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MUTUAL EXISTENCE OF SUM AND
PRODUCT INTEGRALS

JON C. HELTON

Functions are from R x R to N, where R denotes the set of
real numbers and N denotes a normed complete ring. If G has

bounded variation on [a, b], then I G exists if and only if

XW(\ + G) exists for a ^ x < y ^ b. If each of limx^p

+ H(p,x),
Yιmx-+p-H(x,p), \imx,y-^p+H(x, y) and \imx,y^p H(x,y) exists, G

has bounded variation on [a,b] and either G exists or
Ja

XW(\ + G) exists for a ^x < y ^ b, then ί HG and ί GH

exist and ,Π y(l + HG) and XΓP(1 + GH) exist for a ^ JC < y ^
b. If G has bounded variation on [a, b] and v is a nonnegative

number, then I G exists and I G — I G = v if and only if

xΠ y(l + G) exists for α ^ x < y ^ fc and

|1 + G-Π(1 + G)| = v.

J. S. MacNerney [4] defines classes OA and OM of functions such
that the integral-like formulas

V(a,b)= Γ (W-\) and W(a, b) = βΠ*(l + V)
J a

are mutually reciprocal and establishes a one-to-one correspondence
between the classes OA and OM. B. W. Helton [1] defines classes
OA ° and OM° of functions and shows that if G has bounded variation
on [a, H then G G θ Λ ° o n [ α , b ] if and only if G G OM° on [a, H

where G EOA° on [a, b] only if ί G exists and j G - | G =0, and

G G OM° on [a, b] only if xΠ
y(l + G) exists for α ^ x < y ^ b and

Γ|l + G

The class OA is a proper subclass of OA ° and OM is closely related to
the class OM°. In the following, we establish a related result and show
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ίb

that if G has bounded variation on [α, fe], then G exists if and only if
J a

xΠ
y(l + G) exists for a ^ x < y ^ fc. This is not the same as the result

of B. W. Helton since it is possible to construct a function G such that G
has bounded variation on [a, b], G exists, XIP(1 + G) exists for

a ^ x < y ^ b, G £ OΛ° on [α, ft] and G £ OM° on [α, b] [3]. We then
use this result and ideas from another theorem of B. W. Helton [2,
Theorem 2, p. 494] to establish that if each of \imx^p+H(p, x),
limx_>p-if(jc,p), limx,y_>p+H(jc, y) and limx,y_p-H(JC, y) exists, G has

bounded variation on [a, b] and either G exists or XIF(1 + G) exists
Jα

for a^x<y^b, then Γ HG and Γ GH exist and xΠ
y(l + HG) and

Jα Jα

xIIy(l + GH) exist for α ^ x < y ^ b. Further, we show that if G has
bounded variation on [a,b] and v is a nonnegative number, then
G G OAv on [α, b] if and only if G E OM* on [0, b], where GeOAv

ίb

on [α, b] only if G exists and
J a

J>-H-'
and G e OM r on [α, b] only if xΠ

y(l + G) exists for α g x < y ^ fe and

Finally, we show that if the norm used has the property that \AB | =
\A I |B I and if each of limx^p+H(p, JC), limx^p-H(x,p), limxy_p^iί(jc, y)
and limx,y_>p-i/(x, y) exists, G has bounded variation on [a, b] and either
G G OA' on [α, b] or G E OMV on [α, fc], then there exist nonnegative
numbers a and β such that ίfG is in OAa and OMa on [α, b ] and GH is
in OΛβ and OMβ on [α,b]

All integrals and definitions are of the subdivision-refinement type,
and functions are from R x R to N, where 1? denotes the set of real
numbers and N denotes a ring which has a multiplicative identity
element represented by 1 and has a norm | | with respect to which N is
complete and 111 = 1. Unless noted otherwise, functions are assumed
to be defined only for {JC, y} G R x R such that x < y. The statement
that G E OB° on [a, b] means that there exist a subdivision D of [a, b]
and a number B such that if {JC, }Γ=0 is a refinement of D, then
Σ"=i I Gt I < B, where G, denotes G(jcf_,, x,) When convenient, we use
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Σ G and Π (1 + G)

to denote

ΣG, and Π
/ = 1 / = 1

respectively, where J = {xt}Uo represents a subdivision of some
interval. The sets OA °, OM°, OAv and OMV have been defined previ-
ously, and G E OA + only if G is an additive function from R x R to the
nonnegative numbers. Also, GEOM* on [0, b] only if xU

y(\ + G)
exists for a ̂  * < y ^ b and if e > 0 then there exists a subdivision D of
[0, fe ] such that if {*, }Γ=0 is a refinement of D and 0 ̂  p < q ^ n, then

- fl < € .

