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THE PADE TABLE OF FUNCTIONS HAVING A
FINITE NUMBER OF ESSENTIAL SINGULARITIES

ALBERT EDREI

Let /(z) be regular at the origin and let it be single-valued
and regular except for poles and s + 1 < + oo essential singulari-
ties ao,au α2, - -,as. The a's may be limit-points of poles and
α0 = °° is permissible. Assume that ak is of finite order λk and
let Λ = Σ λ*.

The author obtains a convergence theorem for the Pade
table of Σa}z

} = /(z). The simplest consequence of his result
may be stated as follows: if Λ < 2, the diagonal approximants of
the Pade table converge almost everywhere in the plane.

Introduction. Let

(1) flo + aλz + a2z
2 + = /(z) (α0 ̂  0),

have radius of convergence po>O. It is well known that given two
integers m ^ 0, n ^ 0, it is always possible to find two polynomials

(2) Qmn(z) = q0 + ήf.z + + ^z",

(3) Pmn(z) = po + P,z + - + pmz'n,

such that

(4) QmπCzMO,

and

(5) f{z)Qmn{z)-Pmn{z)= Σ Pi**-
j = m+n + l

Although P and Q are not unique, the rational function

does not depend on the particular choice of the polynomials P and Q
which satisfy (4) and (5) [6; pp. 235-237]. We place Rmn{z) in the nth
row and mth column of an infinite matrix. The resulting array is, by
definition, the Pade table of /(z).

429
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We propose to study the convergence of infinite sequences of
"approximants" defined as follows: with each fc = l,2,3, •••, we as-
sociate an ordered pair (m, n)

(7) m^m(k) (m ^Q), n ** n(k) (n S

and examine the behavior of the * 'error"

(8)

as k —> oo. The functions m (k) and n(k) in (7) enable us to simplify our
notation and, from this point on, we write

(9) Pm{z\ Qn(z),

instead of

Our results concern the class of

Quasi-meromorphic functions of finite order. We say
that f{z) is quasi-meromorphic, of order Λ, if

(i) f(z) is single-valued; its only singularities are poles and
essential singularities

αo,α,, •••,«, (s < +oo),

which may be limit-points of poles;
(ii) one of the α's may be oo;
(iii) the order of α; is A,- and

λo + A, + λ2 + + λs = Λ < + oo.

THEOREM 1. Let f(z) be quasi-meromorphic of order Λ.
Assume that m(k)>0 and n(k)>0 are integers such that

(10) χkβ<m+n (k = 1,2,3, •; χ >0)

for some fixed χ and

(11) 2 β > Λ .

Assume also that, as k—»oo?
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(12) m — o(n logn), n = o(m logm).

Then, given p > 0 and δ > 0, it is possible to find a measurable set
Ω = Ω(p, δ) such that

(13) measΩ<δ,

and such that

(14) Rmn(z)->f(z) (/c->+*>),

uniformly for all z restricted by the conditions

(15) | z | ^ p , z £ Ω .

As an immediate consequence, we obtain

COROLLARY 1. // Λ<2, then

(16) Rnn{z)->f(z) (n-><»>,

for almost all z.

The connection between the uniform convergence in (14) and the
pointwise convergence in (16) is readily established by Egoroff's
theorem. An appeal to the latter result does not simplify our proofs
and we shall therefore not concern ourselves with this aspect of the
question.

The introduction, in Theorem 1, of the exceptional set Ω cannot be
avoided unless the class of functions under consideration is severely
restricted [1], [4].

We study this situation in the following Theorem 2. For simplicity
we confine our attention to sequences of diagonal elements of the table.

THEOREM 2. Let f{z) be quasi-meromorphic, of order A < +<».
I. Consider the Hankel determinants

(17)

an an-λ an-2 aλ

an+ι an an-x α 2

fl2n-l aln-2 a2n-3 ' ' ' «π

(n = l,2,3, ),
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and let An^0 for all n belonging to some infinite sequence N of positive,
strictly increasing integers.

