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MUTUAL EXISTENCE OF SUM AND
PRODUCT INTEGRALS

JoNn C. HELTON

Functions are from R X R to N, where R denotes the set of
real numbers and N denotes a normed complete ring. If G has

b
bounded variation on [a, b], then f G exists if and only if

JP(1+ G)existsfora=x <y =b. Ifeachoflim,,- H(p,x),
limy—,- H(x,p), lim,,_,+ H(x, y) and lim,,_,- H(x, y) exists, G
b

has bounded variation on [a,b] and either ] G exists or

b b
JP(1+ G) exists for a =x <y =b, then f HG and j GH

exist and II’(1+ HG) and I’ (1+ GH) exist for a =x <y =
b. If G has bounded variation on [a, b] and v is a nonnegative

“JG’=V if and only if

LP(1+ G) exists for a =x <y =b and

number, then

f [1+G-TI(1+G)| = v

J. S. MacNerney [4] defines classes OA and OM of functions such
that the integral-like formulas

V(a,b)=fb(W—1) and Wi(a, b)=,1"(1+V)

are mutually reciprocal and establishes a one-to-one correspondence
between the classes OA and OM. B. W. Helton [1] defines classes
OA° and OM?" of functions and shows that if G has bounded variation
on [a, b], then G € OA° on [a,b] if and only if G € OM° on [a, b],

where G € OA° on [a, fG =0, and
G € OM° on [a, b] only if Hy(l+G) exists for a <x <y=b and

b
J' [1+G -1+ G)|=0

The class OA is a proper subclass of OA° and OM is closely related to
the class OM°. In the following, we establish a related result and show
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b
that if G has bounded variation on [a, b], then f G exists if and only if

JP(1+ G) exists for a =x <y =b. This is not the same as the result
of B. W. Helton since it is possible to construct a function G such that G

has bounded variation on [a, b], J' G exists, I’(1+ G) exists for

a=x<y=b,GZOA°on[a,bland GZ OM°on[a,b][3]. We then

use this result and ideas from another theorem of B. W. Helton [2,

Theorem 2, p. 494] to establish that if each of lim,.,-H(p,x),

lim,_,-H(x,p), lim,,.,-H(x,y) and lim,,.,-H(x,y) exists, G has
b

bounded variation on [a, b] and either f G exists or II'(1 + G) exists

b b
for a =x <y =b, then f HG and J’ GH exist and ,II’(1+ HG) and

JI(1+ GH) exist for a =x <y =b. Further, we show that if G has
bounded variation on [a,b] and v is a nonnegative number, then
G € OA” on [a,b] if and only if G € OM"* on [a, b], where G € OA”

b
on [a, b] only if f G exists and

I

and G € OM” on[a, b]only if . II'(1+ G) existsfora =x <y =b and

G—IG|=V,

b
f [M1+G-T(1+G)|=w

Finally, we show that if the norm used has the property that |AB|=
|A||B| and if each of lim,_,-H(p, x), lim,_,-H(x, p), lim,,_,~-H(x, y)
and lim,,,,- H(x, y) exists, G has bounded variation on [a, b] and either
G E€O0OA” on[a,b]lor G € OM” on [a, b], then there exist nonnegative
numbers a and B such that HG is in OA* and OM® on [a, b] and GH is
in OA® and OM® on [a, b].

All integrals and definitions are of the subdivision-refinement type,
and functions are from R X R to N, where R denotes the set of real
numbers and N denotes a ring which has a multiplicative identity
element represented by 1 and has a norm | - | with respect to which N is
complete and [1|=1. Unless noted otherwise, functions are assumed
to be defined only for {x,y} € R X R such that x <y. The statement
that G € OB° on [a, b] means that there exist a subdivision D of [a, b]
and a number B such that if {x;}'., is a refinement of D, then

_1| G| < B, where G; denotes G(x;_,,x;). When convenient, we use



MUTUAL EXISTENCE OF SUM AND PRODUCT INTEGRALS 497

>G and [[(1+G)