The symbols G(p9p
+),G(p-,p),G(p+,p+) and G{p~,p~) denote

lim,_p+G(p,x), limx_p-G(x,p), lim^^-GU, y) and limx>y_p-G(jc, y), re-
spectively, and G E OL° on [α, b] only if G(p,p+), G(p~9p)9 G(p+,p+)
and G(p~,p~) exist for p E [α, &]. Further, G E S2 on [α, b] only if
G(p,p+) and G(p~9p) exist for p G [ f l , H Finally, statements of the
form G > β should be interpreted in terms of subdivisions and
refinements. See B. W. Helton [1] and J. S. MacNerney [4] for
additional background.

We now establish an approximation theorem for product
integrals. To do this, we initially develop a sequence of lemmas.

LEMMA 1.1. Ifβ>0,Gisa function from R x R to N,\G\<1-β
on [a9b]9GEOB° on [a,b] and XIP(1 + G) exists for a ^x<y^b,
then GEOM* on [a,b].

Proof. Let e >0. There exist a subdivision D of [α, b] and a
number B such that if {JC. }Γ=o is a refinement of D, then

(1) | G , | < l - j 3 for ί = l,2, ,n,
(2) ΠΓ-,(1 + | G | ) < B ,
(3) ΠΓ-,(l + Σr-, | (- l) 'G{ |)<B, and
(4) |βΠ*(l + G) - ΠΓ-, (1 + G ) | < €(3B)"\

Suppose {JCJΓ-O is a refinement of D and 0 ^ p < q ^ n . Let
y = {y.}r=0 and Z = {z, K=o be refinements of {jcf }f=0 and {x, }Γ=β, respec-
tively, such that
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and

<e(3B2)-

Further, let P and P' denote

andΠ
Yd)

respectively, and let Q and Q' denote

Π d + G) and
Z(I)

respectively. Note that P~ι and Q"1 exist and are

/=!

and

fl

respectively.
Let W denote the subdivision D U Y U Z of [α, ft]. Thus,

- Π
i l

- π
i l

IQ

[P-P' + P ]Uff«(l + G)][<?' - <?' + Q] - Π (1 + G)
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+ B
βΠ fc(l

< B3[e(3B3rι] + B2[e(3B2yι] + B[e(3B)-]] = e.

LEMMA 1.2. // G is a function from RxR to AT, G G OB° on

/or a ^ j c < y ^ f c ,[α, fc]
G(b~,b) exist.

Proof We initially show that G(α, α+) exists. Let e > 0. There
exist numbers c and i? such that a < c <b and if {JC. }Γ=o is a subdivision
of [a, c], then

and

Further, there exists a subdivision D = {z. }Γ=0 of
K are refinements of D, then

, c] such that if / and

HI) K(I)

<e/2.

We now suppose a < x < y < zx and show that

\G(a,x)-G(a,y)\<€.

Let {jct}Γ=0 and {yJjU denote D U{x} and D U{y}, respectively. Thus,

6/2 >
y=i

[1 + G(a,x)] [fl (1 + G)] - [1 + G(α, y)] [fj (1 + G,)] |

, Π (1 + ̂Σ Π
ι=2 k=i +

2G, fl (1 + Gt)
j=2 k=j+ι

Π

Σ
y=2

Π
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and hence,

€>\G(a,x)-G(a,y)\.

Since the existence of G(b~yb) can be established in a similar
manner, Lemma 1.2 follows.

LEMMA 1.3. If β > 0, G is a function from R x Rto JV, | G | < 1 - β
on (a,b), G<ΞOB° on [a,b] and XΓF(1 + G) exists for a ̂  x < y ̂  b,
then G<=OM* on [α, b].

Proof. Let e >0. There exist a subdivision £, of [α, b] and a
number B > 1 such that if {x,}Γ=i is a refinement of Eu then

and

Let H be the function defined on [a, b] such that

if JC 7̂  a and y j£ b

if JC = a or y = b.

