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SUBORDINATION THEOREMS FOR SOME CLASSES OF
STARLIKE FUNCTIONS

ROGER BARNARD AND JOHN L. LEWIS

Let Kr = {z: | z | < r}, r > 0. For given α, 0 < a < «, rf, 0 ^
d < 1, and M, l < M ί i o ° , let S(a,d,M) denote the class of
univalent and normalized a starlike functions / in K, with
Kd C/(Ki) C KM. The authors show the existence of a function
F £ 5 ( α , d, M) with the properties: (a) log F(z)/z, zE:K\, is
univalent, (b) if / G S(α, d, M), then log f(z)/z, z G K,, is sub-
ordinate to logF(z)/z, zGKi. Letting α-»0 they obtain a
similar subordination result for normalized starlike univalent
functions. They then point out that these subordination results
solve and give uniqueness ton a number of extremal problem in
the above classes.

1. Introduct ion. Given α , 0 < α < ° o 5 let S(a) denote the
class of normalized a starlike functions / in K = {z: \z \ < 1}. That is,
feS(a) if and only if /(0) = 0, f(O) = 1, zιf(z)f'(z) ^ 0 (z G X), and

(1.1) α R e ί l + ^

The class 5(α) was first considered by Mocanu [12]. The following
facts about S(a) are known (see Miller [11]),

(1.2a) Each/E5(α) is starlike univalent,
(1.2b) S(a2)CS(a]) whenever 0 < α , ^ α 2 < o o ,
(1.2c) I f/G5(α) and bounded, then/' is in the Hardy class H\
(1.2d) For given / E S(α), there exists a starlike univalent func-

tion g satisfying g(0) = 0, g'(0) = 1, and

Here the 1/α powers of the above functions in K are defined to be 1 at
z = 0. We note that 5(1) is the class of normalized convex functions.

For given d, 0 ̂  d < 1, M, 1 < M ^ °o9 and α, 0 < α < o°, let
S(a,d,M) denote the subclass of functions f^S(a) that satisfy:

(1.3) d^\f(z)lz\^M, z<ΞK.

We observe that S(a, d,M) is compact, as follows easily from (1.1) and
(1.3). Then in this paper we shall prove the following theorem:
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THEOREM 1. Let α, d, and M be fixed nonnegative numbers satis-
fying 0 < α < ° o 9 θ ^ d < l , and 1 < M ^ oo. Then there exists a func-
tion F = F( ,a,d,M)E S(α, d, M) with the following properties:

(A) The function g(z) = log F(z)lz, z G K,(g(0) = 0) w univalent
and convex in the direction of the imaginary axis,

(B) /// G S(α, d, M), ί/ien log/(z)/z, z G K, w subordinate to g.

In order to describe F we first make the following definition.

DEFINITION 1. Let a be given, 0 < a < oo. Then γ is said to be an
a curve in the w plane, if there exists a line in the ζ plane, not
containing ζ = 0, which is mapped onto γ by a continuous a power of ζ.

Second, we let dE denote the boundary of a set E, and Kr =
{z: | z | < r } , 0 < r <oo, Γ ^ 1. Third, we let δ(M,α) denote the radius of
the largest disk with center at the origin contained in f(K) for all
/ G S(α, 0, M). Here a and M are fixed numbers satisfying 0 < a < oo
and 1< M ^ oo. it is easily seen that S(a9 d, M) = S(α, δ(M, α), M) for
0 ^ d ^ δ(M, α). Hence in describing F we assume for given a and M
as above that δ(M, α) g d < l . For such values of α, d, and M we now
describe dF{K). If d = δ(M,α), thenJF{K) contains

(i) An arc with endpoints C, C, of the α curve tangent to
dKd2ii-d.

If δ(M, a) < d < 1, then <9F(K) contains
(ii) An arc of dKd through - d with endpoints A, A,
(iii) Two arcs with endpoints A, C, and A, C, of the two a curves

tangent to dKd at A and A respectively.
Either (a) 0 < C = C ^ M or (b) C ^ C, M < oo, and | C \ = M. If (a)
occurs, then dF(K) is the arc in (i) for d = δ(M, α), and the union of the
arcs in (ii) and (iii) for δ(M,α) < d < 1. If (b) occurs, then dF(K)
contains

(iv) The arc of 3KM through M with endpoints C, C.
dF(K) is now the union of the arcs in (i) and (iv) for d = δ(M,α), and
the union of the arcs in (ii)-(i\0 for δ(M,a)< d < 1. This completes
the description of dF(K).

The function F is uniquely determined by the above description of
dF{K) and the requirement that F G S(α, d, M), as we show in §3.

We remark that Theorem 1 is well known in the simple case a - 1,
M = oo? d = 5. In this case it is a simple consequence of the fact that a
normalized convex function is starlike of order \ (see Suίfridge [15] for a
proof of this fact). However, in all other cases Theorem 1 is
new. The subordination result in (B) implies the following corollary
(see for example Golusin [4, Ch.8, §8]).
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COROLLARY 1. Let α, d, M, and F be as in Theorem 1. Let Φ be a
given nonconstant entire function. If f E S(a, d, M), then

(A) For given z E K - {0}

(B) For given r, 0 < r < 1, and λ > 0,

P |/(reίθ)|λd<9 ^ Γ" |F
Jo Jo

(C) For a given positive integer N ^

= z + ΣI=2 α*zk and F(z) = z + Σl=2Λkz
k

9 z E K.

