φ') = 0 and let {φλ} be a net in L,(A)

such that, relative to the C*-norm, limφλ = φ'. Then, from above,

It follows that φ' = 0 and hence that R is a ^-isomorphism from the
C*-algebra C*(Λ) into the C*-algebra ΔCC^G')). Therefore, using
1.8.1 of [4], R is an isometry from C*(A) into Δ(C*(G0).

LEMMA 3.8. For a E A, Ψ E L,(Gf), let

(PaΨ)(g) = j a(a)Ψ(a,g)dn(a) V g E G.

T7ιe/i Pα is α norm nonincreasing *-homomorphism from L,(G0
Li(G, α °/) and Pa possesses a unique extension to a *-homomorphism
from C*(G0 onto C*(G,a°/).

Proof, The calculations used in [9] to show, for the case of
compact A, that Pa is a norm nonincreasing *-homomorphism from
Lx(Gf) into Li(G, α °/) also apply here. To show that Pa has range
L,(G,αo/), let ιAEL,(G), φEL,(Λ) with

L
The function Ψ defined for (α,g) E G1 by

is an element of Lλ(Gf) such that PaΨ = ψ.
The calculations used in [8] to show that, for the case of compact A,

Pa extends uniquely to a *-homomorphism, also denoted by Pα, from
C*(Gf) into C*(G,a°f) also apply here. However, PaC*(Gs) is
closed in C*(G,α°/) (see 1.8.3 of [4]) and contains L,(G,αo/). It
follows that PaC*(Gf) = C*(G,α <>/).

Proof of Theorem 3.1. It follows from Lemma 3.7 and the remarks
at the end of §2 that the mapping c/> —>i?(φ)**l is an isometric
*-isomorphism from C%4) into Z(C*{Gf)μ). Further, Lemma 3.6
shows that for φ E LX{A)
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Since LX(A) is dense in C*G4), the mapping φ -*R(φ)**l is the unique
extension of r to C*(A) and will be denoted by the same symbol r.

Since W*(Gf) can be regarded as an algebra of operators on the
universal representation space of C*(G0, r can be regarded as a
faithful representation of C%4) and therefore possesses a unique
extension to a σ- normal representation (also denoted by r) of
C*(A)μ. It remains to show that this extension is faithful and that its
range lies inside Z(C*(Gf)μ).

Recall that the Fourier transform F on LX(A) possesses a unique
extension to a σ-normal ^-isomorphism (denoted by the same symbol)
from C*(A)μ onto the algebra F^{A) of bounded Borel functions on
A. For E E 93(A), the σ-algebra of Borel subsets of A, let

(3.3) r(E) = r(F-ιχE)

where χEjs the characteristic function of E. Since both r and F" 1 are
σ- normal it follows that f is a cr-homomorphism into the complete
Boolean algebra of central projections in W*(Gf). It will first be
shown that f is a σ-isomorphism. To this end let E G93(A) and let
(φλ) be a net in LX(A) converging to F~xχE in the weak* topology of
W*(A). Then χE is the pointwise limit on A of the net (Fφλ). For

A

(3.4) (Pβ(r(φA) Ψ))(g) = (PaR(φλ)Ψ)(g) = (Fφλ)(a)(PaΨ)(g).

Notice that r possesses a unique extension to a weak* continuous
*-homomorphism (denoted by the same symbol) from W*(A) into
Z(W*(G ;)). Using this fact, the weak* continuity of P ϊ * and the
weak* continuity of multiplication in W*{Gf), it follows from (3.4) that,
for fc

(3.5) = χ β (

Now suppose that Eu E2£
($(A) satisfy r(E,) = r(E2) Let a E £ , ,

a<£ E2. Then, from (3.5), for Ψ(ΞLx{Gf),

Paψ = p**(f(E.) Ψ) = Pί*(r(F 2) Ψ) = 0

and since, by Lemma 3.8, Pα maps Lλ{Gf) onto L,(G, a °/) this yields a
contradiction. Hence EXQE2 and similarly E2QEX. Thus EX = E2
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and r is a σ-isomorphism.
To show that r is an isomorphism suppose that φ £Ξ C*(A)μ

y

O ^ φ ^ l , r(φ) = 0. Then φ = Fφ G F ^ ( i ) , O ^ i / ^ l and the se-
quence (1 - (1 - φ)n) is monotone increasing with least upper bound χE

where E! = {a: a EA,ψ(α)>0}. By the σ-normality of r and F"1 it
follows that r(F') = 0 and therefore, from above, that E' = 0. Hence
φ = 0 and, since F is an isomorphism, φ = 0. Suppose next that
φ EC*(^) μ f l , | | φ | | ^ 1, r(φ) = 0. Then φ = Fφ GF5O4), the algebra of
bounded real-valued Borel functions on A, || φ || ̂  1 and

^ ( 2 r - 3 ) ( 2 r - l ) 3 l fΛ , 2

By the σ- normality of r and F" 1 it follows that r(F" !(| ψ\)) = 0 and, as
above, that | φ \ = 0, φ = 0, φ = 0. If φ is an arbitrary element of
C*(A)μ such that r(φ) = 0, applying the above result to its real and
imaginary part proves that φ = 0. Therefore r is an isomorphism.

