CENTRAL EMBEDDINGS IN SEMI-SIMPLE RINGS

S. A. Amitsur

A ring S is a central extension of a subring R if $S=R C$ and C is the centralizer of R in S, i.e., $C=\{s \in S ; s r=r s\}$ for every $r \in R$. We shall also say that R is centrally embedded in S.

We have shown that if a ring R is centrally embedded in a simple artinian ring then R is a prime Öre ring and its quotient ring Q is the minimal central extension of R which is a simple artinian ring; furthermore, the centralizer of R can be characterized. In the present note we extend these results and show that rings which can be centrally embedded in semi-simple artinian rings are semi-prime Öre rings with a finite number of minimal primes and their rings of quotients are the minimal central extension of this type.
2. The Ring $Q_{0}(\boldsymbol{R})$. We recall some definitions and results of [1].

Let R be an associative ring (not necessarily with a unit) and let $L_{0}(R)$ be the set of all (two-sided) ideals A of R with the property:
(A) " $\forall x \in R, A x=0 \Rightarrow x=0 "$.

The set $L_{0}(R)$ is a filter. That is: closed under finite intersection and inclusion. We shall also assume henceforth that $R \in L_{0}(R)$ i.e. $R x=0 \Rightarrow x=0$.

Consider every $A \in L_{0}(R)$ as left R-module and define the ring $Q_{0}(R)=\lim \operatorname{Hom}_{R}(A, R)$, where A ranges over all $A \in L_{0}(R)$. A more detailed description of $Q_{0}(R)$ is as follows: Let $U=\cup \operatorname{Hom}_{R}(A, R)$, $A \in L_{0}(R)$, and in U we define an equivalence relation, addition and multiplication as follows:

For $\alpha: A \rightarrow R, \beta: B \rightarrow R$ and $A, B \in L_{0}(R)$ we put:
(i) $\alpha+\beta: A \cap B \rightarrow R \quad$ defined by $\quad x(\alpha+\beta)=x \alpha+x \beta$ for $x \in A \cap B$.
(ii) $\alpha \beta: B A \rightarrow R$ by: $(\Sigma b a) \alpha \beta=\Sigma[b(a \alpha)] \beta$ for $b \in B, a \in A$.
(iii) $\alpha \equiv \beta$ if there exists $C \subseteq A \cap B, C \in L_{0}(R)$ for which $c \alpha=$ $c \beta$ for every $c \in C$.

The ring $Q_{0}(R)$ is the ring of equivalence classes of U with respect to preceding definitions. Furthermore, R is canonically mapped into $Q_{0}(R)$ by identifying R with the right multiplications on R.

The center $\Gamma=\Gamma(R)$ of $Q_{0}(R)$ can be characterized as the set of all $\bar{\gamma} \in Q_{0}(R)$ which have a representative $\gamma \in \operatorname{Hom}(A, R)$ such that γ is in
fact a bi- R-module homomorphism of A into R. i.e. it satisfies $(a x) \gamma=$ ($a \gamma$) x and $(x a) \gamma=x(a \gamma)$ for $a \in A, x \in R$. Also $\bar{\gamma} \in \Gamma$ if and only if it commutes with the element of R.

From the results of [1] we quote the following:
If R is semi-simple artinian, then R is both a right and left Öre ring and its quotient ring is $Q_{0}(R)=R \Gamma$. [1, Theorem 6].

If $S=R C$ is a simple artinian central extension of R then $\Gamma \subseteq C$, $S=R \Gamma \otimes_{\Gamma} C$ and $R \Gamma=Q_{0}(R)$ is also simple artinian [1. Theorem 18].

The ring $R \Gamma$ is semi-simple artinian if and only if the number of minimal primes P of R is finite, and for each $P,(R / P) \Gamma(R / P)$ is simple artinian. [1, Corollary 13].