Jn J

to denote

i G,’ and ﬁ (1 + G,‘),

respectively, where J ={x,}/., represents a subdivision of some
interval. The sets OA°, OM°, OA” and OM" have been defined previ-
ously,and G € OA " only if G is an additive function from R X R to the
nonnegative numbers. Also, G € OM* on [a, b] only if ,IP(1+G)
exists fora = x <y = b and if € > 0 then there exists a subdivision D of
[a, b] such that if {x,}/_, is a refinement of D and 0 = p < q = n, then

1+ G) - H (1+G)|<e

i=p+1

The symbols G(p,p*),G(p ,p),G(p",p*) and G(p~,p~) denote
lim,,-G(p, x), lim,_,-G(x, p), lim,,_,-G(x, y) and lim,,_,-G(x, y), re-
spectively, and G € OL° on [a,b] only if G(p,p*),G(p~,p),G(p*,p*)
and G(p~,p") exist for p €E[a,b]. Further, G €S, on [a, b] only if
G(p,p*) and G(p~, p) exist for p €[a, b]. Finally, statements of the
form G >pB should be interpreted in terms of subdivisions and
refinements. See B. W. Helton [1] and J. S. MacNerney [4] for
additional background.

We now establish an approximation theorem for product
integrals. To do this, we initially develop a sequence of lemmas.

LemMa 1.1. IfB >0, G is a function fromR X Rto N,|G|<1-8
on [a,b],G € OB° on [a,b] and .I’(1+ G) exists fora=x <y =b,
then G € OM* on [a,b].

Proof. Let € >0. There exist a subdivision D of [a,b] and a
number B such that if {x;}/_, is a refinement of D, then

(1) |G|<1-B fori=1,2,--+,n,

2 I.,(1+|G|)<B,

(3) I, (1+27,[(-1)Gi|)<B, and

@ [.IPA+G)-T., (1+G)|<e(B3B)™.

Suppose {x;}-, is a refinement of D and 0=p <gq=n. Let
Y ={y:}-, and Z ={z;}{-, be refinements of {x;}’_, and {x;}/-,, respec-
tively, such that
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[Ta+G)-.m=0+ G)| <e(3BY

Y(I)

and

l - tA+G)+[]1+G)|<e(BBY).

ZI)

Further, let P and P’ denote

[Ta+G) and ,I+(1+G),

Y

respectively, and let Q and Q' denote

[lTG+G) and ,II°(1+G),

zZ)

respectively. Note that P~' and Q' exist and are

r

11 [1 +}2l (-G (- y,+1_.~)]

i=1

and

S

I1 [1 +]21 (- 1G' (2 z,+,_.-)] )

i=1

respectively.
Let W denote the subdivision D U Y UZ of [a,b]. Thus,

oI (1+G)— ﬁ (1 +G,~)|

i=p+1

- 'P*‘P[XPH"«(I + G)—iﬂl 1+ G,.)] QQ-"

=|pP ’P[x,,rl%(l +G)1Q —P[ ﬁ (1 +G,-)] Ql Q7|

i=p+1

=B| PL "1+ G)IQ - [] (14 G)

w(

=B|[P—P'+P'1[x.,r1*«(1+G)][Q'—Q'+Q]—Wr(;) (1+G)[
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=B|P-P'[|,I(1+G)||Q|+B|.I*(1+G)|| - Q'+ Q]
+B|. JJP0+G)- ] 1+ G)
w()

<B’l[e(3B°)'1+ B’[e(3B) ']+ B[e(3B) '] = €.

LemMa 1.2. If G is a function from RXR to N,G € OB° on
[a,b] and IP(1+ G) exists for a=x <y =b, then G(a,a’) and
G(b,b) exist.

Proof. We initially show that G(a, a*) exists. Let e >0. There

exist numbers ¢ and B such that a < ¢ < b and if {x;}'_, is a subdivision
of [a, c], then

=1[Ta+iGD]<B and 316 i<y

Further, there exists a subdivision D = {z;}/_, of [a, c] such that if J and
K are refinements of D, then

[Ta+e) -] a+G)|<el2.

J(I KD

We now suppose a <x <y <z, and show that
|G(a,x)—G(a,y)|<e.