It remains to show that r(C*(A )μ) C Z(C*(Gf)μ). To this end let

L={φ:φGC*(Ar,r(φ)GZ(C*(Gfr)}

Let (φn)CL be a uniformly bounded monotone increasing sequence
with least upper φ. Then, by the σ-normality of r, (r(φn))C
Z(C*(G0μ) is a uniformly bounded monotone increasing sequence with
least upper bound r(φ). But Z(C*{Gs)μ) is monotone sequentially
closed and hence r{φ)<EZ(C*{GsY), φ G L. Therefore L is
monotone sequentially closed and contains C*(A). Hence C*(Λ)μ =
L and the proof is complete.

Notice that Corollary 3.2 was proved in the course of the above
proof. Corollary 3.3 is an immediate consequence of the fact that
\f (F): F G 93(Λ)} is a Boolean σ- algebra of projections in Z(C*(G0μ).

4. Representations. Let Rep (GO and Rep (G, a °/), α G Λ
respectively denote the sets of essential representations of Lλ(Gs) and
Lλ{G,a of) on separable Hubert spaces; let Fac(G0 and Fac(G,α °/)
respectively denote the subsets of Rep (GO and Rep (G, a ° /) consisting
of primary representations; let Irr(G0 and Irr(G,α°/) respectively
denote the subsets of Fac (GO and Fac(G, a °/) consisting of irreduci-
ble representations.

If Πα ERep(G,α <>/), then the mapping Ψ->Πα(PαΨ), where Pa is
defined in Lemma 3.8, on Lλ{Gf) is an element of Rep(G0 The
corresponding continuous unitary representation of Gf is
(a,g)-^a(a)πa(g), where πa is the projective representation of G
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corresponding to Πα under (2.1). In the sequel the essential represen-
tation Ψ-^Π«(PαΨ) of L,(G0 is denoted by α(g)Πα and the corres-
ponding continuous unitary representation of Gf by α 0 π α . Let
Rep(G;, α), Fac(G', a) and Irr(G', a) respectively denote the images of
Rep(G, α°/), Fac(G, a°f) and Irr(G, a°f) under the bijection
Πα -»α 0 Π β .

In [7] it is shown how, for compact A, every element of Rep (GO
can be written as a direct sum of elements of the family
{Rep(Gf,a): a E A}. The generalization relies on the theory of direct
integrals, for details of which the reader is referred to
[4,5]. Throughout this section the commutative Baire* algebra
r(C*G4)μ) will be denoted by Z.

LEMMA 4.1. Let ΠERep(G0, let π be the corresponding con-
tinuous unitary representation of Gf and let πe be the continuous unitary
representation a—>π(a,e) of A. Then Π(Z) = πe(A)", the Von
Neumann algebra generated by πe(A).

Proof. Let ΐle be the element of Rep (A) associated with πe and
recall that Π«(C*(A)μ) = Ue(A)tf (see [4], 13.3.5, [12], p. 322). A simple
calculation shows that for φEL,G4), Ue(φ) = Tί(r(φ)) and hence
Πe =Π°r . This completes the proof of the lemma.

The first preliminary result concerning the structure of Rep (GO is
the following.

PROPOSITION 4.2. (i) For Π E Rep (GO, Π E Rep (Gf, a) for some
a E A if and only if Π(Z) = C1H where \H is the identity operator on the
representation space H of Π.

(ii) Ifa^βthen Rep(G;,α) ΠReptG^β) = 0.

(iii) Fac(GO= U
(iv) Irr(G')= Ua

Proof, (i) Lemma 4.1 shows that Π(Z) is trivial if and only if for
all a EΛ, πe(a) = a{a)\H for some a E. A. It follows that Π(Z) is
trivial if and only if π = a ® ττα for some projective representation πa

of G with multiplier a °/ or equivalently if and only if Π E Rep(Gr, a)
for some a E A.

(ii) If Π E Rep (G;, α) Π Rep (G', jβ) and if π is the corresponding
continuous unitary representation of Gf then, for αGA, α(α)l H =
π(a, e) = jβ(α)lH and so α = jS.

(iii) If Π E Fac (GO then Π(Z) C Π(Z( W*(G0)) = C\H and hence,
by (i), ΠEReptG^αO for some α E A Therefore Π = α(g)Π. for



70 C. M. EDWARDS AND P. J. STACEY

some Πα ERep(G, a °/) and, since Π is primary, it follows that Πα is
also primary. It follows that Fac(G / )C U β € ^ FacίG^α) and the
reverse inclusion is trivial.

