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GROWTH ESTIMATES FOR THE SINGULAR VALUES
OF SQUARE-INTEGRABLE KERNELS

JAMES ALAN COCHRAN

This paper is concerned with the unique correspondences
which exist between the values of convergence exponents for the
classical Fourier coefficients of one-variable functions satisfying
various smoothness assumptions, on the one hand, and growth
estimates for the singular values . associated with
square-integrable two-variable kernels K(x,y), a =x,y =b,
having comparable smoothness, on the other. Extending ear-
lier work of the author and others, precise values are given for
the infimum of y for which %(1/u,)” converges when K satisfies
Lipschitz conditions, integrated Lipschitz conditions, is of bound
variation, or a combination of these.

1. Introduction. In this paper we shall be concerned with #2
kernels, i.e. two-variable functions K(x,y), a = x, y = b, satisfying

b b 1/2
“K”EU f IK(x,y)ldedy] < oo,

and their singular values p,. We take the u, to be the nonnegative
square roots of the characteristic values of the nonnegative definite
kernel KK*(x,y), and thus

ba(x) = 2 f j K(x, 2)K (3 2), (y)dydz

with ||¢, | #0. Our interest is in the growth behavior of these singular
values as a function of the smoothness of the given kernel K.

Our point of departure is the knowledge that the best mean square
approximation to a given square-integrable kernel K by degenerate
kernels of the form

N

(1.1) Ky(x,y) =2, a,(x)b,(y) a.,b, €F?

n=1

occurs, for fixed N, when the a,, b, are proportional to the singular
functions ¢,, ¥, of K [9]. To be precise, it turns out that
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where we have assumed that the singular functions are orthonormalized
and then used the fact that [3], [9]

(13) S (L) =1k

n Mon

In the special case when a =0, b = =, the a,, say, are the appropriate
normalized trigonometric functions, and the b, then are the resulting
Fourier coefficients of K(x,y) viewed as a function of x alone, (1.2)
takes the form

> (L) =Ikp-2 [M1bopay

n=N+1 l'Ln

In fact, using Parseval’s relation, the right-hand side of the inequality
can be further rewritten as

(1.4) 3 (—1—)25 i flbn(y)lzdy-

n=N+1 \Mn n=N+1

This last expression shows how convergence exponents for the
trigonometric Fourier coefficients of one-variable functions satisfying
various smoothness assumptions can be used to generate growth
estimates for the singular values associated with two-variable kernels
having comparable smoothness with respect to one of the two
variables. These estimates, moreover, are sharp since for difference
kernels the singular values and the related Fourier coefficients are
essentially reciprocals.

In the next section of this paper we set down the requisite
mathematical details needed for our investigation. Subsequently, in
§3, we discuss the spectral-theoretic results associated with the various
kernel smoothness conditions of interest. Typical of the results ob-
tained there is essentially the following:

THeoreM 3.3. If 9°K(x,y)/dx"® is relatively uniformly of bounded
variation (in x) for some nonnegative integer s, and also satisfies an
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integrated Lipschitz condition (in x) of order q = 1 with exponent B >0,
then the series of reciprocal singular values is y-summable for all v > p
where

1

1+s Ba <1
p= 1 Ba=1l,q=2
qB+1+s)—1 =0 A=
2q -1 Bg=1,q>2.

qB+2+2s)—3—12s

This particular result, which generalizes an earlier theorem of the
author [4], is the precise analogue of a related Fourier series result
derivable from work of Hardy and Littlewood [7]. In like manner, the
other results of §3, or their sundry special cases, have been engendered
by either known or otherwise provable classical Fourier-theoretic
results due principally to Bernstein, Zygmund, Hardy and Littlewood,
and Szasz. Comparable results can be obtained in analogous fashion
for kernels on multi-dimensional domains using related work of Taible-
son [12].

2. Preliminaries. For convenience, and without loss of gen-
erality, we let a =0, b = 7 and consider the class of £ kernels K(x, y)
with 0=x, y=#n. We take x as the variable of interest and define

I'K(x,y)

K7(x,y) = I

(r=0,1,---,s)

for nonnegative integer s. Assume that K(x, y) is extended, as an even
function of x if s is even, and as an odd function of x if s is odd, into the
domain — 7 = x =0, and thence as a periodic function of x with period
2.

We shall say that K“(x, y) relatively uniformly satisfies a Lipschitz
condition with exponent « if

Q1) |KOGx+hy)-Kx-hy)|<|h|*"Ay) O<a=1)

where A(y) is nonnegative and square-integrable. If A is bounded,
K satisfies a Lipschitz condition in the more classical
sense. Likewise K®(x, y) is said to be relatively uniformly of bounded
variation if for all N =1 and arbitrary choice of partition 0=x,=x,=

T EXNET,
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(2.2) 2 | KX, y) — K©(X,-1, ¥) | < B(y)

where B(y) also is nonnegative and square-integrable. Analogous
definitions prevail if the roles of x and y are interchanged.

More generally, we shall say that K“(x,y) relatively uniformly
satisfies an integrated Lipschitz condition of order p (with exponent a)
if

@3 TRy~ KO =y <[h [ A% ()

with £*A =0. For convenience, moreover, we shall use the classical
terminology, namely Lip « and Lip (a, p) to denote the classes of #?
kernels which relatively uniformly satisfy a Lipschitz condition with
exponent a or an integrated Lipschitz condition of order p, respec-
tively.

For later reference we note (omitting the more direct proofs):

Property 1. Kernels in Lip (a, p) also belong to Lip («, q) for all
1=q <p. Kernels in Lip @ are automatically in Lip (a,p) for all
p =l

Property 2. Kernels which are relatively uniformly of bounded
variation belong to Lip (1, 1).