It follows also from the proof's of [1, Theorem 10] that the number of simple components of R equals the number of minimal primes of R.
3. The main result. Let $S=S_{1} \oplus \cdots \oplus S_{m}$ a direct sum of a finite number of simple rings S_{i} with units ϵ_{i}. and $1=$ $\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{n}$. The ring S will be said an extension of minimal length of a subring R if for every i there exist $0 \neq r \in R$ such that $r \epsilon_{j}=0$ for all $j \neq i$, or equivalently $r\left(1-\epsilon_{i}\right)=0$. This means that for no subring $S\left(1-\epsilon_{i}\right)=S_{1} \oplus \cdots \oplus S_{i-1} \oplus S_{i+1} \oplus \cdots \oplus S_{m}$ the subring $R\left(1-\epsilon_{i}\right)$ is isomorphic with R.

Lemma 1. Let $S=R C$ be a central extension of R. and let $S=S_{1} \oplus \cdots \oplus S_{m}$ be a direct sum of simple rings S_{i} with units ϵ_{l}. Then:
(1) For every central idempotent $\epsilon, S \epsilon$ is a central extension of $R \epsilon$; and it is also a direct sum of simple rings with a unit.
(2) There exists a direct summand $S \epsilon$ of S such that $R \cong R \epsilon$, and $S \epsilon$ is a central extension of R of minimal length.

Proof. A central idempotent ϵ of S is of the form $\epsilon=\epsilon_{i 1}+\cdots+\epsilon_{i r}$ and hence $S \epsilon=S_{i 1} \oplus S_{i_{2}} \oplus \cdots \oplus S_{i,}$. Furthermore $S=R C$ yields that $S \epsilon=(R C) \epsilon=(R \epsilon)(C \epsilon)$ and the elements of $C \epsilon$ commute with the elements of $C \epsilon$, which readily implies that $S \epsilon$ is a central extension of $R \epsilon$.

To prove the second part, we consider the set of all central idempotents ϵ of S with the property: " $r \epsilon=0, r \in R \Rightarrow r=$ 0 ". Clearly for such $\epsilon, R \cong R \epsilon$ by corresponding: $r \rightarrow r \epsilon$. The set of these idempotents is not empty since the unit 1 has this property. Each of the central idempotent ϵ has the form $\epsilon=\epsilon_{i_{1}}+\cdots \epsilon_{i_{o}}, i_{1}<i_{2}<\cdots<$ i_{r}. So choose ϵ of this set with minimal ρ. Then $S \epsilon$ is a central extension of $R \epsilon$ of minimal length, since the minimality of ρ implies that for any $1 \leqq \lambda \leqq \rho$, there exists $r \neq 0$ such that $r\left(\epsilon-\epsilon_{i_{\lambda}}\right)=0$.

The preceding lemma shows that if a ring R has a central extension
S of the type described above, then replacing S by a direct summand we get a central extension of minimal length of a ring isomorphic with R. We can, therefore, restrict ourselves to the study of central extension of minimal length. Our results is the following.

Theorem A. Let $S=R C$ be a central extension of R of minimal length then R is semi-prime and we can embed $\Gamma \subseteq C$. Furthermore, $R \Gamma$ is also a central extension of R of the same type with the same number of components.

Theorem B. Let $S=R C$ be a semi-simple artinian ring and a central extension of R of minimal length then $R=Q_{0}(R)$ is also semi-simple artinian and $S=R \Gamma \otimes_{\mathrm{r}} C$.

In view of the results quoted from [1] we deduce that:
Corollary C. If R has a central extension which is a semi-simple artinian ring, then R is a semi-prime (right and left) Öre ring with a finite number of minimal primes. Its ring of quotient is $Q_{0}(R)$ and it is a minimal semi-simple artinian central extension of R.
4. Proofs. Before proceeding with the proof we need a few lemmas.

Lemma 2. Let $S=R C$ be a central extension of R of minimal length, then an ideal A in R belongs to $L_{0}(R)$ if and only if $A C=S$.

