CENTRAL EMBEDDINGS IN SEMI-SIMPLE RINGS

S. A. Amitsur

A ring S is a central extension of a subring R if S = RCand C is the centralizer of R in S, i.e., $C = \{s \in S; sr = rs\}$ for every $r \in R$. We shall also say that R is centrally embedded in S.

We have shown that if a ring R is centrally embedded in a simple artinian ring then R is a prime Öre ring and its quotient ring Q is the minimal central extension of R which is a simple artinian ring; furthermore, the centralizer of R can be characterized. In the present note we extend these results and show that rings which can be centrally embedded in semi-simple artinian rings are semi-prime Öre rings with a finite number of minimal primes and their rings of quotients are the minimal central extension of this type.

2. The Ring $Q_0(R)$. We recall some definitions and results of [1].

Let R be an associative ring (not necessarily with a unit) and let $L_0(R)$ be the set of all (two-sided) ideals A of R with the property:

(A) " $\forall x \in R, Ax = 0 \Rightarrow x = 0$ ".

The set $L_0(R)$ is a filter. That is: closed under finite intersection and inclusion. We shall also assume henceforth that $R \in L_0(R)$ i.e. $Rx = 0 \Rightarrow x = 0$.

Consider every $A \in L_0(R)$ as left *R*-module and define the ring $Q_0(R) = \lim_{\rightarrow} \operatorname{Hom}_R(A, R)$, where *A* ranges over all $A \in L_0(R)$. A more detailed description of $Q_0(R)$ is as follows: Let $U = \bigcup$ Hom_R(A, R), $A \in L_0(R)$, and in *U* we define an equivalence relation, addition and multiplication as follows:

For $\alpha: A \to R$, $\beta: B \to R$ and $A, B \in L_0(R)$ we put:

(i) $\alpha + \beta : A \cap B \to R$ defined by $x(\alpha + \beta) = x\alpha + x\beta$ for $x \in A \cap B$.

(ii) $\alpha\beta: BA \to R$ by: $(\Sigma ba)\alpha\beta = \Sigma[b(a\alpha)]\beta$ for $b \in B$, $a \in A$.

(iii) $\alpha \equiv \beta$ if there exists $C \subseteq A \cap B$, $C \in L_0(R)$ for which $c\alpha = c\beta$ for every $c \in C$.

The ring $Q_0(R)$ is the ring of equivalence classes of U with respect to preceding definitions. Furthermore, R is canonically mapped into $Q_0(R)$ by identifying R with the right multiplications on R.

The center $\Gamma = \Gamma(R)$ of $Q_0(R)$ can be characterized as the set of all $\bar{\gamma} \in Q_0(R)$ which have a representative $\gamma \in \text{Hom}(A, R)$ such that γ is in

fact a bi-*R*-module homomorphism of *A* into *R*, i.e. it satisfies $(ax)\gamma = (a\gamma)x$ and $(xa)\gamma = x(a\gamma)$ for $a \in A, x \in R$. Also $\overline{\gamma} \in \Gamma$ if and only if it commutes with the element of *R*.

From the results of [1] we quote the following:

If R is semi-simple artinian, then R is both a right and left Ore ring and its quotient ring is $Q_0(R) = R\Gamma$. [1, Theorem 6].

If S = RC is a simple artinian central extension of R then $\Gamma \subseteq C$, $S = R\Gamma \bigotimes_{\Gamma} C$ and $R\Gamma = Q_0(R)$ is also simple artinian [1, Theorem 18].

The ring $R\Gamma$ is semi-simple artinian if and only if the number of minimal primes P of R is finite, and for each P, $(R/P)\Gamma(R/P)$ is simple artinian. [1, Corollary 13].

It follows also from the proofs of [1, Theorem 10] that the number of simple components of R equals the number of minimal primes of R.

3. The main result. Let $S = S_1 \bigoplus \cdots \bigoplus S_m$ a direct sum of a finite number of simple rings S_i with units ϵ_i , and $1 = \epsilon_1 + \epsilon_2 + \cdots + \epsilon_n$. The ring S will be said an extension of *minimal* length of a subring R if for every *i* there exist $0 \neq r \in R$ such that $r\epsilon_i = 0$ for all $j \neq i$, or equivalently $r(1 - \epsilon_i) = 0$. This means that for no subring $S(1 - \epsilon_i) = S_1 \bigoplus \cdots \bigoplus S_{i-1} \bigoplus S_{i+1} \bigoplus \cdots \bigoplus S_m$ the subring $R(1 - \epsilon_i)$ is isomorphic with R.

LEMMA 1. Let S = RC be a central extension of R. and let $S = S_1 \bigoplus \cdots \bigoplus S_m$ be a direct sum of simple rings S_i with units ϵ_i . Then:

(1) For every central idempotent ϵ , $S\epsilon$ is a central extension of $R\epsilon$; and it is also a direct sum of simple rings with a unit.