Assume that, in some neighborhood of the origin, the approximants
Rnn(z)(n EΛf) have no poles.

Then

(18) lim sup
Λn

nGJΐ

An+]
\/n logn

,-1/Λ

II. Assume that the disk

\z~Z0\<η (η >0)

contains no singularities of f(z) and no poles of Rnn(z).
Then, given η' (0 < η' < η) and δ > 0 we have

for all z and n satisfying the conditions

(19) \z-zo\^η\ n

The method which leads to Theorems 1 and 2 may be applied to
situations significantly more general than the one considered in this
paper.

Functions with singularities of transfinite measure
zero. We say that the singularities of f(z) have transfinite measure
zero if f(z) satisfies the two following conditions.

I. The analytic function f(z) is single-valued and regular at the
origin and throughout the complement CE of a closed set E of the
extended z- plane. The origin lies in CE.

II. Consider, in the plane oΐ the complex variable ζ, the image %
of E given by the inversion

Assume

where τ{%) is the transfinite diameter [5; pp. 268-273] of %.
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We state without proof the following analogue of assertion I of
Theorem 2.

THEOREM 3. Let the singularities of f{z) have trans finite measure
zero.

Let An and M have the same meaning as in Theorem 2. Assume
that, in some neighborhood of the origin, the approximants Rnn(z)
(n G J{) have no poles.

Then

(20) lim
An

1/n

= 0.

An analogous extension of assertion II of Theorem 2 is also
possible. We do not state it here because, in its present form, our
proof introduces restrictions which are more complex than those given
by (19).

The analogue of Theorem 1, for functions with singularities of
transfinite measure zero, differs little from a recent result of Pom-
merenke [8]; it is consequently omitted from this note.

If /(z) has singularities of transfinite measure zero, a classical
result of Pόlya [7; pp. 688-689] asserts that

(21)

For the class of quasi-meromorphic functions of order Λ, I have
shown [3; pp. 36-49] that

(22)

and that this relation is "best possible".
From (21) and (22) we deduce, respectively,

liminf \AnjAn\
llm=0,

and

liminf IAn+1/ΛJ l/2πlogπ^e-1/Λ.
n-*oo

The corresponding relations with lim inf replaced by lim sup require, in
addition, that the sequence {| An \}n be decreasing with a regularity that
has little analytic significance.
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On the other hand (18) and (20) show that, unless the determinants
An display this type of regularity, the sequence of diagonal approxim-
ants {Rnn(z)}n will have poles accumulating at the origin. Following
Chisholm [2], we say that such poles are "spurious"; they are accidents
of the Pade method and do not reflect the presence of nearby sing-
ularities of /(z). To eliminate spurious poles, we would have to impose
severe and unnatural conditions: within the class of quasi-meromorphic
functions of order Λ,

limsup \AnJAn\
ιln]ogn^e -1/Λ

represents as serious a restriction as would be the requirement that,
within the class of entire functions of finite order (for which
lim supn_ooIan |

1/nlo^n< l), we only consider those for which

limsup Ia n Ja n \ ι n o s n <L
n—>o°

Focusing our attention on the class of quasi-meromorphic func-
tions of order Λ < 2, we see that the perturbations introduced by
spurious poles are to some extent compensated by the fact that the
convergence of the approximants is unaffected by the radius of con-
vergence of (1) (or the radius of meromorphy of /(z)): in an obvious
sense, the sequence

of diagonal approximants "overconverges" almost everywhere in the
plane.

We conclude this introduction by some remarks about the notations
K,K0,N0, which we use systematically. We always assume that
K > 1 the value of K may depend on several parameters and is not
necessarily the same one each time it occurs. The quantities KQ, No

denote positive integers with the same indeterminate character as
K. They always appear as conditions such as k^K0, n ^ No, and
restrict the validity of some relation to sufficiently large values of k and
n. Whenever they qualify expressions such as (19), involving the
complex variable z, it is understood that the bounds Ko or No which they
indicate hold uniformly for all z under consideration.