Indeed, let $S=S_{1} \oplus \cdots \oplus S_{n}, S_{i}$ simple with a unit ϵ_{i}. If $A C=S$ and $A x=0$ for some $x \in R$, then $S x=(A C) x=(A x) C=0$ but S has a unit and so $x=0$, i.e. $A \in L_{0}(R)$. Conversely, it suffices to show that $A C \cap S_{i} \neq 0$, since then $A C \cap S_{i}$ is a nonzero ideal in the simple ring implies that $S_{i}=A C \cap S_{i}$. This in turn yields that $A C \supset S_{i}$ and, therefore $A C \supset S_{1} \oplus \cdots \oplus S_{n}=S$. To prove that $A C \cap S_{i} \neq 0$, we note that if $A C \cap S_{i}=0$ then $A \epsilon_{i} \subseteq A S_{i} \subseteq A R C \cap S_{i} \subseteq A C \cap S_{i}=0$. Let $P=\left\{r, r \epsilon_{i}=0\right\}$ and $Q=\left\{r \in R, r\left(1-\epsilon_{i}\right)=0\right\}$. Since S is of minimal length it follows that $P \cap Q=0, Q \neq 0$ and $P \supseteq A$. Thus $A Q \subseteq$ $P \cap Q=0$ which contradicts the assumption that $A \in L_{0}(R)$ (i.e.. A satisfies (A) of §2).

We can follow now the proofs of [1] Lemma 14 and show:
Lemma 3. If S is as above then there is an embedding of Γ into the center of S which contains C.

Proof. Let $\alpha: A \rightarrow R, A \in L_{0}(R)$ be a representative of an element $\bar{\alpha} \in \Gamma$. First we show that there is a unique element $c_{\alpha} \in C$
depending on $\bar{\alpha}$ (and not on the representative α) such that $a \alpha=a c_{\alpha}$ for every $a \in A$. Next we prove that the correspondence: $\bar{\alpha} \rightarrow \delta_{\alpha}$ is the required embedding. The proof follows the proof of [1] Lemma 14.

Since $A \in L_{0}(R)$, it follows by Lemma 2 that $A C=S$ and hence $1=\Sigma a_{i} c_{1}$ for some $a_{i} \in A$ and $c_{i} \in C . \quad$ Set $c_{\alpha}=\Sigma\left(a_{i} \alpha\right) c_{i}$. Since $\bar{\alpha} \in \Gamma$, α is a bi- R hence for every $a \in A$:

$$
a \alpha=(a \alpha) 1=\Sigma(a \alpha) a_{i} c_{t}=\Sigma\left(a \alpha_{t}\right) \alpha c_{t}=a \Sigma\left(a_{i} \alpha\right) c_{i}=a c_{\alpha} .
$$

To prove that $c_{\alpha} \in C$, we observe that for every $a \in A$ and $x \in R:(a x) c_{\alpha}=(a x) \alpha=(a \alpha) x=a c_{\alpha} x$. Hence, $\quad a\left(x c_{\alpha}-c_{\alpha} x\right)=$ 0. Consequently, $S\left(x c_{\alpha}-c_{\alpha} x\right)=(C A)\left(x c_{\alpha}-c_{\alpha} x\right)=0$ and since $1 \in S$ it follows that $x c_{\alpha}-c_{\alpha} x=0$ for every $x \in R$, i.e. $c_{\alpha} \in C$.

The element c_{α} which belongs to C, actually commutes also with the elements of R and hence belongs to the center of S. Indeed, let $c \in C$ and $a \in A$ then since C centralizes A we have $(a \alpha) c=c(a \alpha)$ as $a \alpha \in R$. Also $a \alpha=a c_{\alpha}=c_{\alpha} a$ and, therefore:

$$
c_{\alpha}(a c)=\left(a c_{\alpha}\right) c=(a \alpha) c=c(a \alpha)=(c a) c_{\alpha}=(a c) c_{\alpha} .
$$

That is, c_{α} commutes with all the elements of $A C=S$, and this means that c_{α} is in the center of S.