Equality holds in any one of (A), (B), or (C) only if for some real θ,

We note that with the appropriate choice of Φ in Corollary 1, some
of the classical extremal problems follow for 5(α, d, M). For example,
the quantities | f(z )/z |, | Arg f(z )/z |, Re {[/(z )/z ]p}, where | z | = r, 0 < r <
1, / E 5(α, d, M), and p > 0, are all maximized or minimized on <9Kr by
F. We remark that Krzyz [10] proved (A) of Corollary 1 for 5(1,0, M),
and Barnard [1] proved (A) of Corollary 1 for 5(1, d,M). However,
they did not show the F in their respective classes was the unique
function with property (A). Also Miller [11] proved (A) of Corollary 1
for S(α,0,oo), 0 < α <oo? and Φ(κ>) = ± w.

Next for fixed d, 0 ̂  d < 1, and M, 1< M ^ oo, let S*(d, M) denote
the class of normalized starlike univalent functions / in K which satisfy
(1.3). We observe for given r, 0 < r < l , and / E 5 * ( d , M ) that
f(rz)/r, z E K, is in S(a, d, M) for a > 0 small enough. Moreover if /,
g<ΞS*(d,M) and 0 < r < l , then the function z[f(z)lz]r[g(z)lzγ-\
z E K, is in S*(d,M). Using these observations and Theorem 1, we
easily obtain in §9, the following theorem.

(A) The function g(z) = log F*(z)/z, z E K; (g(0) = 0) is convex
univalent,

(B) // / E S*(d, M), then log/(z)/z, z E X, w subordinate to g.

Theorem 2 implies, as in the discussion after Theorem 1, the
following corollary.
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COROLLARY 2. Let d and M be as in Corollary 1. Replace F by
F * and 5(α,d,M) by S*{d,M) in Corollary 1. Then Corollary 1 is
valid for F*.

We remark that Theorem 2 and Corollary 2 are well known in the
simple case d = 1, M = oo (see Goluzin [4, Thm. 1, p. 531]). Moreover,
Suffridge [16] proved (C) of Corollary 2 for S*(d, oo) and N =
2. Barnard [2] proved (A) of Corollary 2 for S*(d,M) and Φ(H>) =
± w. With these exceptions, Theorem 2 and Corollary 2 are new
results for starlike functions.

For given M, a, d, as in Theorem 1, let / be in S(a, d, M) and put
D = f(K). Then the proof of Theorem 1 is based upon a geometric
description of 3D and a use of the Julia variational formula similar to
Krzyz [10] and Barnard [1]. This geometric description of 3D is
obtained in Lemmas 1-3 of §2. In §3 we use Lemmas 1-3 to determine
δ(M,α) and show F GS(a,d,'M) is uniquely defined by (i)-(iv).

In §4 we define our variations of D when 3D contains an arc of an a
curve. In §5 we show that the Hadamard variational formula holds for
the Greens functions of our varied domains. In §6 we deduce the Julia
variational formula from the Hadamard variational formula, and show
how it can be used to solve an extremal problem. In §7 we prove
Lemmas 4-7. We use these lemmas in §8 to prove Theorem 1. In §9
we deduce Theorem 2 from Theorem 1 and describe 3F*(K, d, M).

As motivation for the proof of Theorem 1, we first remark that it
turns out (A) of Corollary 1 implies Theorem 1. Second, we remark
that our geometric description implies dD is made up of a finite number
of arcs with the following property: each arc is the image, under ζa, of
an arc contained in the boundary of a convex domain. Since the Julia
variation is a local boundary variation, it follows that the solution to (A)
of Corollary 1 in S(α, d, M) should be obtainable from a local use of
conformal mapping and arguments similar to those of Krzyz [10] and
Barnard [1]. Furthermore, a general description of dF(K,a,d,M)
should follow from considering local a powers of ζ on
3F(K, l,d,M). This is indeed the case, as we see from (i)-(iv). We
emphasize, though, that the extremal functions in Theorem 1, corre-
sponding to different values of α, do not bear such a simple
relationship. Even though the bounds on F(X, α, d, M) make it quite
difficult to obtain an explicit representation formula for F, this function
is completely described by its geometric properties. Since the Julia
variational method allows to preserve both bounds and the class, it
seems the most natural way to prove Theorem 1.

Finally the authors would like to thanlc Professor Frank Keogh for
some helpful comments concerning the geometric description of S(a).
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2. A geometric description of the image domains of a.
starlike functions. Given w ̂  0, let Arg w, - π ^ Arg w % π, de-
note the principal argument of w. Let γ be an a curve as in Definition
1. Since γ is the image of a line, not containing £ = 0, under a
continuous a power of ζ, it follows for 0 < a ^ 2, that γ divides the w
plane into two disjoint domains. Moreover the domain containing
w = 0 is starlike. However for a > 2, γ intersects itself, and conse-
quently there exist rays through w =0 which intersect γ more than
once. Since we shall be studying starlike domains in which part of the
boundary is an arc of γ, it is necessary to make the following definition
for fixed α, 0 < a < oo.

DEFINITION 2. Let β denote a closed arc of an a curve γ. Then
we shall call β an a arc of γ, if each ray through w = 0 intersects β in at
most one point.