(iv) The proof is similar to that of (iii).

The main result about the structure of Rep (GO is the following.

THEOREM 4.3. For ΠERep(G0 there exists a positive measure
μ EM04), unique up to measure class, and a family {Πα: α E A},
where Πα E Rep(G', a) for μ-almost all a E A, such that Π is unitarily

re
equivalent to Πadμ(a).

JA

Proof. Π ° r ° F ! is a σ-normal representation of F%(A) with
range Π(Z) which is a Von Neumann algebra since the representation
space is separable. Moreover it is the unique σ- normal extension of its
restriction to C0(A). By standard representation theory for C0(A)
there exists a positive measure μ E M(Λ), unique up to measure class,
such that Π(Z) is *-isomorphic to L»(A,jι). Using [4], 8.2.2, 8.3.2, [5]
App. IV, there exists a family {Πα: a E A, Πα E Rep (GO) such that Π is

unitarily equivalent to Uadμ(a) and Π(Z) is isomorphic to the
JA

algebra of diagonalizable operators. It remains to prove that Ua E
Rep(Gf,a) for μ-almost all a E.A. It follows from Lemma 4.1 and
Proposition 4.2 that this is achieved once it has been proved that, if πa

is the continuous unitary representation of Gf corresponding to Πα, then
the continuous unitary representation (πa)e of A is primary for

μ-almost all a E A. If π' = I πadμ(a), then by 18.7.4 of [4], π' is
JA

unitarily equivalent to the representation π of Gf associated with
Π. But, by Lemma 4.1, Π(Z) = πe(A)" and therefore the decomposi-

ΓΘ
tion πe = (πa)edμ(a) is the central decomposition of πe. Using

8.4.1 of [4], it follows that (ττa)e is primary for μ-almost all a GA.

REMARK. Let K - {k: k E C*(G0*, ^ 0 , | |fc| |^l}, let fcEX
and let Uk be the cyclic representation of C*(Gf) on Hk associated with
k (see [4], 2.4.4.). Then, according to [17], §3.1, a decomposition of ΐίk

over K corresponding to Πfc(Z) can be obtained by means of a unique
positive Radon measure vk. Theorem 4.3 also defines a decomposition
of Uk corresponding to Πfc(Z), given by the measure μk on A. An
application of the uniqueness theorem (see [4], 8.2.4) then establishes
the existence of a Borel isomorphism from A\E, for some Borel set E
satisfying μfc(E) = 0, into K which transforms μk into vk. From
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Theorem 4.3, the images under this isomorphism of μk~almost all of the
points of A\E lie in the set dz

pr(K) = {k: k E K,Ώk(Z) = ClHfc}, the set
of Z-primary points of K. A corollary of Theorem 4.3 is therefore that
the measure vk on K is pseudo-concentrated on dfr(K). Further
discussion of this and related topics is not within the scope of this paper
(cf. [17], §3.1).

5. The compact case. In this section the following two
criteria which exhibit the compactness of A are proved.

THEOREM 5.1. // the family {r({a}): a E A} of mutually or-
thogonal central projections in C*{Gs)μ is defined by (3.3), then
ΣαeΛ^({α}) = 1 if and only if A is compact.

THEOREM 5.2. // the family {r({a}): a E A} of mutually or-
thogonal central projections in C*(Gf)μ is defined by (3.3), then

(i) Φ D L^GOCL^GO for some a e i if and only if A is
compact

and

(ii) r({a}) C*(Gf) C C*{Gj) for some a G Λ if and only if A is
compact.

If A is compact, the mapping Qa defined for a E Λ, η E LX{G, a °f)
by

(5.1) (

is an isometric ^-isomorphism onto a norm closed two-sided *-ideal
L,(G ;,α) in Lx(Gf) [9]. Further, PaQa = 1, the identity operator on
Lj(G,a °f) and, if Ra = QaPa, the family {Ra: a E A} of projections in
Δ(L,(G/)) satisfies RaRβ = 8aβRa. A simple calculation shows that,
since A CL,(A), for

(5.2) Uβ Ψ = J? (ά )Ψ = f ({α}) Ψ

using the notation of §3.
The map Qa defined by (5.1) extends uniquely to a *-

homomorphism Qa from C*(G,α°/) onto a norm closed two-sided
*-ideal C*(Gf,a) in C*(G0 Further, if Pa is extended, as in Lemma
3.8, to a *-homomorphism Pa from C*(G0 onto C*(G,α°/), then
PαQα = 1 the identity operator on C*(G,α<>/) and Ra = QaPa is a
projection onto C*(G ;,α) [8]. By means of simple limit arguments it
can be deduced from (5.2) that, if the extension of R (ά) to an element of
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Δ(C*(Gf)) is denoted by the same symbol, then, for aGA, ΨG

(5.3) RaΨ = R(ά)Ψ=r({a}) V

LEMMA 5.3. If A is compact then ®aζ=Ar({a}) W*(Gf) is weak*
dense in W*(Gf).