2. Integral representation of the error term
Δmn(z) Using the notation (9), we rewrite (5) as



THE PADέ TABLE OF FUNCTIONS 435

(2.1) f{z)Qn{z)~PΛz)= Σ Pfi1 (Pi=P,(k)).
)—m +n + \

Set

(2.2) α, = 0 ' (/= - 1 , - 2 , - 3 , ) ;

coflsi<to fte Hankel matrix

/ "m + l dm Λm-\ ' ' ' ί^m-n + l \

(2.3) dm-n+2

dm+n-\i "rri-rri ~-rrt-rfi — ι ^m+fl—2 ^m I

and assume that its rank is n. We may then obtain a "solution" of (2.1)
by defining

(2.4) Qn(z) =

(2.5) p, =

1 z

dm+1 dm

dm+2 dm + l

dm+n dm+n

dj a M dj-2

dm+\ dm dm-\

dm +2 dm +1 dm

Q.m+n Qm+n-1 dm+n-

dm-χ

dm

zn

dm-nΛ

ϋ =0,1,2,3, •••),

and

(2.6)

Whenever the rank of (2.3) is n, the polynomials Pm and Qn will be
defined by (2.6) and (2.4). Then

(2.7)
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where 5^(z) is a series of nonnegative powers of z and Ajjίj* is the
Hankel determinant of the matrix obtained by adding to (2.3), as last
row

If the rank of (2.3) is < n, (2.4) becomes Qn(z) = 0; it violates our
condition (4) and hence cannot be used. For sake of definiteness we
shall then select, for Pm and Qn, some specific solution of (2.1) with

(2.8) degree Pm ^ m, degree Qn ^ n, Qn(z) ^ 0.

A closer characterization of these polynomials is unnecessary.
Denote by

Vn(z)=Vnm(z)

a polynomial such that

(2.9) degree Vn ^ n, Vn(z) jέ 0,

otherwise arbitrary.

From (2.1) we deduce that

( 2 1 0 ) f(z)Qn(z)Vn(z)-Pm(z)Vn(z) = ΓΛz)

is holomorphic for | z | < ρ0 and hence by Cauchy's theorem

where | z | < p0 and the contour of integration is a circumference

(2.12) ζ = roe
iω (Og ω <2τr, |z | < r o <p o ).

Since Pm{z)Vn{z) is of degree ^ m +n, the second integral in (2.11) is
zero and hence we obtain the fundamental relation

(2.13) / ( z ) - ^ j = Δmn(2)

M)Qn(ζ)Vn(ζ)
Qn(z)Vn(z) 2ττi
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We note that (2.1) and (2.11) also imply

(2 \4) F (()) = n V (V (0) (D

Iπi J ζ

We shall use the above relation in the special case

(2.15) m=n, A n ^0, Vπ(0)^0.

Since

An = A™ = QΛO),

we may rewrite (2.14) in the equivalent form

(2.16) (-1) χ--

We also note that (2.7) (with m = n) leads at once to

Hence, if An^ 0, Pn{z) and Qn(z) have no common zeros and the poles
of Rnn(z) coincide exactly with the zeros of Qn(z).

3. Factors of a quasi-meromorphic function. From
our definitions it follows that /(z), in Theorem 1, may be represented in
the form

(3.1) Hz) - Wz)Λ | ( j i j - ) », ( ^ *.( j-L-) (, < + - λ

where

(3.2) ft,(ί) ( i ;=0, l ,2, ,s)

is a meromorphic function of ί, of order λv < +<χ>. Meromorphic
functions correspond to the special case s = 0.

The possibility of a decomposition such as (3.1) and the uniqueness
of the orders λ̂  (v = 0,1, , s) are readily deducible from the definition
of order of an essential singularity.

This aspect of the question need not concern us here and we shall
be content with the naive view that Theorem 1 is applicable to all
functions representable in the form (3.1).
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It is obvious that a finite number of zeros and poles can always be
transferred from one factor h to another. This remark leads us to a
preliminary clarification of what we mean by zeros and poles of hv{t).