We shall determine the number of a arcs with endpoints
A,B(A^B) in the w plane. Clearly the number is zero if either
Arg(AB) = 0, or one of A and B is zero. Hence we assume A^O,
B^O, and Arg (AB) ^ 0. Next we draw the rays from w = 0 through A
and B. These rays divide the w plane into two sectors, Tx and Γ2, with
angular openings θx and θ2 respectively. We may suppose that 0 < θλ S
02 < 2ττ, since otherwise we renumber. We observe that if β is an a
arc with endpoints A and £, then either β CΓ, U{A,J3}, or β CΓ2U
{A, B}, as follows from Definition 2. We claim for fixed α, 0 < α < o°,
that

(2.1a) Let i be fixed, / = 1 or 2. Then if 0 < 0, < τrα5 there exists
exactly one a arc β with endpoints A and ί? for which β C 7]I U
{A,β}. If πα ^ 0,, there does not exist an α arc β with endpoints A
and B for which β CTt U{A,B}.

To prove (2.1a), let hx denote an analytic 1/α power of w in Tl(i = 1
or 2) which is continuous on 3T| . Then the line segment with endpoints
/i/(A) and h^B) is contained in Λf.(T;.) U{hi(A)9hi(B)}9 if and only if
0 < 0, < πa. Using this fact and considering the inverse mapping to hh

we get (2.1a).
From (2.1a) we see for 0 < a ^ 1 that if 0 < | Arg (AB) | < πα, then

there exists exactly one a arc with endpoints A, B. For 1< a < oo, it
follows from (2.1a) that there is at least one a arc with endpoints
A, J3(Arg(AB) ̂  0). Also for 2 < a < oo, there are exactly two a arcs
with endpoints A, JB (Arg AB ^ 0).

Next we determine a geometric criterion for a bounded domain to
be a magnification of the image domain of an a starlike function. This
criterion is given by Lemma 1. In Lemma 1, β denotes the a arc with
endpoints A, B, satisfying β CΓ, U{A, J3}.
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LEMMA 1. Let D be a bounded domain containing w = 0 with the
property that each ray through w = 0 intersects 3D in exactly one
point. Let a be a fixed positive number and suppose there exists a
sufficiently small η>0 such that whenever A, BE 3D and 0<
I Arg (ΛB) I < η < Trα, then either β C D U {A, B} or β C 3D. Then there
is a function g &S(a) and a number t > 0 such that tg(K) = D.

Proof. Let A, JB, be any two points of dD with 0< | Arg (AB)\<
η^πa. Define Γ, and β CTXU{A,B} relative to A and B as in
(2.1a). Let ft, be an analytic 1/α power of w on T, which is continuous
on dT{. Put Dx = D ΓΊ Tu λ = 3D Π Tu and suppose that E, F, F ^ F,
are any two points of λ. Then from the hypotheses of Lemma 1 (with
E, F, replacing A, B), either the line segment connecting h}(E) to hx(F)
is contained in hx(λ) or it is contained in /ii(Di) U{/z,G4),/zi(B)}. Since
dhiiD]) consists of /ii(λ) and segments of two rays from w = 0 forming
an angle less than π, it follows that h\{Dx) is convex. Hence hx(λ) may
be approximated by a polygonal arc r, made up of chords connecting
points on hx{λ), with endpoints /iiCA), hx{B). If n a positive integer is
given, then r can be chosen such that each point of r lies within \\n
distance of a point of h (λ). Also, r can be chosen in such a way that a
piecewise continuous argument of the tangent to r does not decrease as
r is described in the counterclockwise direction with respect to w = 0.

Taking the preimage of r under hu we find that λ may be
approximated by an arc σ,CDiUA U {A, JB}, made up of a arcs, with
endpoints A, B. Moreover each point of σx is within C/n of a point of
A, where C is a positive constant which depends only on a and
D. Also the tangent to σx rotates counterclockwise as we pass from
one a arc to another in the counterclockwise direction. Since 3D may
be written as a finite union of sets of the form λ, we see that 3D may be
approximated by a Jordan curve σ with the same properties as σx. The
bounded domain D(n), with 3D(n) = σ, is clearly starlike with respect
to w = 0. Let gn denote the Riemann mapping function satisfying
gΛ(0) = 0, gi(0)>0, and gn(K) = D(κ). Then gn is continuous in
K U 3K and a continuous 1/α power of gπ maps <9K-{1} onto a
polygonal arc. Moreover, as 3K - {1} is described in the counterclock-
wise direction, a piecewise continuous argument of the tangent to this
polygonal arc does not decrease. Using this fact and a Schwarz-
Christophel type argument we deduce that
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where bk and θk are positive, and m is a positive integer. Hence

(2.2) gJg'M^S(a).

The sequence (gπ)7 is a uniformly bounded sequence of univalent
functions in K. Moreover from the construction of D(n), we see that
gn(K) = D(n)—>D in the sense of kernel convergence. Using these
facts and applying a theorem of Caratheodory (see Goluzin [4, Thm. 1,
p. 55]), we deduce that limn^gn = g, g'(0) >0, and g(K) = D. Using
the compactness of S(a) and (2.2), we further deduce that g/g'(0) =
g £ΞS(a). Hence Lemma 1 is true.

To continue our geometric description of the image domains of a
starlike functions we prove

LEMMA 2. Let /ES(α,0,M) for some M<oo and put D =
f(K). Then each ray through w = 0 intersects 3D in exactly one
point. If A, β, A 7^ B, are in 3D*and if β is an a arc with endpoints A
and B, then

(a) either β C3D or β CD U {A,B},
(b) // Ω denotes the component of D - β containing w = 0, then

there exists a g E S(a) and t > 0 such that tg(K) = Ω.

Proof Let gr{z) = f(rz) for z e X and 0 < r < 1. Put Dr = gr(K),
and Γr(0) = gr(e'θ), O^0<2ττ. Then from (1.1) we see that

^ 0 , z E X U dK.