(2) There exists a direct summand $S\epsilon$ of S such that $R \cong R\epsilon$, and $S\epsilon$ is a central extension of R of minimal length.

Proof. A central idempotent ϵ of S is of the form $\epsilon = \epsilon_{i_1} + \cdots + \epsilon_{i_r}$ and hence $S\epsilon = S_{i_1} \oplus S_{i_2} \oplus \cdots \oplus S_{i_r}$. Furthermore S = RC yields that $S\epsilon = (RC)\epsilon = (R\epsilon)$ ($C\epsilon$) and the elements of $C\epsilon$ commute with the elements of $C\epsilon$, which readily implies that $S\epsilon$ is a central extension of $R\epsilon$.

To prove the second part, we consider the set of all central idempotents ϵ of S with the property: " $r\epsilon = 0$, $r \in R \Rightarrow r = 0$ ". Clearly for such ϵ , $R \cong R\epsilon$ by corresponding: $r \to r\epsilon$. The set of these idempotents is not empty since the unit 1 has this property. Each of the central idempotent ϵ has the form $\epsilon = \epsilon_{i_1} + \cdots + \epsilon_{i_{e_i}}$, $i_1 < i_2 < \cdots < i_r$. So choose ϵ of this set with minimal ρ . Then $S\epsilon$ is a central extension of $R\epsilon$ of minimal length, since the minimality of ρ implies that for any $1 \le \lambda \le \rho$, there exists $r \ne 0$ such that $r(\epsilon - \epsilon_{i_h}) = 0$.

The preceding lemma shows that if a ring R has a central extension

S of the type described above, then replacing S by a direct summand we get a central extension of minimal length of a ring isomorphic with R. We can, therefore, restrict ourselves to the study of central extension of minimal length. Our results is the following.

THEOREM A. Let S = RC be a central extension of R of minimal length then R is semi-prime and we can embed $\Gamma \subseteq C$. Furthermore, $R\Gamma$ is also a central extension of R of the same type with the same number of components.

THEOREM B. Let S = RC be a semi-simple artinian ring and a central extension of R of minimal length then $R = Q_0(R)$ is also semi-simple artinian and $S = R\Gamma \bigotimes_{\Gamma} C$.

In view of the results quoted from [1] we deduce that:

COROLLARY C. If R has a central extension which is a semi-simple artinian ring, then R is a semi-prime (right and left) \ddot{O} re ring with a finite number of minimal primes. Its ring of quotient is $Q_0(R)$ and it is a minimal semi-simple artinian central extension of R.

4. *Proofs.* Before proceeding with the proof we need a few lemmas.

LEMMA 2. Let S = RC be a central extension of R of minimal length, then an ideal A in R belongs to $L_0(R)$ if and only if AC = S.

Indeed, let $S = S_1 \bigoplus \cdots \bigoplus S_n$, S_i simple with a unit ϵ_i . If AC = Sand Ax = 0 for some $x \in R$, then Sx = (AC)x = (Ax)C = 0 but S has a unit and so x = 0, i.e. $A \in L_0(R)$. Conversely, it suffices to show that $AC \cap S_i \neq 0$, since then $AC \cap S_i$ is a nonzero ideal in the simple ring implies that $S_i = AC \cap S_i$. This in turn yields that $AC \supset S_i$ and, therefore $AC \supset S_1 \bigoplus \cdots \bigoplus S_n = S$. To prove that $AC \cap S_i \neq 0$, we note that if $AC \cap S_i = 0$ then $A\epsilon_i \subseteq AS_i \subseteq ARC \cap S_i \subseteq AC \cap S_i = 0$. Let $P = \{r, r\epsilon_i = 0\}$ and $Q = \{r \in R, r(1 - \epsilon_i) = 0\}$. Since S is of minimal length it follows that $P \cap Q = 0$, $Q \neq 0$ and $P \supseteq A$. Thus $AQ \subseteq$ $P \cap Q = 0$ which contradicts the assumption that $A \in L_0(R)$ (i.e., A satisfies (A) of §2).

We can follow now the proofs of [1] Lemma 14 and show:

LEMMA 3. If S is as above then there is an embedding of Γ into the center of S which contains C.

Proof. Let $\alpha: A \to R$, $A \in L_0(R)$ be a representative of an element $\bar{\alpha} \in \Gamma$. First we show that there is a unique element $c_{\alpha} \in C$

S. A. AMITSUR

depending on $\bar{\alpha}$ (and not on the representative α) such that $a\alpha = ac_{\alpha}$ for every $a \in A$. Next we prove that the correspondence: $\bar{\alpha} \to \delta_{\alpha}$ is the required embedding. The proof follows the proof of [1] Lemma 14.