Next we show that c_{α} depends only on $\bar{\alpha} \in F$: let $\beta: B \rightarrow R$ be another representative of $\bar{\alpha}$ then $\alpha=\beta$ on some $D \subseteq A \cap B$ which belongs to $L_{0}(R)$. Hence for $d \in D: d c_{\alpha}=d \alpha=d \beta=d c_{\beta}$. which implies that $D\left(c_{\alpha}-c_{\beta}\right)=0$ and therefore $S\left(c_{\alpha}-c_{\beta}\right)=(C D)\left(c_{\alpha}-c_{\beta}\right)=0$ which yields $c_{\alpha}-c_{\beta}=0$.

Finally $c_{\alpha+\beta}=c_{\alpha}+c_{\beta}, c_{\alpha \beta}=c_{\alpha} c_{\beta}$ since for some ideals in $L_{0}(R)$ we have the following relations for their elements:

$$
\begin{aligned}
x c_{\alpha+\beta} & =x(\alpha+\beta)=x \alpha+x \beta=x c_{\alpha}+x c_{\beta}=x\left(c_{\alpha}+c_{\beta}\right) \\
y c_{\alpha \beta} & =y(\alpha \beta)=(y \alpha) \beta=(y \alpha) c_{\beta}=y\left(c_{\alpha} c_{\beta}\right)
\end{aligned}
$$

and as in preceding proofs this implies that $c_{\alpha+\beta}=c_{\alpha}+c_{\beta}$ and $c_{\alpha \beta}=c_{\alpha} c_{\beta}$.
We, henceforth, identify Γ with its image in C and thus we may assume that $\Gamma \subseteq C$.

Lemma 4. Let $S=R C=S_{1} \oplus \cdots \oplus S_{n}, S_{1}$ simple with unit ϵ_{l}, be a central extension of R of minimal type, then $\epsilon_{i} \in \Gamma$.

For let $P=\left\{r \in R, r \epsilon_{i}=0\right\}$ and $Q=\left\{r \in R, r\left(1-\epsilon_{i}\right)=0\right\}$. Since S of minimal length, $P \neq 0, Q \neq 0$ and $P \cap Q-0$. We first assert that $P+Q \in L_{0}(R)$ and, indeed, $(Q C) \epsilon_{i}=\left(Q \epsilon_{i}\right) C=Q C=Q R C=Q S=$
$Q \neq 0$ and so $Q C \subseteq S_{i}$ but $Q C$ is and ideal in S and therefore, also in S_{t} which yields $Q C=S_{i}$ since S_{i} is simple. A similar proof which uses the fact that $P \epsilon_{j} \neq 0$ for $j \neq i$ shows that $(P C) \epsilon_{j}=S_{j}$. Hence

$$
(P+Q) C=\Sigma(P+Q) C_{k}=\Sigma S_{k}=S
$$

and thus $P+Q \in L_{0}(R)$ by Lemma 1. Consider now the map ϵ : $P+Q \rightarrow Q$ given by $(p+q) \epsilon=q$. Clearly, this is a bi- $R-$ homomorphism, hence $\bar{\alpha} \in \Gamma$ and so there exists $c_{\epsilon} \in C$ such that $(p+q) c_{\epsilon}=q$. Consequently, $(p+q) c_{\epsilon}=q=q \epsilon_{i}=(p+q) \epsilon_{i} . \quad$ By the uniqueness of c_{ϵ} it follows that $c_{\epsilon}=\epsilon_{i}$

We are now in position to prove the main theorems.
R is semi-prime, for if $A^{2}=0$ then $(A C)^{2}=$ in S, but S is semiprime and so $A C=0$ which implies that $A=0$.

Let $S=R C=S_{1} \oplus \cdots \oplus S_{n}$ be a central extension of R of minimal length, with ϵ_{i} the units of S_{i}. Put $P=\left\{r \in R, r \epsilon_{1}=0\right\}$, and consider R as a subring of $Q_{0}(R)$. Then we readily have, since $\epsilon_{1} \in \Gamma \subseteq Q_{0}(R)$ that $P=R \cap Q_{0}(R)\left(1-\epsilon_{1}\right)$. Furthermore, P is a prime ideal: indeed let $A B \subseteq P$ with A, B ideals in R containing P, then since $B \not \subset P, B \epsilon_{1} \neq 0$ and, therefore, $(B C) \epsilon_{1}$ is a nonzero ideal in S_{1} which implies that $B C \epsilon_{1}=S_{1}$. Thus:

$$
0=(C P) \epsilon_{1} \supseteq(C A B) \epsilon_{1}=A(C B) \epsilon_{1}=A S_{1} .
$$