Let {x;}~, and {y;}/-o denote D U {x}and D U {y}, respectively. Thus,

n

e/2>'ﬂ(1+G,-)—H(1+G,-)‘

j=1

_ ’[1 +G(a,x)] []ﬂ! (1+ G,.)]— [1+G(a,y)] [,Hz (1+ Gj)]’

- ‘ [1+G(a,x)] [1 +§; G I (1+Gk)]

k=i+1

—[1+G(a,y)][1+§;Gi 11 (1+Gk)”

k=j+1

2|G(a,)-Gay|-B %G| [T 1+6)

1 a+G

k=j+1

-B2, |G|
j=2
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>|G(a,x)—G(a,y)|— B*[e(4B?) "] + B’[e(4B?)],
and hence,
e >|G(a,x)—G(a,y)l|.

Since the existence of G(b~, b) can be established in a similar
manner, Lemma 1.2 follows.

LemMa 1.3. IfB >0, G is a function from R xRto N,|G|<1-p
on (a,b), G € OB° on [a,b] and \II’(1+ G) exists fora=x <y =b,
then G € OM* on [a,b].

Proof. Let € >0. There exist a subdivision E, of [a,b] and a
number B >1 such that if {x;}/~, is a refinement of E,, then

[Ta+Gh<B

and

,,nb(1+G)—fI 1+G)|<e

Let H be the function defined on [a, b] such that

_[G(x,y) if x#a and y#b
H(X’Y)"{O if x=a or y=>o.

Thus, H satisfies the hypothesis of Lemma 1.1, and hence, there exists a
subdivision E, of [a, b] such that if {x;}/., is a refinement of E, and
0=p <q =m, then

=1+ H) - fl (1+H,)|<e(3B)™.

i=p+1

It follows from Lemma 1.2 that G(a,a*) and G(b~,b)
exist. Hence, there exists a point x, where a < x < b, such that if {x;}/.,
and {y;}-, are subdivisions of [a,x],1=r=m and 1 =5 =n, then

[Ta+Gr-TTa+6)|<eBy,

Also, there exists a point y, where a <y < b, such that if {x;}", and
{y;}}-o are subdivisions of [y,b],1=r=m and 1=s =n, then
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n

[Ta+6)-TTa+6)|<eaBy.

j=s
Let D denote the subdivision
E,UE,U{x}U{y}
of [a, b]. Further, suppose {x;},is a refinement of D and0=p <q =
m. If p =0 and q = m, then the desired inequality follows from the
existence of ,II’(1+ G). If p #0and g # m, then the inequality follows

from the properties of the function H. Suppose p =0 and
q# m. There exists a subdivision J of [a, x,] such that

} JR(1+G)-[]0+G) | <eBB)™.

J

Thus,

},,H‘«(l + G)—f[ 1+ G,.)]
<|LIF(1+G)— (1+ G| |[F+(1 + G)| + B (3B)"]

+B[e(3B) '] +€/3

<B|[11+G)-(1+G)

Jan

<Bl[e(3B)']+2e/3 =€

If p#0 and q =n, then a similar argument establishes the
inequality. Therefore, Lemma 1.3 follows.

THeoreM 1. If G is a function from R XR to N, G € OB° on
[a,b] and I (1+ G) exists fora =x <y = b, then G € OM* on [a, b].

Proof. Since G € OB° on [a, b], there exists a subdivision {x;}/,
of [a,b] such that if 1=i=m and x,_,<x <y <x, then |G(x,y)|<
1/2. Hence, this theorem can be established by using Lemma 1.3 and
the identity

[Ta-IT6=3 (Il6)@-b0( I a),

k=i+1

where II)_, b; =1} _,., ac = 1.
We now use the approximation theorem to establish an existence
theorem for sum integrals. In particular, we show that if G has
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bounded variation on [a, b] and I (1+ G) exists for a=x <y =b,

b
then J' G exists. Several lemmas are required.

LeEmMA 2.1. If G is a function from R XR to N,G € OB° on
[a,b] and I’(1 + G) exists fora =x <y =b, then

fb Gu,v), 1’0+ G)

exists and is — 1+ ,II°(1+ G).