Proof. It is shown in Theorem 5.5 of [9] that ®a(ΞλRaL\(Gf) is
norm dense in L,(G0 and hence weak* dense in W*(Gf). However,
by (5.2), φaEA RaL.iG*) = L,(G0 Π (®aEλ r({a}) W*(G')), from which
the result follows.

Proof of Theorem 5.1. Let EaG^r({a}), defined to be the least
upper bound in W*(Gf) of the family {ΣαeΛ r({a}): Λ C A, Λ finite} be
denoted by u. If A is compact then, by Lemma 5.3, there exists a net
(Ψλ) of elements of Θ«eAf({α}) W*(Gf) with weak* limit 1. The
weak* continuity of multiplication in W*(Gf) then implies that (1 - u)
• Ψλ -» 1 - w. However, (1 - M) Ψλ = 0 Vλ and thus u = 1.

Conversely, assume that u = 1 and let μ be a positive normalised
regular Borel measure on A. Let H = L2(A,L2(G),μ) and for
(α,g) <ΞGf, ξ<ΞH, h<Ξ G, α E i , let

(5.4)

Then 77 is easily seen to be a continuous unitary representation of
GK If Π is the corresponding element of Rep (GO a simple calculation
shows that for Ψ E L,{Gf), ξ E H, a E A,

(U(Ψ)ξ)a = La(PaΨ)ξ«

where Lα is the left regular representation of L{(G,a°f) defined for
τjeL,(G,α°/), η ' E L 2 ( G ) by

La(η)η' = η η'.

Since Π possesses a unique normal extension to W*(G/) and since, for
each α E A, Lα possesses a unique normal extension to W*(G, a °/) it
follows that for Ψ E W*(G0, f e ff, α E A ,
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Using (5.4) and Lemma 4.1 it is clear that Π(Z) is *-isomorphic to
Loc(A,μ) and therefore μ is the measure on A corresponding to Π
through Theorem 4.3. For a^A define Π α E R e p ( G 0 on
U(f({a}))H = Ha for Ψ E W*(Gf) by Ua(Ψ) = Π(r({α}) Ψ) and notice
that the hypothesis u = 1 leads to

(5.5) Π = 0 Πβ.

But, for a E A,

Πβ(Z) = Πα(r(F-^ { α }) Z) = Π-

= {λΠβ(f({α})):λ6C} =

It follows from Proposition 4.2 and (3.5) that for each a E A, Πα E
Rep (G^α). Therefore (5.5) describes a decomposition of Π into a
direct sum over A of elements of Rep (Gf, a). Theorem 4.3 shows that
μ is discrete. Hence A is discrete and A is compact.

Proof of Theorem 5.2. (i) If A is compact it follows immediately
from (5.2) that

f({α}) L,(G0 = K J ^ G O C L^GO V α E A

Conversely, assume that A is noncompact and thus that A is
nondiscrete. It will be shown that

Lx{Gi) Π {f {{a}) L,(G0) = {0} V a E A

which, because of (3.5), is a stronger result than that to be proved. For
some a E.A, let ΨEL,(G0) and define the mapping dΨ on A by
dΨ(j3) = PβΨ V β E A It follows from (3.5) that either PβΨ = 0
Vβ E A or d^(0) = A\{α:}. However, by Proposition 2.4 of [11], dΨ is
continuous and thus, if dφl(0) = A\{a}9 {a} is open. By 15.8 and
15.17(b) of [10] this implies that A is discrete, contradicting the
assumption that A is noncompact. Hence PβΨ = 0 Vβ E A and, by the
ίnjective property of the Fourier transform, Ψ = 0.

(ii) If A is compact it follows immediately from (5.3) that
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f({a}) C*(G') = RaC*(Gf) C C*(Gf) Vα G A.

Conversely, assume that f({a}) C*(G0 C C*(Gf) for some α G A and
choose Ψ e C*(G0 such that P Λ Ψ ^ 0 . It follows from (3.5) that for
β G A, Pβ(f({a}) Ψ) = δαβPαΨ and so, as in the proof of (i) above, it
suffices to show that the mapping j3-*Pβ(f ({<*}) Ψ) is
continuous. However, given e > 0 there exists Ψ' G LX(GS) such that
|| f({a }) Ψ - Ψ || < e /4. Then, for β, γ G A,

||P,(f({α}) Ψ) - Py(Π{a}) Ψ)||c*(G') ̂  21| r({α}) Ψ- Ψ'

The result thus follows from the continuity of the mapping β —> PβΨ'.
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