Thus, H satisfies the hypothesis of Lemma 1.1, and hence, there exists a
subdivision E2 of [a, b] such that if {x/}Γ=o is a refinement of E2 and
0 ^ p < q g m , then

- fl

It follows from Lemma 1.2 that G(a,a*) and G(fo ,fr)
exist. Hence, there exists a point JC, where a < x < b, such that if {x,}Γ=o
and {yJ/U are subdivisions of [α, JC], 1 ̂  r ̂  m and 1 ̂  5 ̂  n, then

Also, there exists a point y, where a < y < b, such that if {xJ
{y, }"-o are subdivisions of [ y , b ] , l § r g m and 1 ̂  5 ̂  n, then

Lo and
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<e(3B)\

Let D denote the subdivision

EiUE2U{x}U{y}

of [a, fe]. Further, suppose {JCJΠOis a refinement of D and O^p <q ^
m. If p = 0 and q = ra, then the desired inequality follows from the
existence of a U

b (1 + G). If p ^ 0 and q^ m, then the inequality follows
from the properties of the function H. Suppose p = 0 and
q^ m. There exists a subdivision / of [a,xλ] such that

<e(3J3)-

Thus,

If p 7̂  0 and q = n, then a similar argument establishes the
inequality. Therefore, Lemma 1.3 follows.

THEOREM 1. If G is a function from RxR to N,G EOB° on
[a, b] and XΠ

}(I + G) exists for a ^x<y ^bJhenG GOM*on [a,b].

Proof Since G E OB° on [a, b], there exists a subdivision {JCJΓIO

of [a, b] such that if l ^ i ^ m and JC,., < x < y < xh then | G(x, y)\ <
1/2. Hence, this theorem can be established by using Lemma 1.3 and
the identity

where Π?βI fey =ΠU + I α f c = l.
We now use the approximation theorem to establish an existence

theorem for sum integrals. In particular, we show that if G has
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bounded variation on [α, b] and xΠ
y(l + G) exists for a ^ x < y ^ b,

then G exists. Several lemmas are required.
J a

L E M M A 2 . 1 . If G is a function from R x R to N , G e O B ° on
[a, b] and x I l y ( l + G) exists for a ^ x < y ̂ b , then

Γ G(u,Ό)υn
b

J a

exists and is - 1 + flΠ
b(l + G).

Proof Let e >0. There exist a subdivision E, of [α, fc] and a
number β such that if {xι}T=o is a refinement of Eu then

(1) ΣΓ=i|G/|<B, and
(2) |ΠΓ=1(l + Gί )-αΠ f c (l-hG)|<€/2.

Theorem 1 implies that G E OM* on [α, b], and hence, there exists a
subdivision E2 of [α, b] such that if {xι}T=o is a refinement of E2 and
0^p<qi/n, then

- Π <e(2BΓ.

Let D denote the subdivision E, U £ 2 of [α, b] and suppose {Xi}Γ=o is
a refinement of D. Thus,

e/2

[ m m "I I

m

- Γϊ 6/2

LEMMA 2.2. If H and G are functions from RxRto N,HE OL°
Γb fb

on [a, b], G G OB° on [a, b] and G exists, then HG exists and
J a J a

GH exists.f
J a
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Proof. B. W. Helton [2, Theorem 2, p. 494] proves that HG and
GH are in OA° on [a, b] with the hypothesis of Lemma 2.2 and the
additional restriction that G E OA° on [α, b]. This lemma follows by
essentially the same argument.

Observe that weakening the hypothesis of Helton's result by
ίb

requiring only the existence of G produces a corresponding weaken-
J a

Γb Γb

ing of the conclusion since we now have that HG and GH exist
Ja J a

rather than that HG and GH are in OA° on [a,b].
Lemma 2.2 is not true for functions defined on a linearly ordered

set [4, p. 149]. For example, consider

with the usual ordering for the real numbers. Let G be the function
defined on S x S such that

X if Jc < 1 and y > 1
0 otherwise.

Thus, G G OA°Π OB° on S x S. Let H be the function defined on
SxS such that

ί
l if x < 1, y > 1 and x rational

- 1 if x < 1, y > 1 and x irrational
0 otherwise.