Select γ0 so as to satisfy the conditions

(3.3) 0 < 2γ 0 < min (I α, I, I α 2 1, , I α s 1,1),

and

(3.4) 2 γ 0 < min (| av - aμ | ) (\^v^s,l^μ^s).

The poles of f(z) which lie in the region

(3.5) 0<\z-av\<y0

will be denoted by

(3.6) bϊ\bϊ\bϊ\ -

and arranged so that

(3.7) y o > \ b \ v ) - a v \ S \b{

2

v) - a v \ ^ \ b γ } - a v \ ^ •••.

The "poles of M O " are, by definition, the quantities

deduced from (3.6) by the transformation

(3 9) t(v) = (i = 1 2 3 •)
U j (JCp

These operations are performed for all v = 1,2, ,s. The poles of
/(z) which do not belong to one of the sequences {b]v)}j (v = 1,2, , s),
have no finite point of accumulation. We shall denote them by b, and
arrange them in a sequence

(3.10) bl9b29b3, -

so that
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We also include, in (3.10), elements such as av (repeated a suitable
number of times). They enable us to take into account factors
(z - ap)'β (β >0) which may be present in the decomposition
(3.1). The sequence (3.10) is by definition the sequence of poles of
ho(z).

In view of the conditions (3.4), (3.5), and of the regularity of f(z) at
the origin, every pole of f(z) belongs to one and only one of the factors
K in (3.1).

The zeros of /(z) (which do not explicitly appear in our proofs) are
to be distributed in exactly the same way among-the s +1 functions
hv{t). The assumption a o ^O implies the regularity of l//(z) at the
origin. Hence there is complete symmetry between the functions /(z)
and l//(z). Both have the same essential singularities av with the same
orders λ,, (i> = 0,1,2, -,s).

4. Estimates from the theory of meromorphic
function.

LEMMA 1. Let /ι(z)(/ι(0)^°°) be meromorphic, of finite order λ
and let

be the sequence of its poles.
Take σ > λ. Then, if n is large enough, the function h (z) has fewer

than n poles in the disk

(4.1) | z | g n 1 / σ .

The function

(4.2)

which is regular in the disk (4.1), satisfies the inequality

(4.3) \

Proof. Denote as usual by n(x, α>) [9; p. 284b] the number of poles
of h(z) in \z I g i By the elements of the theory

(4.4) n(x,°°)<xσ (λ<σf <σ; x >xo(σ')).

Hence there are, in the disk (4.1), fewer than
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(4.5) nσlσ<n (n^NQ)

poles of h{z).
From the Poisson-Jensen-Nevanlinna identity [9; p. 129] we deduce

the well-known inequality

(4.6) log|Λ(z)|g f ± | f ] m(x,h)+
x — \z \

where |z \ <x and m{x,h) is Nevanlinna's mean. Applying(4.6) with

x = n1/σ, I z I g \ n1/σ,

we find

(4.7)

where N(JC,OO) has the meaning assigned to it in Nevanlinna's theory.
The inequality (4.3) follows immediately from (4.7) and the well-

known behavior of m(x, h), n(x, <*>), N(x,») associated with functions
of finite order.

5. Construction of the polynomials Vn(z) and of the
contours 9in. Choose η > 0 such that

(5.1) σv=λv + η (i/ = 0,l,2, ,s)

satisfy the condition

(5.2)

This is possible by (11).
Put

(5.3) n*

which imply

(5.4) n»~

and
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(5.5) Σn^n.

The contour %n (n § No) is formed by s + 1 circumferences:

(5.6)<C = {ζ: ζ =1

2e
iωnllσ° ( 0 ^ ω <2ττ)},

(v = l,2, ,s).

We introduce, for later use, the compact set

(5.8) 2n ={z: \z\MnHσ«\- (j {z: \z - av | <2n;ι/σ"},

which is bounded by

«n = y ^

Consider now the points b]v) which appear in (3.6) and (3.7); let
there be liv) of them which satisfy the condition

In view of Lemma 1

(5.10) l(v)<nv.