Proof. Let € >0. There exist a subdivision E, of [a,b] and a
number B such that if {x;}[~, is a refinement of E,, then

(1) Zr,|Gi|<B, and

2 I Jd+G)-,.PA+G)|<e/2.
Theorem 1 implies that G € OM* on [a, b], and hence, there exists a
subdivision E, of [a, b] such that if {x;}", is a refinement of E, and
0=p <q =m, then

(14 G)— [ (146G <eaB).

i=p+1

Let D denote the subdivision E, U E, of [a, b] and suppose {x;}/~, is
a refinement of D. Thus,

S GLIF(1+G)l - [~ 1+,IP(1 +G)]|

<

i GLIP(1+G)]+1 —fl a +G,.)| +e2

+€/2

> GLIP(1+G)]+1- [1 +>6 [1 (1+Gk)]

k=i+1

éilG;le,.H”(l+G)— [T a+Go|+en2

k=i+

<Ble(2B)'1t+e2=¢€.

LemMA 2.2. If H and G are functions from R xR to N, H € OL°
b b
on [a,b],G € OB° on [a,b] andj G exists, then I HG exists and

b
f GH exists.
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Proof. B. W. Helton [2, Theorem 2, p. 494] proves that HG and
GH are in OA° on [a, b] with the hypothesis of Lemma 2.2 and the
additional restriction that G € OA° on [a, b]. This lemma follows by
essentially the same argument.

Observe that weakening the hypothesis of Helton’s result by

b
requiring only the existence of f G produces a corresponding weaken-

ing of the conclusion since we now have that f HG and f GH exist

rather than that HG and GH are in OA° on [a, b].
Lemma 2.2 is not true for functions defined on a linearly ordered
set [4, p. 149]. For example, consider

=0, Hu(, 2],

with the usual ordering for the real numbers. Let G be the function
defined on S X S such that

if x<1and y>1

(1
Glxy)= {O otherwise.

Thus, G € OA°NOB° on S XS. Let H be the function defined on
S X S such that

1 if x<1,y>1 and x rational

H(x,y)={~1 if x<1,y>1 and x irrational
0 otherwise.

b
Thus, HE OL° on S X S. However, f HG does not exist.

LemMma 2.3. IfB >0,Gis a function from R XxRto N,|G|<1-p
on [a,b], G €EOB° on [a,b] and ,]I’(1+ G) exists, then ,11°(1+ H)
exists and is [,]I’(1+ G)]™', where

H(y, x) =2 (- DGi(x, y)

foras=sx<y=b.

Proof. We initially show that ,[I°(1+ H) exists. Let € >
0. There exist a subdivision D of [a, b] and a number B such that if
{x:}~o and {y;}}-, are refinements of D, then
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(1) |G|<1-Bfori=1,2,---,m,

(2 I~ (1+H,.-)|<B, and

@) Me,(1+G)-T.,(1+G)|<eB™.
Note that we are using H,,.,; to denote H (X, -, Xn-;). Suppose {x;}",
and {y;}-, are refinements of D. Thus,

H (1 + Hm+l—i) - 1—1 (1 + Hn+l“i) ‘
i= j=

m

(Ta+ Hou)| [}1 -[a+ s ] [Ta+He)] |

I\

i=1

éB‘ - [H (1+ G,-)] [H(l +Hn+,_,-)]|

gﬂiﬂn&m—ﬂu+aﬂ“ju+mwﬂ

+B| - [ﬂ (1+ G,-)] [H (1 +Hn+1_,-)]|
<B%eB™»)+B(0)=¢e.

We now show that [,IT°(1+ G)]™' exists and is ,[I°(1+ H). Let
€ >0. There exists a subdivision {x;}/~, of [a, b] such that

m

LH%1+GHBH%1+HN~[ﬂ(k+&i”[ﬂ]+H@Hﬂ‘<a

Hence,
ILIP(1+ )L+ H) -1
([0 o][fjo )1
=0+e=c

Lemma 2.4. IfB >0, G is a function from R xRto N,|G|<1-
on [a,b],G € OB° on [a,b] and \IP(1+ G) exists fora=x <y =b,
b
thenf G exists.

Proof. 1t follows from Lemma 2.1 that

beWJﬂJPU+G)
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exists. Let H be the function defined on [a, b] such that
H(u,v)=[II"A+G)]™".

The existence of H follows from Lemma 2.3. Further, H € OL° on
b
[a,b]. Hence, the existence of f G can be established by using

Lemma 2.2.