ίb

Thus, H E OL° on SxS. However, HG does not exist.
J a

LEMMA 2.3. J//3 > 0, G is a function from R x Rto N,\G\<1-β
on [a,b], GBOB° on [a,b] and aIlb(\ + G) exists, then bYla(l + H)
exists and is [βΠ*(l + G)]~\ where

for a^x <y ^b.

Proof. We initially show that bIΓ(l + H) exists. Let e>
0. There exist a subdivision D of [a, b ] and a number B such that if
{Xi}T=o and {yJ/U are refinements of D, then
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(1) \Gi\<ί-β for i = l,2, ,m,
(2) |ΠΓL1(l + //m + 1_,)|<B, and
(3) |ΠΓ_, (1 + G) - Πj1., (1 + G,)\ < eB\

Note that we are using Hm+1-, to denote H(xm+l-h xm_,). Suppose {
and {yi}",o are refinements of D. Thus,

Π (1

^B 1 -

.-[ftα+Φl[Λ(i+-

We now show that LΓP(1 + G)]"1 exists and is .Π^l +
>0. There exists a subdivision {JCJΓLO of [α, b] such that

[aiι
b(i + G)][bn

a(i +

Hence,

+ σ,)] [ 0 0 + Hm+1-,)]

Let

= 0+6 =6.

LEMMA 2.4. Ifβ>0,G is a function from R x R to N,\G\<1-β
on [a,b],G GOJ5° on [a,b] and XΓP(1 + G) exists for a ̂ x <y ^b,

(b

then G exists.
J a

Proof. It follows from Lemma 2.1 that

σ(κ,i>).Π*(l+.G)



MUTUAL EXISTENCE OF SUM AND PRODUCT INTEGRALS 505

exists. Let H be the function defined on [a, b] such that

The existence of H follows from Lemma 2.3. Further, H E OL° on

[a, b]. Hence, the existence of G can be established by using
J a

Lemma 2.2.

LEMMA 2.5. J//3 >0, G is a function from R x R to N, | G | < 1 - β
on (a,b),G£OB° on [a,b] and XW(\ + G) exists for a ^x<y^b,

fb

then G exists.ϊ
J a

Proof. Lemma 2.5 follows by using Lemma 1.2 and Lemma 2.4.

THEOREM 2. // G is a function from RxR to N,GGOB° on
rb

[a, b] and XIP(1 + G) exists for a^x <y ^b, then G exists.
J a

Proof. There exists a subdivision {JC,}Γ=O of [α, b] such that if
1 ^ / ^ m and jcf_, < x < y <xh then \G(x, y)\ < 1/2. Hence, the
theorem follows from Lemma 2.5.

An existence theorem for product integrals is now established. In
ίb

particular, we show that if G has bounded variation on [a, b] and G
J a

exists, then XΓP(1.+ G) exists for a ^x <y ^b.

LEMMA 3.1. If G is a function from R x Rto N such that G GOB °
on [a, b], then there exists a E OA+ on [α, b] such that

\G(x,y)\^a(x9y)

for a^x <y ^b.

Proof. There exist a subdivision {*,},% of [a, b] and a number B

such that if H is a refinement of {xt}Γ=o, then Σ H ( / ) | G \ < B. Let g be the

function such that for JCP_, < JC ^JC P , g(x) = lub ΣH ( j r ) | G | for all refine-

ments H of {xJfJo1 U{x}. Let α(jt, y)= J dg. This produces the

desired function.

THEOREM 3. If G is a function from RxR to N, G GOB° on

[a, b] and I G exists, then xΠ
y(l + G) exists for a^x <y ^b.

J a
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Proof. Suppose α i x < y § ί ) . In the following we show that

CΓF(1 + G) exists and is Σp=0 Gp(x, y), where G0(x, y) = 1 and

Gp(x,y) = GGp.t( ,

for p = 1,2, . The existence of these integrals follows from Lemma
2.2.