Let log Γr and log Γ'Γ be continuous logarithms of Γr and Γ'r(Γr(θ) =
d/dθ Γr(0)). Then the above inequality implies that

Geometrically this inequality means

(2.3a) The argument of the tangent to Π/α does not decrease as θ
increases for a continuous I/a power of Γr.

Using (2.3a) we now prove Lemma 2. Let A, B, and β be as in
Lemma 2. Choose a sector V containing β in its interior and of angle
opening φ, 0 < φ < πa. This choice is possible by (2.1a). Let p be an
analytic 1/α power of w on V. Then (2.3a) implies that p(V ΠDr) is
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convex, as is easily seen. Since D = U0<r<iA and Ds CDn s < r, it
follows that

(2.3b) p (V Π D) is convex.

Hence the line segment / with end points p(A), p(B), is either
contained in p(V Γ)D)U{p(A),p(B)} or in p(dDΠ V). Using this
fact and the inverse mapping to p, we deduce that (a) of Lemma 2 is
true. Also since each ray through the origin intersects p(V Π 3D) in
exactly one point, we see that V Π 3D likewise has this
property. Hence each ray through w = 0 intersects 3D in exactly one
point. To prove (b) of Lemma 2 we observe that p( V Π Ω) is equal to
the component of p(VΠD)~l containing zero in its
boundary. Hence p(VΠΩ) is convex. Using the inverse of p, it
follows that the boundary points of Ω in a sufficiently small neighbor-
hood of A satisfy the hypotheses of Lemma 1. A similar statement
holds for the boundary points in a small neighborhood of JS. Since
η > 0 may be arbitrarily small in Lemma 1, and since <9Ω consists of a
part of 3D and β, we find from the above discussion and (a) of Lemma 2
that dΩ satisfies the conditions of Lemma 1. Applying this lemma we
deduce that (b) is valid. This proves Lemma 2.

Again suppose that / E S(α, 0, Af) for some M < <». Then /' G Hι

(see (1.2c)) and hence Γ(0) = f(eiθ), 0 g θ < 2π is a bounded rectifiable
curve in the w plane, (see for example Goluzin [4, Thm. 1, p.
409]). Let w G Γ and suppose that Γ has unique left and right hand
tangents at w. If γ is an a curve through w, then we shall say γ is
tangent to Γ from the right (left) at w, provided the tangent to γ
coincides with the right hand (left hand) tangent of Γ at w. With this
understanding we prove

LEMMA 3. Let f and D be as in Lemma 2 and put Γ = 3D. Then
Γ has a unique right (left) hand tangent at each wGΓ. Consequently,
there exists exactly one a curve γ which is tangent to Γ at w from the
right (left). IfβCγ is an a arc with one endpoint w, then β ΠD - {φ}.

Proof Lemma 3 follows easily from (2.3b) and geometric proper-
ties of convex domains. We omit the details.

3. Applications of L e m m a s 1-3. We now determine
δ(M,a) (see §1) for fixed M and a satisfying 1< M < oo and 0 < a <
oo. To do this we let /, D, and Γ be as in Lemma 3 and put
d(f) = min {| w |: w G Γ}. We shall use the following remark which also
will be used in §4 and §8.
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REMARK 1. If w0 G Γ is such that \wo\ = d(/), then there is exactly
one a curve γ tangent to Γ at w0 from either the left or
right. Furthermore, γ is tangent to dKdif) at w0.

Remark 1 follows easily from Lemma 3 by way of
contradiction. Let γi9 γ2, be the a curves tangent to Γ at w0 from the
right and left, respectively. If yx were not tangent to dKd{f) at w0, then
yx would contain points of Kdφ arbitrarily near w0. Hence there would
exist an a arc β C γ, with endpoint w0 and β Γ\D^{φ). This inequal-
ity contradicts Lemma 3. Therefore γ, is tangent to dKdif) at
w0. Repeating the argument we see that γ2 is tangent to dKdφ at
w0. Since the definition of an a curve implies there is exactly one a
curve tangent to dKd(f) at w0, we must have γ, = γ2.

To continue the determination of δ(M,a), we need some
notation. First, given a simply connected domain G containing w = 0,
we shall let m.r. G denote the mapping radius of G (see Hayman [5, p.
78] for a definition). Also, we shall say G is a starlike, if there exists
h G S(a) and t >0 such that th(K) = G. Second, for given M and a
as above, and given s, 0 < s < M, we draw the a curve γ tangent to
dKs at - s. From the definition of γ we see that either γ intersects
itself at a point t = t(s), 0 < ί ^ M , or y does not intersect itself in
KM U dKm, and γ intersects dKM at Me'φ, Me~iφ, for some φ = φ(s),
0 < φ < 7r. In the first case we let Ω(s) denote the bounded domain
containing w = 0 whose boundary is the two a arcs of γ with endpoints
- 5 , ί. In the second case we let Ω(s) denote the bounded domain
containing w = 0 whose boundary consists of the a arc of γ with
endpoints Meiφ, M^"iφ, and the arc of dKM with endpoints Meiφ, Me~iφ,
which contains M. We claim that Ω(s) is α starlike. Indeed, it is
obvious that dΩ(s) satisfies the hypotheses of Lemma 1 except possibly
in a small disk about t in the first case or in small neighborhoods of
Meίφ, Me~iφ, in the second case considered above. Using (2.3b) with A
and B properly defined, it is easily checked that dΩ(s) also satisfies the
hypotheses of Lemma 1 at these boundary points. Hence Ω(s) is a

starlike for 0<s <M. Next we observe that Ω(sι)CΩ(s2)CKM for

0 < Si < s2 < Λί, as can be seen by examining dΩ(sι) (i = 1 or 2). Using
elementary properties of subordination, it follows that

0 = lim m.r. Ω(s,) < m.r. Ω(s2) < lim m.r. Ω(s) = M,
0 M$-•0

for 0 < 5, < s2 < M. From the above inequality we see there exists a
unique s0, 0 < s0 < M, for which
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(3.1) m.r.Ω(so)=l.