Property 3. If K(x,y) is absolutely continuous in x, for almost all
y, and

L3 L3 2/p
f ” IK“’(x,y)l"dx] dy <,
0 0
p >1, then K(x,y) is in Lip (1,p).

Proof. For h >0,

14
dx

h
f KO(x +t,y)dt
—h

L”[K(x+h,y)—1<(x~h,y)|"dx =L”

m h p
(if | K®(x +t,y)|dt> dx

—h

g(zh)"f

0

T h
§(2h)”fo E%[—h |K®(x +t,y)[Pdtdx

=(2h)" f" |K(x,y) | dx.
0
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The last equality follows from interchange of the order of integration
and utilization of the periodicity properties of K(x,y).

Property 4. If a kernel belongs both to Lip («, p) and to Lip (B, q)
with p < g, then it belongs to Lip (v, r) for all p =r = g, where

__p@-r) ,4qr—-p)
“ra-p) Pra-p-

3. Growth estimates for singular values. The singular
values associated with a given ¥ kernel K(x, y), 0= x, y = m, are those
positive values u for which there exist nontrivial ¢ (x), ¥(x) satisfying
the coupled equations

d(x)=pn f; K(x, y)¥(y)dy,
3.1

¥ = [ RGx040)dy.

There are at most countably many of these, and they are customarily
ordered (indexed) according to increasing size. The associated singu-
lar functions given by (3.1) can be chosen to be orthonormal amongst
themselves as well as biorthogonal with respect to the kernel K. It
then follows that

K(x,y)zg @(x:lfn(y)

where the series on the right-hand side of this expression is mean
convergent. Moreover, the relationship (1.3) is valid.

The convergence of X(1/u,)” for exponents y smaller than 2 can
only be established under additional restrictions on the kernel
K(x,y). A singular conclusion of the kind we seek was in effect
contained in a little-known paper of Smithies [8]. Before stating the
result we make the basic assumptions that the square-integrable kernel
K(x,y) is such that the K”(x,y), 0=r =s — 1, are absolutely continu-
ous in x, a.e. in y, for some positive (nonnegative) integer s, and
K®“(x,y) is £P(x), a.e. in y, for some p >1. Then

THeOREM 3.1. If K“(x,y) belongs to Lip (a,p), 2(1/u,)" con-
verges for all y > p where
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1
a+s+1-1/p

I<p=2

p:
1

a+s+1/2 p=>2.

When s =0, the additional proviso a +1/2>1/p may be needed since
K e #°.

Actually Smithies only was interested in the case 1<p =2. The
extension to p >2 follows readily using Property 1.

For the proof of this theorem we essentially need only make use of
a classical result of Szasz [10], [11], generalized to higher-order deriva-
tives, and employ (1.4). Special attention may have to be given to the
end-points of the interval, however, and the behavior of K appro-
priately modified there. Fortunately, this can be accomplished by
adding to K a degenerate kernel of the form (1.1), and, importantly,
such a degenerate perturbation leaves unchanged the dominant asymp-
totic growth estimate for the singular values (Fan [5]).

It is worth mentioning that, in view of Property 3, the above
theorem is more general than a result of Chang [2]. Moreover, the
special case s = 0 contains the analogue of the well-known theorem of
Bernstein (see Bary [1], pp. 153-171, or Zygmund [15], pp. 240-243, for
example) on absolutely convergent Fourier series.

Exercising some care, the convexity condition Property 4 may be
used with Theorem 3.1 to yield

THeOREM 3.2. If K“(x,y) belongs both to Lip («a,p) and to Lip
(B,q), with p <gq, then 3(1/u,)” converges for all y > p where

(i) forq=2,
1
a+s+1—-1/p pgla —B)>q —p
p:
1
Bts+1-1/q Pala=B)=q—p

@) forp =2<aq,

1
a+s+1-1/p pala —B)>q —p

_ 2(q —p)
PN q@B+ap+2s+1)—pCa+Bq+2s+ 1)

0<pqla—B)=q-p

1
B+s+1/2

a=p



GROWTH ESTIMATES FOR THE SINGULAR VALUES 57
(iii) and for p >2,

1
a+s+1/2
p=
1
B+s+1/2

When s = 0, the additional provisos a +1/2>1/p and B + 1/2 > 1/q may
be needed.

Owing to Properties 1,2, as special cases we have
THEOREM 3.3. If K®(x,y) is relatively uniformly of bounded vari-
ation and also in Lip (B,q) for some B>0, q =1, then 2(1/u,)”

converges for all y > p where

1

1+s Ba <1
p= 1 Bg=1,q=2
qB+1+s)—1 ==
A paz1.q>2:

q(B+2+2s)—3-2s
and

THEOREM 3.4. If K“(x,y) belongs both to Lip («,p) and to Lip B,
then 2(1/u.)* converges for all y > p where

D_
pla+1+s)—1

2
BR2—-p)+ap +1+2s

1
a+s+1/2

1
B+s+1/2

pla—B)>1,p=2

0<p(a—B)=1,p=2
p:
a>B,p>2

a = 8.

When s =0, Theorem 3.2 could be established alternatively by first
extending a classical Fourier series result of Hardy and Littlewood [6],
[7]1. Theorems 3.3, 3.4 contain the analogues of well-known Fourier-
theoretic results of Zygmund [13], [14], [15].
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In view of the Weyl-Chang inequalities (see Cochran [3], pp.
243-245, for example) all of the above theorems extend the known
results concerning the growth behavior of the characteristic values of
“smooth” kernels and settle an earlier conjecture of the author ([3], p.
266).
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