It follows from Lemma 3.1 that there exists a E OA+ such that if
x ^ r < s ^ y, then

Further, from a result of MacNerney [4, Theorem 6.2, p. 160],
Σ^ogpU, y) exists, where go(x, y) = 1 and

, y) = (R) a

= l,2; .
It can be established by induction that if {JC,}Γ=O is a subdivision of

[x, y], then

+ .Σ Σ

G k , G k 2 + -

Σ GklGk2-Gkπ,
kn=kn-\+l

where Σ?=p G, = 0 if p > q. Further, it can also be established by
induction that

n n

Σ Σ • " Σ GklGk2 • Gkl

forp = l,2, .
Let € > 0. There exists a positive integer N such that

Further, there exists a subdivision D of [JC, y] such that if {x/}Γ=o is a
refinement of D, then
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n n

kι = l k2=kt + l

+ Σ Σ ••• Σ GklGb--Gj-ΣGp(x,y)
k\ = l k2=ki + \ kN=kN-\ + \ J p=0

<e/3.

Suppose {JC,}Γ=O is a refinement of D. Thus,

Σ
p=0

Σ Σ ]-Σ
J p=0

+ Σ Σ ••• Σ Gk,Gk2 Gk]-ΣGP(χ,y)
k\ k2=kι + l /cn=fcn-i + l J

+ Σ G*.+ Σ Σ α,Gfa+

+ Σ Σ ••• Σ GklGk2- GkN]-ΣGp(χ,y)

+ 6/3 + 6/3

< 6/3+ 6/3+ 6/3 = 6.

THEOREM 4. // G is a function from R x R to N and G GOB° on

[a, b], then G exists if and only if xYly(l +G) exists fora ^x <y gfr.
J a

Proof This theorem follows as a corollary to Theorems 2 and 3.

THEOREM 5. // H and G are functions from RxRto N,HE OL°
ίb

on [a,b],GEθB° on [a, b] and either G exists or xIly(l + G) exists
J a

for a^x<y^b, then ί HG and ί GH exist and XΓF(1 + HG) and
J a J a

x U y ( l + GH) exist for a^x < y ^ b .

Proof This theorem follows as a corollary to Theorem 4 and
Lemma 2.2.

We now show that if G has bounded variation on [α, b], then
GEOAV on [a, b] if and only if GGOMV on [α, b]. This is a
generalization of a result of B. W. Helton [1, Theorem 3.4, p. 301].
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LEMMA 6.1. Ife>0 and G is a function from R x Rto N such that

G E OB° and S2 on [a, b]9 then there exists a subdivision D of [a, b]

such that if {jcf}?=0 is a refinement of D, 1 ^ / ^ n and {JC0 }7=O is a

subdivision of [JC, _I, JC, ] , then

_ _ 1 I I

j=\ \ j=l

Proof Since G E OB°Π S2 on [a, b], this lemma can be estab-
lished by applying the covering theorem.

LEMMA 6.2. Ife>0 and G is a function from RxR to N such that

G E OB° and S2 on [a, b], then there exists a subdivision D of [a, b]

such that if {x,}Γ=0 is a refinement of D and {JC/; }f£o is a subdivision of

[Xi-u Xi] for 1 ̂  ί ^ n, then

/=!

/ 5 ^ \ I

\ 7=1 / I

Proof There exist a subdivision {rj ô of [α, b] and a number B

such that if {yjΓLo is a refinement of {rf }•=<>, then
(1) ΣT=ι\Gi\<B, and
(2) Πr.,(l + |GI | ) < B .

It follows by applying the covering theorem that there exists a subdivi-
sion {Si}Uo of [α, b] such that if 1 ̂  / g 5 and {x,/}/=o is a subdivision of
[Si-U st]9 then

'S 1 \Gi}\<e(2B2y\

Further, it follows from Lemma 6.1 that there exists a subdivision {fjί-o
of [a, b] such that if {JC,}Γ=0 is a refinement of {ί/}ί=0, 1 = / = n and {Xijjlo
is a subdivision of [*,-_,, jt,-], then

Let D denote the subdivision

of [a, b] and suppose {JCJΓ=O is a refinement of D. Further, suppose
{XiiJfJo is a subdivision of [JC.-I, xt] for l g / g π . Let P be the subset of
{/}Γ=, such that i E P only if jcf Gfo JU or jc. -, E ^ jU. Finally, let
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In the following manipulations, we use the identity

ιf Σ bj\ Π
l/ / + l Lk=]+ί

where Σ;=n+1 ty = 0 and Π2=π+1(l + bk) = 1. This result can be estab-
lished by induction.