Lemma 2.5. IfB >0,Gis a function from R X Rto N,|G|<1—-
on (a,b),G € OB° on [a,b] and II’(1+ G) exists fora=x <y =b,

b
then f G exists.

Proof. Lemma 2.5 follows by using Lemma 1.2 and Lemma 2.4.

THEOREM 2. If G is a function from R XR to N,G € OB° on
b
[a, b] and IV (1+ G) exists for a =x <y =b, then f G exists.

Proof. There exists a subdivision {x;}., of [a,b] such that if
I=i=m and x,<x<y<x, then |G(x,y)|<1/2. Hence, the
theorem follows from Lemma 2.5.

An existence theorem for product integrals is now established. In

b

particular, we show that if G has bounded variation on [a, b] and f G
exists, then ,I’(1+ G) exists for a =x <y =b.

LemMma 3.1. If Gis a function from R X R to N such that G € OB°
on [a, b], then there exists « € OA* on [a, b] such that

|G(x, y)| = alx,y)

fora=x<y=b.

Proof. There exist a subdivision {x;}/-, of [a, b] and a number B

such that if H is a refinement of {x;}{_,, then =,,,|G|< B. Letg be the
function such that for x,_, <x =x,, g(x) =lub =4, |G| for all refine-

ments H of {x;}/-JU{x}. Let a(x,y)=fydg. This produces the

desired function.

THEOREM 3. If G is a function from R XR to N,G € OB° on
b
[a,b] and f G exists, then I (1+ G) exists fora=x <y =b.
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Proof. Suppose a =x <y =b. In the following we show that
JI(1+ G) exists and is 2;5_, G,(x, y), where Gy(x,y)=1 and

Gp(x,y>=(R>f’G-G,,_l( y)

forp =1,2,---. The existence of these integrals follows from Lemma
2.2.

It follows from Lemma 3.1 that there exists « € OA”* such that if
x=r<s =y, then

|G(r,s)|=a(r,s).

Further, from a result of MacNerney [4, Theorem 6.2, p. 160],
2508, (x,y) exists, where go(x,y)=1 and

2,(x, y) = (R) jya (1)

forp=1,2,---.
It can be established by induction that if {x;}/_, is a subdivision of
[x, y], then

[T0+6)=1+3 G+ D GuGut-
1=1 ki=1 k

1=1 k2=ki+1
n n n
+Z E E lesz“'ka
ki=1 ka=ki1+1 kn=kn-1+1

where 27 ,G, =0 if p >gq. Further, it can also be established by
induction that

n n n
> G.G. G,|=g(xy)
ki=1 ka=ki+1 kp=kp-1+1

forp=1,2,---.
Let € >0. There exists a positive integer N such that

©

2 ‘ gp(x9 Y)<€/3-

p=N+

Further, there exists a subdivision D of [x, y] such that if {x;}/_, is a
refinement of D, then
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|[1+2 Gk.+z S GG+

=1 k2=k1+1

+i i i Gk.Gk,'“GkN]—iGp(x,y) < €/3.

ki=1 ka=ki+1 kn=kn-1+1

Suppose {x,}i-, is a refinement of D. Thus,
[lj (1+G) -2, G,(x.y)

|[1+2 G,+3 3 GGt

=1 k2=ki1+1

kn=kn-1+1

Hl+ 2 G.+ Z 2 G.G,+

Ma

G, (x, y).

=1 ka=ki+1

+§": Z Z G G- - ] i (xy)’

ki=1 ka=ki+1 kn=kn-1+1
+e/3+€/3

<el3+€/3+€/3==¢.

THEOREM 4. If G is a function from R X R to N and G € OB° on
b
[a, b], thenf G exists ifand only if IV (1 + G) exists fora =x <y =b.

Proof. This theorem follows as a corollary to Theorems 2 and 3.

THEOREM 5. If H and G are functions from R X R to N, H € OL°
b
onla,b],G € OB°on [a,b] and eitherf G exists or I’ (1 + G) exists

b b
fora=x<y=b, thenf HG andf GH exist and IP(1+ HG) and
JPP(1+ GH) exist fora=x <y =b.

Proof. This theorem follows as a corollary to Theorem 4 and
Lemma 2.2.