Let

(5.11) Vnv{z) = (z- avr~ιiv} fi(2- b]v))

1—Γ Z — Ό

H z - av

We thus define Vnv{z)(v - 1,2, , 5) and finally

(5.12) Vn0(z)= Π

where the b} are members of (3.10). By Lemma 1, the degree /(0) of
Ko(z) satisfies the condition

(5.13) / ( 0 ) <n 0 .
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Our polynomial Vn(z) is now defined as

(5.14)
x=0

its degree is

(5.15) lφ) + nl + n 2 + - +

In view of (3.1), (5.11), (5.12) and (5.14)

(z - av)\

6. Estimates for /(z)V n (z) and Vn(z). If n^N0,
Lemma 1 shows that ho(z)VnO(z) is regular at all points of the disk
I z I = nHσ\ Moreover

(6.1)

Similarly, the substitution

t=
z — av

transforms

(6.2)
W n Λ z )

into

Again, by Lemma 1, the product (6.2) is regular for

IT - a \>

and satisfies the inequality

(6.3)
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LEMMA 2. // n is large enough

(6.4) f(z)Vn(z)

is regular at all points of 3)n.
Moreover

(6.5) \f(ζ)Vn(ζ)\^ en(K)n

with

and

(6.6) \f(ζ)Vn(ζ)\^(2e)n |f |».+"'+-+«. (ζ i

Proof The regularity of the product (6.4) in 2)n is an immediate
consequence of the decomposition (5.16) and of the regularity of each
factor (6.2) and of ho(z)VnO(z).

The estimates (6.5) and (6.6) are obvious consequences of (5.16), of
the estimates (6.1) and (6.3), and of the definitions of the contours %{ζ\

This proves Lemma 2. We also need the lower bound for Vn(z)
contained in

LEMMA 3. Consider the point sets

(6.7) D(ρ, γ ) = {z:\z\^ρ}- \J {z: \z - av | < γ }

and

ί y\ s ί y)
(6.8) D\ 2p, ^) = {z: \z | ^ 2 p } - (J \z: \z - av\<^\,

\ ^/ v=\ I I)

where

(6.9) p g 1 + max | α, |, 0 < γ < γ0,

and γ0 is ίΛ^ constant in (3.3) and (3.4).

Let there be if = ¥(2p, γ/2) po/es o//(z) m D(2p, γ/2); r^nam^
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C\, C2, * * ',

and let

Hn
U {z:\z-q\<e~n).

Then, the condition

zED(pyy)-Hn,(6.10)

implies

(6.11)

Pwof. An inspection of (5.14), (5.11) and (5.12), shows that each
one of the linear factors (z - q) or (1 - z/Cj) which may appear in Vn(z)
has a modulus ^e~n/2p, provided z£Hn. For z ED(ρ, γ), all other
factors have a modulus ^ γ/2p. The Lemma is now obvious.

7. Proof of assertion I of Theorem 2. Consider

R (-Λ_p

where q =q(n)^n is the exact degree of Qn(z).
If n G JV, we have

(7.1) A , = Q n ( 0 ) ^ 0

and hence, if Qn{z) has zeros znj,

In view of the remark at the end of §2, the poles of Rnn(z) coincide
exactly with the zeros of Qn(z) so that by one of the assumptions of
Theorem 2, we have

(7.2) QΛz)
0.(0)

where δ is suitably small and fixed.
By (7.1), (2.16), Lemma 2, and the elements of contour integration,
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(7.3)

with

(7.4)

By (7.2) and

1

1
2ττ/

(6.5)

Λn

V T

f(ζ)VΛζ){QΛζ)IQΛO)} ή .

(7.5)

in S JV0; v = 1,2, •• ,s),

where γ0 satisfies (3.3).
Similarly, using (6.6) instead of (6.5), we find

(7.6) 2 1 l n

By Lemma 3,

(7.7) 1
^ K".