We now establish the desired inequality:

2 G , + 2!G( Σ GJ Π α + Gj
j = ί j = \ Ku=j + \ Lv=u + l J J

L E M M A 6.3. // G is α function from RxR to N , G 6 OB° on

[a, b] and
J a

G exists, then
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Proof. The existence of ,Π y (l + G) for a^x<y^b follows

from Theorem 3. Also, since GGOB° on [a, b] and J G exists,

GGS2 on [α, b].
Let e > 0. It follows from Lemma 6.2 that there exists a subdivi-

sion D of [a, b] such that if {jcJiU *s a refinement of D and {Xjjfio is a
subdivision of [*,_,,JC,] for l ^ i i n , then

Suppose {JCJΓ-O is a refinement of D. For 1 g i g n, let
subdivision of [*,_,, Xj] such that

<e/3n

"^ be a

and

Thus,

G <e/3n.

G

+ Σ Π α + G«)- I + Σ G I

π n(i) ΓαCj

+Σ Σft-ί
e/3-f

THEOREM 6. // v is a nonnegative number, G is a function from
R xRtoNandG EOB° on [a,b], thenGeOAvon [a,b] if and only
ifGEOMv on [a,b].

Proof. Suppose G e OMV on [α, b]. It follows from Theorem 2

that G exists. Hence, it is only necessary to show that
J a
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- G = V.

Let e > 0. There exists a subdivision Dλ of [α, b] such that if {JCJIU is a
refinement of Dl9 then

1/ - e/2 G)\ < v + e/2.

Further, it follows from Lemma 6.3 that there exists a subdivision D2 of
[a, b] such that if {jtjf-o is a refinement of D2, then

Let D = PiU D2. Suppose {JC,}Γ=O is a refinement of D. Now,

Thus,

Σ α - ί
ι = l Jjt.-i

Σ α - ί
ί = l Jx,-.

Further,

n Γ X:

Σ a-
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> v -ell-ell = v- e.

Hence,

v-e < Σ G.-ί
i = \ Jx,-ι

G

Therefore, G<ΞOAV on [a, b].
Suppose G£OAV on [α, b]. It follows from Theorem 3 that

xΠ
y(l + G) exists for a ^x <y ^b. Hence, it is only necessary to

show that

Γ
J a

Let 6 > 0. There exists a subdivision D, of [a, b ] such that if {xjΓ-o is a
refinement of D,, then

Σ G,-ί
i = l Jx,-i

Further, it follows from Lemma 6.3 that there exists a subdivision D2 of
[α, b] such that if {jt, }Γ=o is a refinement of D2, then

Σ l + Γ G-X i_ 1ΠMl + G ) | < 6 ( 2 | - l | r 1 .

Let D = D, U D 2 . Suppose {JC, }Γ=0 is a refinement of D. Now,

It follows as in the preceding argument that

Therefore, G G OMV on [α, b].
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We now prove a theorem on the existence of integrals of products
of functions. This result is related to a theorem by B. W. Helton [2,
Theorem 2, p. 494].

LEMMA 7.1. If e >0,H is a function from R x R to N and
H E OL° on [a9b]y then there exist a subdivision {ί,K=o of [a, b] and a
sequence {&«•}[=i such that if 1 ̂  / ̂  t and ff_, < x < y < ti9 then

\H(x9y)-ki\<e.

Proof This lemma is a variation of a lemma used by B. W. Helton
[2, Lemma, p. 498]. The proof presented there can be used to establish
the lemma as we have stated it.

LEMMA 7.2. Suppose |AB| = | A | | J 3 | for A,B£ΞN. If v is a
nonnegative number, k E N, G is a function from R x R to N and
G<ΞθAvon [a, b], then kG E OAlk]v on [a,b].

Proof Since | AB \ = \A\\B\9 the proof is readily
constructed. If the preceding equality did not hold, the lemma would
not necessarially follow. An example of such a situation is presented
after the proof of Theorem 7.

THEOREM 7. Suppose \AB | = \A | \B \ for A, B E N. If v is a
nonnegative number, H and G are functions from R x R to N9 H E OL°
on [a9b]9GGOB°on [a9b] and either G GOAV on [a,b]orGEOMv

on [a, b]9 then there exist nonnegative numbers a and β such that HG is
in OAa and OMa on [a, b] and GH is in OAβ and OMβ on [a9b].