We now show that if G has bounded variation on [a, b], then
G €0A’ on [a,b] if and only if G € OM* on [a,b]. This is a
generalization of a result of B. W. Helton [1, Theorem 3.4, p. 301].
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LemMmA 6.1. Ife >0 and Gis a function from R X R to N such that
G € OB° and S, on [a, b], then there exists a subdivision D of [a, b]
such that if {x:}}-, is a refinement of D,1=i=n and {x;}}} is a
subdivision of [x;_, x;], then

ﬂ(HG,-,-)—(H"f G,~,~)l<e.

i=1

Proof. Since G € OB°N S, on [a, b], this lemma can be estab-
lished by applying the covering theorem.

LemMma 6.2. Ife >0 and G is a function from R X R to N such that
G €E0OB° and S, on [a, b], then there exists a subdivision D of [a, b]
such that if {x,}{-, is a refinement of D and {x;}}%} is a subdivision of
[xi, x;] for 1=i=n, then

ﬂ(1+G;j)—<1+2 G,-,-)|<e.

Proof. There exist a subdivision {r;}/_, of [a, b] and a number B
such that if {y,}, is a refinement of {r,}/_,, then

(1) 2,|G/|<B, and

@ IO, (1+|G|)<B.
It follows by applying the covering theorem that there exists a subdivi-
sion {s;};-, of [a, b] such that if 1 =i =s and {x;};% is a subdivision of
[si-1, 8.1, then

>

1=1

si)-1
i ,ij I < €(2B2)_1.
j=2

Further, it follows from Lemma 6.1 that there exists a subdivision {t; }/_,
of [a, b] such that if {x,}/_, is a refinement of {t.}'y, 1 =i =n and {x;}I}
is a subdivision of [x;_;, x;], then

rj 1+ Gy) - (1 +,§ Gi,-) l <e(ds)™.

j=1

Let D dencte the subdivision
{rifico U{si}ioo U{t:}-o
of [a, b] and suppose {x;}'-, is a refinement of D. Further, suppose

{x;}74 is a subdivision of [x;_;, x;] for 1 =i =n. Let P be the subset of
{i}i-, such that i € P only if x; €{s;}i, or x;,_, E{s;}i-. Finally, let
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Q ={i}?=1_P

In the following manipulations, we use the identity

[—[(1+b)—1+2b +2b{2 b[]‘[ (1+by) ]}

j=i+1 k=)+1

where 27 .., b; =0 and II;_,.,(1+b,)=1. This result can be estab-
lished by induction.
We now establish the desired inequality:

—(1+"§Gij)!

='€§; ﬂ(HGﬁ)—(HgGU)'
3|l (-5

<Z' 1+86,+%6{% alff ava]

IEQ v=u+l

iy
i=1

_ (1 + 'g G,.].) l +2s[e(4s)™]

i=1

68 G 11 ava])|ren

égw {2} IG,,,I[ ﬁ (1+[G,,,|)]}+e/2
gB;S {ﬁj‘, IG,,,I}+€/2

=B[e(2B)"] D i |G, |+ €2

ieQ j=1

<B[e(2B’)'IB+€/2=€.

LemMA 6.3. If G is a function from RXR to N,G € OB° on
b
[a,b] andf G exists, then

I

H(1+G)—<1+JG>'=O.
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Proof. The existence of ,IP(1+G) for a=x<y=b>b follows
b
from Theorem 3. Also, since G € OB° on [a,b] and f G exists,

GeS,on[ab]

Let €e>0. It follows from Lemma 6.2 that there exists a subdivi-
sion D of [a, b] such that if {x;}/-, is a refinement of D and {x;};{} is a
subdivision of [x;_,, x;] for 1 =i =n, then

_<l+g G,-,). <e€/3.

Suppose {x;}/-, is a refinement of D. For 1=i=n, let {x;}} be a
subdivision of [x;_,, x;] such that

ij
=1

(1 + G)-—ﬁ 1+ G,-,-)l <e€/3n

j=1

and

U—f" G|<e/3n.

Thus,

x,,,H‘i(l+G)~(1+J:‘ G)l

1+ G) - ﬁ(l+G,,)'
flasan-(1+5 a)
Sa6-[ o

ij

+2

<n(e/3n)+e€/3+n(e/3n)=c¢€.