\Vn(0)\

We now use (7.5), (7.6) and (7.7) in (7.3) and obtain

In view of (5.4), this leads to

(7.8)

Since

lim sup
1/n logn

,-1/Σ

(η

and 17 is arbitrary, (18) follows from (7.8) and assertion I of Theorem 2 is
proved.



446 ALBERT EDREI

8. A consequence of the Boutroux-Cartan lemma.

LEMMA 4. Let

(8.1) Qn(z) = fcB(z - znl)(z - zn2) --{z-znq) (κnέ 0)

be a polynomial of degree q^kn.
Then, given e > 0 and p =̂  e, ίί w possible to find a set Gn, depending

only on €,p, and on ίfte z^ro5 o/ Qn(z), formed by the union of no more
than n disks with sum of radii ^ 2ee and such that

(8.2) \z\^P, z£Gn

imply

(8.3) QΛζ)
Qn(z)

Each one of the disks ofGn contains one or more zeros ofQn(z).

Proof. Let

be all those zeros of Qn(z) which lie in \z\^2p.
In view of (8.2)

/
v = \

\QΛz)\^\κn\ Π

and by the Boutroux-Cartan lemma [10; p. 60]

(8-4) |<λ(z) | l=L ~

A classical proof of the Boutroux-Cartan lemma [10] shows that
each exceptional disk of Gn must contain zeros of Qn{z).

The upper bound

(8.5) Π
„ = / + !

is obvious so that (8.3) follows immediately from (8.4) and (8.5).
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9. Analytic continuation of the error term. We start
from (2.13) with | z \ < r0 < p0 and with the contour of integration (2.12).

By Lemma 2 and the elements of contour integration

(9.1)

where

nv 2ττi J^> ζm+n+\ζ-z) ^'

An inspection of (6.7) and (5.8) shows that, if n is large enough, the
identity (9.1) is valid for all points of D(ρ,y) other than the zeros of
Vn(z)Qn(z).

10. Proof of assertion II of Theorem 2. We take m = n
in (9.1) and (9.2).

By assumption

Γ 0 ={z: \z-zo\<η}

contains no poles of Rnn (z) and, since An ̂  0, it also contains no zeros of
Qn(z).

We use Lemma 4 with

4ee < η.— ηf.

Then, the exceptional disks do not intersect

and consequently

QΛζl(10.1)
QΛz)

Take in Lemma 3

( z e Γ ι ) .

y<J-γ

p large enough to imply
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Γ0C{z:|z|=ip},

and n large enough to imply

Γ,CD(p,γ)-Hπ.

Then

(10.2)
1

Vn{z)
SiK" ( K > 1 , zGΓ,),

for some suitable value of K.
From (9.2), (10.1) and (10.2) we deduce

where

TΓ max i 11 +

\ v=0,\,2, ;s,

.lev

Using these estimates, (6.5) and (6.6) in (9.1), we find

(10.3) \f(z)-Rnn(z)\^K»t

In view of (5.4), assertion II of Theorem 2 is an elementary consequence
of (10.3).

11. Proof of Theorem 1. We first restrict our arguments to
the approximants on the side of the diagonal characterized by

(Π.l)

and assume that there are infinitely many approximants satisfying the
above condition.

By (10), (12) and (11.1) we obtain

(Π.2) β log k < log n + o (log n) (k -> «),

and therefore n -> α> as k -» ».
We now use (5.2) to select f >0, small enough to imply
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(Π.3)

and deduce from (11.2)

(11.4) & + 3ξ)log(k(ll2Hiξ/2))<logn +o(logn) (k->oo).

Let p and δ be the given quantities in the statement of Theorem
1. We increase, if necessary, the value of p so that the first inequality
in (6.9) be satisfied; this does not affect the generality of Theorem
1. With p thus restricted, we select γ such that

0 < γ < min(γ0, δ m (\2πsY m ) ,

and consider Lemma 3. The number if which appears in this lemma is
now determined and enables us to choose No large enough to imply

(11.5) m e a s Hn g ίfπe~2n < — ( n g N o ) .