Finally we determine δ(M, α). Let /,Γ,D, and d(f) be as previ-
ously defined in §3. We may assume - d ( / ) G Γ , since otherwise we
rotate D. Then from Remark 1 and Lemma 3, we deduce that
Ω[d(/)] D D and thereupon, m.r., Ω[d(/)] ^ m.r. D = 1. Hence,
Ω(50)CΩ[ίί(/)], and so, s0 ^ d(f). Since Ω(s0) is the image domain of a
function FES(α,0 ,M), we conclude that δ(M,α) = so

Next in §3 we show for fixed α, M, and d satisfying 0 < a < α>,
K M <oo, and δ ( M , α ) ^ d < 1, that F(-,a,d,M)£ S(a,d,M) is uni-
quely defined by (i)-(iv) of §1. To do this for given 0, 0 < 0 < TΓ, draw
the α curves γ, γ, tangent to <9Kd at deiθ, de~ι\ respectively. Then
either γ intersects γ at a point u = w(0), 0 < w g M, or γ and γ intersect
dKM at points P = P(0), P = P(0), respectively with P ^ P. In the first
case we let Λ{d, θ) denote the bounded domain containing w = 0 whose
boundary consists of

( + ) the arc of dKd with endpoints deι\ de~ι\ containing - rf, and a
arcs of γ and γ with end points deι\ w, and de"w, w, respectively.

In the second case we let Λ(d, β) denote the bounded domain containing
w = 0 whose boundary consists of the arc^)f dKd in (+), the a arcs of y
and γ with end points d^iθ, P, and de~iβ, P, respectively, and the arc of
dKM with end points P, P, containing M. We also put Λ(rf, TΓ) = Ω(d),
where Ω(d) is as defined previously in §3.

Again using (2.3b) and Lemma 1, we see that Λ(d, θ) is α starlike

for 0 < θ ^ TΓ. Furthermore Λ(d, θ,) CΛ(d, θ2) for 0 < 0, < 02 ^

TΓ. Hence,

(3.2) d = limm.r. Λ(d, 0) < m.r. Λ(rf, 0,) < m.r. Λ(d, 02) < m.r. Λ(d, TΓ),
0 ^ 0

for O<0,<0 2 <τr .
Now suppose that F £ 5(α, d, M) is a function for which dF(K)

satisfies (i)-(iv) of §1. If d = δ(M,α), then from (3.1) we see that
F(K) = Λ(d, TΓ) = Ω(s0). If δ(M, α) < d < 1, then from (3.1), (3.2), and

the fact that Λ[δ(M, α),τr] CΛ(d, TΓ), we see there exists exactly one

0o=0o(d) satisfying O<0 o <τr and for which F(K) = Λ(d, 0O). We
conclude for a fixed α, 0 < α < oo, M, 1 < M < °o? and d, δ(M, α) ^ d < 1,
that F 6 S ( α , d, M) is uniquely defined by (i)-(iv) of §1. The situation
M = oo, 0 < α < oo, δ(oo, α) ^ d < 1, can be handled by treating it as a
limiting case, as M-^oo? of the previous cases considered. We omit
the details.
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4. Boundary variations. Again we assume that M, α, d,
are fixed numbers satisfying l < M < o o , 0 < α < o o , and δ(M, °o) ̂  d <
1. If / G S(a, d, Af), we also put D = /(X), Γ = <9D. Let Λ, B(Λ Φ B)
and E, F(E/ F) be in Γ. We suppose that Γ contains an a arc β with
end points A, JB, and an a arc μ with endpoints E, F. We further

suppose that μ and /3 are disjoint, except possibly B = F or A =
E. Let V and N be sectors drawn from w = 0 which contain β and μ
in their interiors, respectively. Thanks to (2.1a), we may choose V and
N to each have angle opening less than πa. We let p and φ be analytic
1/α powers of w on V and N respectively. Then we shall define the
following variations on Γ (see Barnard [1] for similar variations in the
convex case).

I. An inward variation whenever μ is not tangent to dKd, and the
right and left hand tangents to Γ at F do not coincide.

II. An outward variation whenever the right and left hand
tangents to Γ at A do not coincide, and B satisfies either (a) or (b):

(a) \B\ = M,
(b) IB I < M, and the left and right hand tangents to Γ at B do not

coincide.
III. An outward sliding of β when Γ Π dKd contains a set of

distinct points, {Q«}T, with l i m ^ Qn = A, and B satisfies either (a) or (b)
of II.

Variation I will be defined in terms of a parameter δ for 0 < δ ^ δ0

(δ0 small) in such a way that if Γ,(δ) denotes the variation of Γ, then
Γj(δ) is the boundary of an a starlike domain £>i(δ), and

(4.1) Γ,(δ) C{z: d ^ Iz | ^ M} = L(d, M).