THEOREM 6. If v is a nonnegative number, G is a function from
R XRto Nand G € OB° on [a, b], then G € OA* on [a, b] if and only
if GEOM”’ on [a,b).
Proof. Suppose G € OM" on [a, b]. It follows from Theorem 2
b

that f G exists. Hence, it is only necessary to show that
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J‘b
Let e >0. There exists a subdivision D, of [a, b] such that if {x;}/_sis a
refinement of D,, then

G—jG.=V.

v—e2<S |1+ G —, 51+ G)|< v +¢/2.
iz

Further, it follows from Lemma 6.3 that there exists a subdivision D, of
[a, b] such that if {x;}'-, is a refinement of D,, then

n

>

i=1

LJVU+Gy—O+f <ﬁ‘<qﬂ—uyt

X
Xi—1

Let D = D,UD,. Suppose {x;}'-, is a refinement of D. Now,
G,‘ _f i G’
=2

+[nJP«1+cn—<1+[:|G)]y

n

>

i=1

[1+G — . II"(1+ G)]

Thus,
Slo-]
§§H+G—mWﬂ+GN
+§ nﬂw1+G)—O+J: GH
<v+el2+el2=v+e
Further,

n Gi—fx,- G’

z§n+a—mmu+an

i=1
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P>

>yv—el2—e2=v—e.

Xi
x

,,_,H"(1+G)—<l+f G)l

Hence,

V—€<i
i=1

G- G‘<v+e.

Therefore, G € OA"* on [a, b].

Suppose G € OA” on [a, b]. It follows from Theorem 3 that
P (1+ G) exists for a =x <y =b. Hence, it is only necessary to
show that

b
f [1+G -1+ G)|=v.

Let € >0. There exists a subdivision D, of [a, b] such that if {x;}[-,is a
refinement of D,, then

V—€/2<2

Gi—f"i G‘<y+e/2.

Further, it follows from Lemma 6.3 that there exists a subdivision D, of
[a, b] such that if {x;}/_, is a refinement of D,, then

X; |
1+f G- M1+ G)| <e@|-1)".
Let D = D,UD,. Suppose {x;}/-, is a refinement of D. Now,
21+ G -, I*(1+G)|
i=1

[G,. —J G]+ [1+f G—,,_.H"(1+G)”.

It follows as in the preceding argument that

i
i=1

v—e<i 11+ G -, "1+ G)|<v+e
i=1

Therefore, G € OM”* on [a, b].
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We now prove a theorem on the existence of integrals of products
of functions. This result is related to a theorem by B. W. Helton [2,
Theorem 2, p. 494].

Lemma 7.1. If € >0,H is a function from RXR to N and
H € OL° on [a, b], then there exist a subdivision {t.}/_, of [a,b] and a
sequence {k:}i-, such that if 1=si=tand t_,<x <y <t, then

|H(x, y)— k| <e.

Proof. This lemma is a variation of a lemma used by B. W. Helton
[2, Lemma, p. 498]. The proof presented there can be used to establish
the lemma as we have stated it.

LeEmMA 7.2. Suppose |AB|=|A||B| for ABEN. If vis a
nonnegative number, k € N, G is a function from R XR to N and
G €0A"’ on [a,b], then kG € OA*" on [a, b].

Proof. Since |AB|=|A||B|, the proof is readily
constructed. If the preceding equality did not hold, the lemma would
not necessarially follow. An example of such a situation is presented
after the proof of Theorem 7.

THeOREM 7. Suppose |AB|=|A||B| for AABEN. If vis a
nonnegative number, H and G are functions from R X R to N, H € OL°
onla,bl,G € OB°on [a, b] and either G € OA* on [a,b] or G € OM*
on [a, b], then there exist nonnegative numbers a and B such that HG is
in OA* and OM*“ on [a,b] and GH is in OA® and OM?® on [a, b].

Proof. We initially establish that there exists a nonnegative

number a such that HG € OA“ on [a, b]. It follows from Theorem 6
b

that G € OA” on [a, b]. Hence, the existence of f HG follows from

Theorem 5. We use the Cauchy criterion to establish the existence of

J‘b
Let € >0. There exist a subdivision E, of [a, b] and a number B
such that if {x,}{-, is a refinement of E,, then

HG—fHGl.