This yields that $A \epsilon_{1}=0$ and so $A \subseteq P$. We can now apply [1] Theorem 8 , which in our case means that $Q_{0}(R / P) \cong Q_{0}(R) \epsilon_{1}$ and $\Gamma(R / P) \cong$ $\Gamma(R) \epsilon_{1}=\Gamma \epsilon_{1}$.

Denote, $R_{1}=R \epsilon_{1}$ (which isomorphic with R / P) and $c_{1}=c \epsilon_{1}$ then $R C \epsilon_{1}=R_{1} C_{1}=S_{1}$ which shows that R_{1} is a prime ring with a central extension which is a simple ring S_{1} with a unit. It follows, therefore, by [1] Theorem 18 that $R_{1} \Gamma\left(R_{1}\right)$ is simple with a unit. Now $\Gamma\left(R_{1}\right)=$ $\Gamma(R / P)=\Gamma \epsilon_{1}$ by the preceding result. So $R_{1}\left(\Gamma \epsilon_{1}\right)$ is simple with a unit and note also that $R_{1} \Gamma \epsilon_{1}=(R \Gamma) \epsilon_{1}$. The same follows for all the other idempotents ϵ_{i} and so we get that $R \Gamma=R \Gamma \epsilon_{1}+R \Gamma \epsilon_{2}+\cdots+R \Gamma \epsilon_{n}$ is a direct sum of simple rings with units, which completes the proof of Theorem A.

The proof of Theorem B follows the same lines by applying the second part of [1] Theorem 18 which was quoted in the present note ($\$ 2$). Namely, if S is semi-simple artinian then each summand S_{i} is simple artinian and hence, by [1] Theorem $18 R_{1} \Gamma_{1}=\left(R \epsilon_{1}\right)\left(\Gamma \epsilon_{1}\right)=(R \Gamma) \epsilon_{1}$ is simple artinian. Furthermore, we also have $R_{1} \Gamma_{1}=Q_{0}(R / P)=$ $Q_{0}(R) \epsilon_{1}$ by (iii) of [1] Theorem B. Thus, $Q_{0}(R)=\Sigma Q_{0}(R) \epsilon_{i}=\Sigma R_{i} \Gamma_{i}=$ $R \Gamma$.

Finally, $(R C) \epsilon_{i}=R_{1} \Gamma_{1} \otimes_{r_{i}} C \epsilon_{i}$ for every i, from which it follows that:

$$
R C=\Sigma R C \epsilon_{i}=\Sigma R \Gamma_{i} \bigotimes_{\Gamma_{i}} C \epsilon_{i} \cong R \Gamma \bigotimes_{\Gamma} C
$$

since $\Gamma=\Sigma \Gamma \epsilon_{i}$ and the elements ϵ_{i} belong to the center of $S=R C$. The last isomorphism is given by the mappings $r \alpha \otimes c \rightarrow \Sigma(r \alpha) \epsilon_{i} \otimes_{r_{1}} c \epsilon_{i}$; $r \alpha_{i} \otimes_{r_{i}} c \epsilon_{i} \rightarrow r \alpha_{i} \otimes_{r} c \epsilon_{i}$.

Corollary C follows now immediately by Theorem 6 and Corollary 13 of [1].

We finish with an immediate corollary of the fact that $\Gamma \subseteq$ Cents S, and Cent $S \subseteq C$:

Corollary D. If $R C$ is a central embedding of R in a direct sum of simple rings of minimal length, then so is R (Cent C).

References

1. S. A. Amitsur, On rings of quotients, Instituto Nazionale di Alta Matematica Symposia Matematica v. VIII (1972), 149-164.

Received December 28, 1973.

The Hebrew University of Jerusalem