Furthermore,

(4 2)
κ ' } D1(δ2)CD,(δ1), whenever 0 < δ , < δ 2 ^ δ 0 ,

(4.3) U

To define I let Fo be a point on(Γ-μ)ΠJV which is near F. Draw
the a arc μ0 whose endpoints are E and Fo contained in N. It is
possible to draw such an arc for Fo near F by (2.1a). Since F is as in I
it follows from (a) of Lemma 2 that μ0CDU{E,F0}. Hence the
smallest angle between the tangents to μ and μ0 at E is positive. Let
δ0 > 0 denote this angle.
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Now suppose that Fu F 2 (F, ̂  F2) are points on the arc of Γ Π N
with endpoints Fo, F. Also we suppose that F, / F,F2^ F. Draw the
a arcs μ, and μ2 with endpoints F, F,, and F, F2, respectively. Let δ(,
i = 1,2, denote the smallest angle between μ, and μ at F. As above we
observe that μ, CD U{F,F)} and thereupon that δ, >0. Also since
μ,CDU{F,F,}, we must have μ, Π (μ2-{F}) = {φ}. Hence
δi 7̂  δ2. Let Di(δ,), i = 1,2, denote the component of D - μ, containing
w = 0. From Lemma 2 we see that D{(δi) is an α starlike domain and

D^δi) CD. Furthermore if 0 < δ, < δ 2 ^ δ0, then D,(δ2) ςD,(δ,). To
μ = •

see this observe that μ2 is an a arc connecting two boundary points of
D,(δ,). Furthermore since δ, ̂  δ2, μ2CD,(δ,) U{F,F2}. Since D,(δ2)
is the bounded component of 0,(0,)-μ 2 containing w = 0, it follows
that (4.2) is true.

We put δ = δ, and let F, vary subject to the above
restrictions. For each δ, 0 < δ ^ δ0, we obtain an a starlike domain

D,(δ)CD with boundary Γ,(δ). Moreover, from the definition of

D,(δ) it is clear that (4.3) holds. To prove (4.1) it suffices to show that
Kd CD,(δ0) since D,(δ0) CD(δ) CD for 0 < δ g δ0. To do this recall
that by assumption μ is not tangent to dKd. Then by Remark 1, μ has a
positive distance from dKd. Hence for δ0 > 0 small enough μ0 also has
a positive distance from dKd and so, Kd CD,(δ0).

Variation II will be defined in terms of a parameter e f or 0 < e g 60,
while variation III will be defined for e > 0 in a sequence, z = (ey), with
lim ôo e} = 0. The variations will be defined in such a way that if Γ2(e)
denotes the variation of Γ, then Γ2(e) is the boundary of an a starlike
domain D2(e), and

(4.4) Γ2(€)CL(rf,M),

y ' } D2(e,)CD2(e2), whenever 0<e ,<e 2 ,
f

(4.6) IΊ D2(€) = D.

We remark for later use that if the right and left hand tangents at A
coincide, then our method of variation in II will still produce a starlike
domain D2(e) satisfying (4.4)-(4.6).

To define Π(a), choose a point Bo E (dKM -dD)ΠV near JB with
the property that the ray from the origin to Bo intersects β. Draw the a
arc β0 whose endpoints are A and Bo which is contained in V. Again it
is possible to draw such an arc for Bo near B by (2.1a). Let β o >0
denote the smallest angle between β and β0 at A.
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Now suppose that £?,, B2(B] ^ B2) are points on the arc of dKM Π V
with endpoints J3, Bo. Also we suppose that Bx^B,B2j^B. Draw the
a arcs βx and β2 with endpoints A, Bx, and A, B2, respectively. Let
€f(ϊ = 1,2) denote the smallest angle between βf and β at A. Clearly
€i,€2>0 and ex^e2. Let £>2(e;), i = 1,2, denote the domain whose
boundary is the union of the arcs: βh Γ — β, and the arc of dKM with
endpoints B, Bh contained in V.

We claim that D2(βi), i = 1,2, is α starlike when Bo is near B. To
see this note from (2,3b) that p(V ΠD) is convex. Also dp(VΠD)
contains the line segment / with endpoints p(A), p(B). Since A is as
in Π(a), we see that the left and right hand tangents to dp(V ΠP) at
p(A) do not coincide. Using these observations and well known
geometric properties of convex domains we deduce for given i = 1 or 2
that the bounded domain with boundary,

(i) the line segment with endpoints p(A), p(Bi),
(ii) the arc of p(KM ΓΊ V) with endpoints p(B), p(B, ),
(iii) dp(VΠD)-l,

is convex. Also the boundary of this domain is contained in p[KM Π
V]. Since this domain is also equal to p[D2(e,) Π V], it follows, upon
taking the inverse of p, that D2(€, ) satisfies the hypotheses of Lemma 1
and that dD2{ei)CL(d,M). Hence D2(e,) is a starlike and Γ2(e,) =
dD2(€i) satisfies (4.4).

Next we prove (4.5). If 0 < e, < e2 ̂  c0, then from Lemma 1 we
see that βx CD2(e2) U{Λ,B,}. It follows that D2(e,) is the bounded
component of D2(e2) - βx containing w = 0. Hence (4.5) is valid. Put
6 = €χ and let Bλ vary subject to the previous restrictions. For each €,
0 < e g Co, we obtain an a starlike domain D2(e) which satisfies (4.4)-
4.5). From the definition of D2(e) and (4.5) we also see that (4.6) holds.