Proof We initially establish that there exists a nonnegative
number a such that HG E OAa on [a9b]. It follows from Theorem 6

that G E OAv on [a, b]. Hence, the existence of HG follows from
J a

Theorem 5. We use the Cauchy criterion to establish the existence of

- HG

Let e >0. There exist a subdivision Eλ of [α, b] and a number B
such that if {x,}"=0 is a refinement of Eu then

Σ\G,\<B.
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It follows from Lemma 7.1 that there exist a subdivision E2 = {ίt}!=o of
[a, b] and a sequence {£,}!=, such that if 1 S iI ̂  t and ίf_i < x < y < th

then

Since G G OB° Π OΛ" on [α, b], it follows that there exist subdivi-
sions {r/}ί=o and {s, }ί=o of [α, b] such that

(1) if._, < r( < 5, < ί, for ί^i^t, and

(2) Σ,",, Hfi, - I"
Jxj-ι

HG < e[8(ί + I)]"1 for 1 ̂  f ̂  ί + 1 and each

refinement {xJjU of {$,•_„ ίi-,, rt}.
It follows from Lemma 7.2 that ktG e OΛ W v on [rf, s,] for 1 ̂  / ^

ί. Hence, for each ί there exists a subdivision Dt of [ri? 5,-] such that if /
and K are refinements of Dh then

Σ bo - ί fcfσ - Σ k& - ί KG
/(/) J K(/) J

<e(4ty\

Let D denote the subdivision U =i -Bf U ί=, D, of [α, fc]. Suppose
J] and /2 are refinements of D, P w and P2i are subdivisions of [sf _i, r f] for
1 ^ / ̂  ί + 1, Qn and Q2i are subdivisions of [rh st] for 1 g i" S t and /j
and /2 are equal to

U Pu U Qu and P 2 ί (j Q2h

respectively. For convenience, suppose

JΛD J
HG-ί HG

J
-ί

J
HG-ί HG

J

Thus,

JlU) -ίHG-\ HG
Jld)

HG- I HG

-\
HG-\ HG

-ί
J

-ί
J

HG-ίHG
J

-IHG +Σ Σ
J ϊ = l Qud)

HG-IHG
J

-\ HG

Σ
ί = l P2.(ί)

ΣΣ
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υn+Σ Σ HG-IHG
i = \ Qud) J

-1}-Σ Σ
i = \ Q2ΛD

HG-ί HG

= Σ Σ (H-it i + Λ,)G-f(H-fcI+Λl)G
i = \ Qu{I) J

-Σ Σ
1 = 1 (?2,(/)

e/4

2 t

^ I - H Σ Σ Σ

+ | Σ X . | | ( H - * i ) G

+ Σ Σ

-Σ Σ
1 = 1 Q2.(/)

6/4

Therefore, exists. Hence, there exists a nonnegative

number a such that G^OAa on [α, £>]• Thus, it follows from
Theorem 6 that G E OMα on [α, ft].

A similar argument can be used to establish the existence of
β. Therefore, the theorem follows.

Theorem 7 does not remain true if the requirement that | AB \ =
\A\\B\ is removed. In the following we establish this assertion by

constructing a function G and a constant K such that G exists,
Jo

- G exists and - KG does not exist.

We consider the set of infinite diagonal matrices with bounded
elements and | M | = lub | ml71. For p = 1,2, , let Ap be the infinite
diagonal matrix such that app = 1 and aqq = 0 if q^ p. Let Λ =
{Ap \p = 1,2, •}. There exists a reversible function / from the ra-
tional numbers in [0, 1] to A. Let G be an interval function defined on
[0, 1] such that
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G(U,V) =

(v-u)f(v)

(v-u)f(r)

if v is rational
where r is a rational number in
(M, V) if υ is irrational.

For each rational number r in [0, 1], let p(r) be the positive integer such
that f(r) = Λpir). Let X be the infinite diagonal matrix such that if
r - m\n is a rational number contained in [0, 1] and m and n have no
common integral factors other than 1, then

~ j
if n is odd
if n is even.

We have now constructed a function G and a constant K such that

Γ G = 0 , Γ G-ί G =1 and Γ KG - I KG does not exist. This

example was suggested by an example in a previous paper by the author
[3].
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