2|G,.|<B.
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It follows from Lemma 7.1 that there exist a subdivision E, = {t;}i_, of
[a, b] and a sequence {k;}i-, such thatif I=Si=¢t and t,_,, <x <y <,
then

|H(x, y)—k | < e8| —1|B)".

Since G € OB°N OA" on [a, b], it follows that there exist subdivi-
sions {r;}iZ} and {s;}'1} of [a, b] such that

€)) t, < < s <t forl1=i=t, and

@ = " HG

refinement {x;}/-, of {s._, t;-,, r:}.

It follows from Lemma 7.2 that kG € OA™"* on [r,s;] for 1=i=
t. Hence, for each i there exists a subdivision D; of [r, s;] such that if J
and K are refinements of D, then

>

Jay

<e[8(t+ 1] 'for1=i=t+1andeach

kG — ka’

k.G —fkiGl l <e(dt)".
K(I)
Let D denote the subdivision U?_, E; U!_, D; of [a, b]. Suppose
J, and J, are refinements of D, P,; and P,; are subdivisions of [s;_,, r;] for
1=i=t+1,Q, and Q, are subdivisions of [r,s;] for I=i=t and J,
and J, are equal to

t+1

UPiUQi and U Py U Qu

respectively. For convenience, suppose

> |HG - fHG[ HG—jHG..
Ju) JAD)
Thus,
S | HG - jHGl HG—fHGH
Ju JoI)
=> |HG - fHG’ HG—IHG'
Jun JaI)
Y ’HG fHGl ‘HG fHG'
i=1 Pn(l) i=1 Qu(I)
t+1 t
> |HG - fHGI > > HG—fHG‘
i=1 Pu(l) i=1 Q)
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<(t+D{e[8t+ 1]} + 2 >

i=1 Qu(I)

L+ DB D= S

i=1 Qz(n
=2 >

i=1 Qu()
t

>

HG—fHG’

HG—IHG(

(H—ki+k,-)G—f(H—k, +k,-)G‘

(H—k,-+ki)G—f(H—k,-+ki)G’+e/4

=1 Qa(l)
2 t
=|-112 2 2 [(H-k)G|
j=1i=1 Qu(D
2 t
+O> > f(H—k,-)G‘
j=1i=1 Qu(D

t

+> >
i=1 Qu()
t

-2

1=1 Qz(I)

k,‘G ‘—f k,G'

kG —f k,G’ +€/4

2B|—1|[e(8| —1|B)'1+2B[e(8| — 1| B) "1+ t[e(4t) '] + €/4

A A

€.

b
Therefore, f HG - f HG/| exists. Hence, there exists a nonnegative
number « such that G € OA* on [a,b]. Thus, it follows from
Theorem 6 that G € OM* on [a, b].
A similar argument can be used to establish the existence of
B. Therefore, the theorem follows.
Theorem 7 does not remain true if the requirement that |AB|=

|A||B| is removed. In the following we establish this assertion by

1
constructing a function G and a constant K such that f G exists,
0

1

J

We consider the set of infinite diagonal matrices with bounded
elements and |M|=1ub|m;|. For p =1,2,---, let A, be the infinite
diagonal matrix such that a,, =1 and a, =0 if q#p. Let A=
{A,|p =1,2,---}. There exists a reversible function f from the ra-
tional numbers in [0, 1]to A. Let G be an interval function defined on
[0, 1] such that

KG - J' KG| does not exist.

a-|a

1
exists and f
0
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(v—~u)f(v) if v is rational
G(u,v)= B where r is a rational number in
(v = u) f(r) (u,v) if v is irrational.

For each rational number r in [0, 1], let p(r) be the positive integer such
that f(r)=A,,. Let K be the infinite diagonal matrix such that if
r = m/n is a rational number contained in [0, 1] and m and n have no
common integral factors other than 1, then

. _ {0 if n is odd
pe() = | if n is even.

We have now constructed a function G and a constant K such that

1 1 1

f G=0,f G-JG =1andf KG—JKG
0 0 0

example was suggested by an example in a previous paper by the author

31

does not exist. This
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