To define II (b), let γ be the a curve tangent to Γ at B which does
not contain β. Let Bo, \B0\<M, be a point on γ near B with the
property that the ray from the origin through Bo intersects β. Let β0

denote the a arc with endpoints A and Bo which is contained in V. Let
€o > 0 be the smallest angle between β and β0 at A. Now let B{ ^ B be
a point on the arc of γ Π V with endpoints Bo, B. Draw the a arc β,
with endpoints A, Bx. Let e > 0 denote the smallest angle between β
and βi at A. Let D2(β) denote the domain whose boundary is βl9 Γ - β,
and the α arc of γ with endpoints B, B,, which is contained in V. Then
D2(e) is an α starlike domain with boundary Γ2(c) for 0 < e ^
60. Furthermore, (4.4)-(4.6) are true. The proof of these facts is
similar to the proof used in II (a). We omit the details.

To define III when B satisfies II (a), we first note from Remark 1
that β is tangent to dKd at A. Let AoEdKdΠΓΠV be near
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^Λ). Let y be the a curve containing β, and let γ0 be the a
curve tangent to dKd Π Γ at Ao. Let Po be the point of intersection in V
of y and γ0 which is nearest A. Let eo>O denote the smallest angle
between the tangents to γ and γ0 at P{).

Now suppose that A, ^ A is a point on the arc of dKd Π V Π Γ
with endpoints Ao, A. Draw the a curve γ, tangent to dKd Π Γ at
A\. Let P, denote the point of intersection of γ, and γ in V which is
nearest A. Let e,0< e ^ e0, be the smallest angle between y and γ, at
P,. The bounds on e may be established using the function p and
elementary geometry. Let B, be the point of dKM Π γ, which is nearest
B. We claim for 60 small enough that there exists an a arc βj of γ t Π V
with endpoints A,, B,. Again this is easily seen using (2.3b) and the
function p. Let σ} be the arc of Γ with endpoints A, A,, which is
contained in V. Finally let D2(e) be the domain whose boundary is the
union of the arcs, βu Γ - {β U σ,}, and the arc of dKM with endpoints B,
B,, which is contained in V. Put Γ2(e) = dD2{e). Next we let e vary
subject to the above restrictions. Since {Qn}*CdKd ΠΓ, we obtain a
sequence, (D2(e))€Ez, of domains with boundaries, Γ2(e), eΈz. We
assert that D2(e), 6 E 2, is α starlike and (4.4)-(4.6) are true. The
assertion that D2(e) is.a starlike may be proved using (2.3b) and Lemma
1. (4.4) follows from the definition of Γ2(β). (4.5) is a consequence of
Lemma 3 and the fact that the γ, corresponding to e2 is tangent to Γ2(€,)
for 0<€ i<6 2 ge 0 . (4.6) then follows from (4.5), the definition of
D2(e), and the fact that l im^. Qn = A (see III).

To define III when B satisfies II (b) we choose a point Ao E Γ D dKd

near A, A0^A, and let A, be a point on the arc of dKd ΠT with
endpoints Ao, A. With this notation γ, γ0, and yx are defined as in HI
(a). Let γ* be the a curve tangent to Γ at B which does not contain
β. Let J5j be the point nearest B in V where γ, and γ*
intersect. With this notation we define β, relative to A,, B,, and σx

relative to A, A,, as in III (a). P, and e >0 are also as in III (a). Let
D2(e) be the domain whose boundary is the union of the arcs βu

T-{β Uσ,}, and the a arc of γ*Π V with end points B, Bx. Then
D2(e) is a starlike and (4.4)~(4.6) are true, as follows from an argument
similar to our previous arguments. We omit the details.

We now consider the effect on D of applying an outward variation
of Γ, as in II or III, followed by an inward variation of the form I. To
simplify our notation we put Y = (0, β0], if D is varied as in II, and Y = z
if D is varied as in III. First applying variation II or III we obtain for
each 6, β E Y, an a starlike domain D2(e) with boundary Γ2(€). Also,
Γ2(€) contains an a arc μ(e) with one endpoint E, and μ Cμ(e)
(μ = μ(e) unless B = F). Next we apply variation I with μ(e), Γ2(β),
replacing μ, Γ, in I. This is permissible if 6 0 >0 is small
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enough. Applying variation I, we obtain for each δ, 0 < δ ̂  δo(e), an a
starlike domain D(e,δ) with boundary Γ(e,δ). We claim that δo(e)
does not depend on e. This claim is clearly true if B έ F, since in this
case the inward and outward variations are independent for small
60>0. If B = F, then it is easily checked that D(e, δ) is well defined
for e EY and 0 < δ ̂  δo(eo), when e0 E Y is small. Hence our claim is
true and we may take δo(e) = δo(eo).

Finally in this section we consider the equation

(4.7) m.r.D(6,δ)=l

for 0 < δ ̂  δo(eo) and e EY. Here m.r. D(e, δ), as previously defined,
denotes the mapping radius of D(e, δ). We claim that the ordered pairs
(β,δ) satisfying (4.7) define a decreasing function δ = δ(e) for
e E yn (0 ,€ , ] ,0<6 ,^€ 0 . Also δ(e)^>0as β ^ O i n Y. This claim is
verified using (4.1)-(4.6), and the monoticity of the mapping
radius. We omit the details.

We put D(6) = D[e,δ(6)], eEY 0(0,6,], Γ(e) = <9D[6,δ(e)],
e e Y n ( 0 , € , ] . We also put D(0) = D, Γ(0) = Γ. Then D(e) is a
starlike and from (4.1), (4.4), (4.7), we have

(4.8) Γ(6)

(4.9) m.r.D(e)= 1, 6 G Yx.