Clearly

Hn+ι CHn,

(11.6) meas(D(p, γ ) - Hn) §= meas(D(p, γ) - HNo) > τrp2-1.

Lemma 4 with e = /c<-»2>-«/2> a n d p a s above, yields

(ii.7) &m
QΛz) =

for

(Π.8) \z\^p, z£Gn,

with

(11.9) meas Gn ^4πe2k~1''

From (11.7) and (11.4) we deduce

(11.10) Qn(ζ)
QΛz)ζn

n logn
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Increasing if necessary the value of Kθ9 we assume

4πe2 Σ k-ι-€<ί,

so that

k=Ko

Γ= U Gn (n=n(k))
k = Ko

implies

(11.11) meas Γ < f .
o

From this point on, all our inequalities will be subject to the
conditions

(11.12) zED(p,y), z£HNo, z<£Y.

By (11.6) and (11.11) this means that we are excluding from the disk
I z I < p, a measurable set Ω! = Ω^p, δ) with

(11.13) meas Ωj < x

Lemma 3 implies

(H.14) r-i-l

where K > 1 is a bound which depends on several parameters but not on
n.

The relations (9.1) and (9.2) are valid for k g K 0 and there only
remains to estimate the integrals Jnv9 using Lemma 2, (11.10), (11.14) and
the inequality

- z | ^ | (zED(p,γ),

We

(11.

find

15)
V,

_m+n + l

(z)QΛz)
Jθn l l | l V 1 + ||

\ (nlogn\
/ e x p U + 2^/
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with

and hence, we deduce from (11.15),

(11.16)

= n(k), k ^ Ko).

Similarly, using (6.5) instead of (6.6), and taking (12) into account, we
find that (11.16) holds with JOn replaced by /„„ (i> = 1,2, , s). Hence
(9.1) yields the final estimate

\)K"

for

(-11.18) \z\£ρ, z£Ωlt n=n(k)^m(k), k ^ Ko.

Clearly

(11.19) ηt-*0 (k^cc),

and hence we have proved a "restricted Theorem 1" which requires the
additional condition (11.1).

To obtain the general form of the result we consider all the
remaining approximants, characterized by

(11.20) m=m(k)<n(k) = n,

and with m and n thus defined, we associate suitable approximants of
i//.

We observe that:
(i) 1// is regular at the origin and l//(0)^0;
(ii) the function 1// has 5 + 1 essential singularities at ao =

oo, α,,α 2, α5, with respective orders λo,λ,, ,λ,;
(iii) the integers m and n appear symmetrically in the conditions

(10) and (12).
Consider the Pade approximant
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J? O*(z)

P*(z)

of 1//, where Q*(z) is of degree ^n,P*(z) is of degree S m and
Pt(2) ^ 0.

In view of (11.20), the "restricted Theorem 1" is applicable and
yields

(11.21)

provided

(11.22) \z\gp, z

Again, we have

(11.23)

1
Hz) PZ(z)

ί, m =m{k)<n(k) = n, k >Ko.

We now construct an open set <§ with

(11.24) meas ^ < r ,

and such that ^ contains the s essential singularities a, {v = 1,2,
as well as all the poles of / which lie in |z | = p.

If

(11.25) \z\^ρ, z£%

we have, for some suitable bound ω0

(Π.26) | / ( z ) | ^ ω 0 .

Hence (11.21), (11.22), and (11.25) imply

, s)

(11.27)

We now set

<?ΐ(z)
Pl(z)

Ω2 = Ω f U <S
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so that

(11.28) meas Ω 2 < y .

By (11.21), (11.26) and (11.27), we see that

(11.29) \z\^p, zfέίli, m=m(k)<n(k), k^K0,

now yield

(11.30) PUz)
Q*n(z)

By the uniqueness of the Pade table

Qn(z) Q*(z) '

An inspection of (11.17), (11.18), (11.29) and (11.30) shows that we have
proved the general form of Theorem 1. The exceptional set Ω is

Ω = {Ω, U Ω2}

with measΩ<δ (by (11.13) and (11.28)).
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