Since $A \in L_0(R)$, it follows by Lemma 2 that AC = S and hence $1 = \sum a_i c_i$ for some $a_i \in A$ and $c_i \in C$. Set $c_\alpha = \sum (a_i \alpha) c_i$. Since $\bar{\alpha} \in \Gamma$, α is a bi-*R* hence for every $a \in A$:

$$a\alpha = (a\alpha)\mathbf{1} = \Sigma(a\alpha)a_ic_i = \Sigma(a\alpha_i)\alpha c_i = a\Sigma(a_i\alpha)c_i = ac_{\alpha}$$

To prove that $c_{\alpha} \in C$, we observe that for every $a \in A$ and $x \in R: (ax)c_{\alpha} = (ax)\alpha = (a\alpha)x = ac_{\alpha}x$. Hence, $a(xc_{\alpha} - c_{\alpha}x) = 0$. Consequently, $S(xc_{\alpha} - c_{\alpha}x) = (CA)(xc_{\alpha} - c_{\alpha}x) = 0$ and since $1 \in S$ it follows that $xc_{\alpha} - c_{\alpha}x = 0$ for every $x \in R$, i.e. $c_{\alpha} \in C$.

The element c_{α} which belongs to *C*, actually commutes also with the elements of *R* and hence belongs to the center of *S*. Indeed, let $c \in C$ and $a \in A$ then since *C* centralizes *A* we have $(a\alpha)c = c(a\alpha)$ as $a\alpha \in R$. Also $a\alpha = ac_{\alpha} = c_{\alpha}a$ and, therefore:

$$c_{\alpha}(ac) = (ac_{\alpha})c = (a\alpha)c = c(a\alpha) = (ca)c_{\alpha} = (ac)c_{\alpha}.$$

That is, c_{α} commutes with all the elements of AC = S, and this means that c_{α} is in the center of S.

Next we show that c_{α} depends only on $\bar{\alpha} \in F$: let $\beta: B \to R$ be another representative of $\bar{\alpha}$ then $\alpha = \beta$ on some $D \subseteq A \cap B$ which belongs to $L_0(R)$. Hence for $d \in D$: $dc_{\alpha} = d\alpha = d\beta = dc_{\beta}$, which implies that $D(c_{\alpha} - c_{\beta}) = 0$ and therefore $S(c_{\alpha} - c_{\beta}) = (CD)$ $(c_{\alpha} - c_{\beta}) = 0$ which yields $c_{\alpha} - c_{\beta} = 0$.

Finally $c_{\alpha+\beta} = c_{\alpha} + c_{\beta}$, $c_{\alpha\beta} = c_{\alpha}c_{\beta}$ since for some ideals in $L_0(R)$ we have the following relations for their elements:

$$xc_{\alpha+\beta} = x(\alpha+\beta) = x\alpha + x\beta = xc_{\alpha} + xc_{\beta} = x(c_{\alpha}+c_{\beta})$$
$$yc_{\alpha\beta} = y(\alpha\beta) = (y\alpha)\beta = (y\alpha)c_{\beta} = y(c_{\alpha}c_{\beta})$$

and as in preceding proofs this implies that $c_{\alpha+\beta} = c_{\alpha} + c_{\beta}$ and $c_{\alpha\beta} = c_{\alpha}c_{\beta}$.

We, henceforth, identify Γ with its image in C and thus we may assume that $\Gamma \subseteq C$.

LEMMA 4. Let $S = RC = S_1 \oplus \cdots \oplus S_n$, S_i simple with unit ϵ_i , be a central extension of R of minimal type, then $\epsilon_i \in \Gamma$.

For let $P = \{r \in R, r\epsilon_i = 0\}$ and $Q = \{r \in R, r(1 - \epsilon_i) = 0\}$. Since S of minimal length, $P \neq 0$, $Q \neq 0$ and $P \cap Q = 0$. We first assert that $P + Q \in L_0(R)$ and, indeed, $(QC)\epsilon_i = (Q\epsilon_i)C = QC = QS =$

 $Q \neq 0$ and so $QC \subseteq S_i$ but QC is and ideal in S and therefore, also in S_i which yields $QC = S_i$ since S_i is simple. A similar proof which uses the fact that $P\epsilon_i \neq 0$ for $j \neq i$ shows that $(PC)\epsilon_i = S_i$. Hence

$$(P+Q)C = \Sigma(P+Q)C_k = \Sigma S_k = S$$

and thus $P + Q \in L_0(R)$ by Lemma 1. Consider now the map ϵ : $P + Q \rightarrow Q$ given by $(p+q)\epsilon = q$. Clearly, this is a bi-*R*-homomorphism, hence $\bar{\alpha} \in \Gamma$ and so there exists $c_{\epsilon} \in C$ such that $(p+q)c_{\epsilon} = q$. Consequently, $(p+q)c_{\epsilon} = q = q\epsilon_i = (p+q)\epsilon_i$. By the uniqueness of c_{ϵ} it follows that $c_{\epsilon} = \epsilon_i$

We are now in position to prove the main theorems.

R is semi-prime, for if $A^2 = 0$ then $(AC)^2 =$ in *S*, but *S* is semiprime and so AC = 0 which implies that A = 0.

Let $S = RC = S_1 \bigoplus \cdots \bigoplus S_n$ be a central extension of R of minimal length, with ϵ_i the units of S_i . Put $P = \{r \in R, r\epsilon_1 = 0\}$, and consider Ras a subring of $Q_0(R)$. Then we readily have, since $\epsilon_1 \in \Gamma \subseteq Q_0(R)$ that $P = R \cap Q_0(R)$ $(1 - \epsilon_1)$. Furthermore, P is a prime ideal: indeed let $AB \subseteq P$ with A, B ideals in R containing P, then since $B \not\subseteq P, B\epsilon_1 \neq 0$ and, therefore, $(BC)\epsilon_1$ is a nonzero ideal in S_1 which implies that $BC\epsilon_1 = S_1$. Thus:

$$0 = (CP)\epsilon_1 \supseteq (CAB)\epsilon_1 = A(CB)\epsilon_1 = AS_1.$$

This yields that $A\epsilon_1 = 0$ and so $A \subseteq P$. We can now apply [1] Theorem 8, which in our case means that $Q_0(R/P) \cong Q_0(R)\epsilon_1$ and $\Gamma(R/P) \cong \Gamma(R)\epsilon_1 = \Gamma\epsilon_1$.

Denote, $R_1 = R\epsilon_1$ (which isomorphic with R/P) and $c_1 = c\epsilon_1$ then $RC\epsilon_1 = R_1C_1 = S_1$ which shows that R_1 is a prime ring with a central extension which is a simple ring S_1 with a unit. It follows, therefore, by [1] Theorem 18 that $R_1\Gamma(R_1)$ is simple with a unit. Now $\Gamma(R_1) = \Gamma(R/P) = \Gamma\epsilon_1$ by the preceding result. So $R_1(\Gamma\epsilon_1)$ is simple with a unit and note also that $R_1\Gamma\epsilon_1 = (R\Gamma)\epsilon_1$. The same follows for all the other idempotents ϵ_i and so we get that $R\Gamma = R\Gamma\epsilon_1 + R\Gamma\epsilon_2 + \cdots + R\Gamma\epsilon_n$ is a direct sum of simple rings with units, which completes the proof of Theorem A.

The proof of Theorem B follows the same lines by applying the second part of [1] Theorem 18 which was quoted in the present note (§2). Namely, if S is semi-simple artinian then each summand S_i is simple artinian and hence, by [1] Theorem 18 $R_1\Gamma_1 = (R\epsilon_1)(\Gamma\epsilon_1) = (R\Gamma)\epsilon_1$ is simple artinian. Furthermore, we also have $R_1\Gamma_1 = Q_0(R/P) = Q_0(R)\epsilon_1$ by (iii) of [1] Theorem B. Thus, $Q_0(R) = \sum Q_0(R)\epsilon_i = \sum R_i \Gamma_i = R\Gamma$.

Finally, $(RC)\epsilon_i = R_i \Gamma_i \bigotimes_{\Gamma_i} C\epsilon_i$ for every *i*, from which it follows that:

$$RC = \Sigma RC\epsilon_i = \Sigma R\Gamma_i \bigotimes_{\Gamma_i} C\epsilon_i \cong R\Gamma \bigotimes_{\Gamma} C$$

since $\Gamma = \Sigma \Gamma \epsilon_i$ and the elements ϵ_i belong to the center of S = RC. The last isomorphism is given by the mappings $r\alpha \otimes c \to \Sigma(r\alpha)\epsilon_i \otimes_{\Gamma_i} c\epsilon_i$; $r\alpha_i \otimes_{\Gamma_i} c\epsilon_i \to r\alpha_i \otimes_{\Gamma_i} c\epsilon_i$.

Corollary C follows now immediately by Theorem 6 and Corollary 13 of [1].

We finish with an immediate corollary of the fact that $\Gamma \subseteq$ Cents S, and Cent $S \subseteq C$:

COROLLARY D. If RC is a central embedding of R in a direct sum of simple rings of minimal length, then so is R(Cent C).

References

1. S. A. Amitsur, On rings of quotients, Instituto Nazionale di Alta Matematica Symposia Matematica v. VIII (1972), 149-164.

Received December 28, 1973.

THE HEBREW UNIVERSITY OF JERUSALEM