5. The Hadamard variational formula. From the def
inition of T{e) for e E Y 0(0,6^ we see that Γ(e) contains an a arc
βi = β](e) with e the smallest angle between β, and ίhe a arc containing
β at A or P,. Also Γ(e) contains an a arc μ, •= μ,(β) with δ(e) the
smallest angle between μ, and μ at E. This obi jrvation will be used
throughout §5. In the sequel the symbols, e -»0, lime_0, apply only to
eEY,.

Given €, e E Yu let ge( , w,) denote Green's function for D(e) with
pole at w{ED{e). If w,GD(0) is fixed, then

uniformly on compact subsets of D(0). This inequality follows from
the fact that D(e)^>D(0) as e-*0 in the sense of kernel
convergence. We remark for fixed w{ED(e) that the outer normal
derivative of ge( , w,) exists at each s E μ, U β,, except possibly at the
endpoints of these arcs. We denote this derivative by dgjdn(s,wx).
We wish to show for fixed w, E D(0) that
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(,0)f ( .u-, ) '^-^" I*:
(5.2)

+ o(e)

as 6—>0. Here p and φ are analytic 1/α powers of w in V and
respectively (see §4). Also, q =/2//i, where

\φ'(s)\

For w, = 0 the lefthand side of (5.2) is to be interpreted as the value of
the harmonic function go(w,O)-g€(w,O), w ED(0)Π D(e), at w =
0. The term o(β) in (5.2) is independent of w, when w, lies in a
compact subset of D(0). Formula (5.2) is essentially just the
Hadamard variational formula (see Bergman [3, Ch.8]). However
since our variations are not strictly normal and since Γ need not be twice
continuously differentiable, we shall give the proof of (5.2).

Let w, be given in U eeYι D(e), and let Δ, Δ(w,), denote disks about
w = 0, w = κ>,, of radius r > 0 respectively, which are contained in each
D(e) for e E.YX. Let ρ(w,e) denote the distance of w ED(e) from
Γ(e) for e GY}. We also let C denote a positive constant, not
necessarily the same at each occurence, which may depend on α, r,
D(0), and e, (see (4.8)), but not on e or w E D€ - {Δ U Δ(w,)}. Then as a
first step in proving (5.2) we show

for >vED(6)-{ΔUΔ(w1)} and e E y,.
To prove (5.3), let /e, 6 E Yu be the function in 5(α, d, M) for which

fe(K) = D(e). The existence of fe is guaranteed by (4.8) and
(4.9). Let k€ denote the inverse of f€ and note that

ge(w,0)= -log|/c€(vv)|,
(5.4)

ge(w, w{)= - l o g ~^— -

for w E D(e) - {Δ U Δ(w,)}. We assert that
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(5.5)

whenever a,b E K and{/e(b),/ ί(α)}CD(e)-{ΔUΔ(w1)}. HereC,isa
positive constant which has the same dependence as C defined
previously. (5.3) is then an easy consequence of (5.4) and (5.5).

[ΔUΔ(w,)], then clearly
/2 and f€(a), fe(b), are in D(e)-

Hence we assume 0 ^ | Arg[/e(α)/e(b)]| < τrα/2. Let R be a sector
drawn from w = 0 which contains f€(a), f€(b), in its interior. We also
choose R to be of angle.opening less than τrα/2. Let h be an analytic
1/α power of w on R. Let λe be the a arc contained in R with
endpoints fe(a), fe(b). Then since h[R ΠD(e)] is convex, the line
segment σo with endpoints h[fe(a)], h[f€{b)], is contained in h[R Π
D(e)l Since |Arg[Λ(/e(fl))Λ(/e(fc))]|<τr/2 and
r, it follows from elementary geometry that

Moreover since h maps λe onto cre, we deduce that

(5.6)
mm w ^

If τe denotes the preimage in K of σf under /ι °/e, then τe has
endpoints a, b, and

(5.7) = ί

Since/, ES(a,d,M), and we have (1.2d), we may write for 2 E K -{0}
that

(5.8)
1

a

where ψ6 is starlike univalent and ψe(0) = 0, ψ'XO) = 1 . It is well known
that | ψ € ( z ) / z | ^ i It also follows from well known estimates for
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normalized univalen t functions and (5.6) that | z | ^ C , zEτ€ (see
Goluzin [4, p. 52, (10)] for these estimates). Using (5.8) and the above
facts we get,

i/iy/α

a W
for zEr€. From this inequality and (5.7) we deduce \h(f€(b))-
h(fe(a))\^C\b-a\. Since clearly \h(fΛb))~ h(f€(a))\^
C\fΛb)-fΛq)\ whenever {/6(α),/β(fc)}CD(€)-[ΔUΔ(w,)] and
Arg[/€(α)/e(b)]<πα/2, it follows that (5.5) is true.

We now prove (5.3). We first note that

(5.9) max {g€ (w, w,), g€ (w, 0)} ̂  C,

when e E ί , and w E D(e) - [Δ U Δ(w,)], as follows from the maximum
principle for harmonic functions. Consider the case when ρ(w,β)g

^ ( 1 - | M H Ί ) | ) , [C, as in (5.5)]. Then from (5.9) we have

^ ^max{g€(w, w,), g,(w,

Here we have used the fact that suρ e e y, |/c€(w,)| < 1. Next consider the

case when ρ(w, e) < - ' 6 '—L. In this case let vv0 = wo(e) in Γ(e)

be such that | w - wo\ = ρ(w, e). Choose w* = w*(e)£:D(€) near
enough w0 such that

(5.10) min{|fcβ(ιv*)|,

and such that

(5.11) \w - w* |^2p(w,6) .

Then from (5.5) with a = k€{w),b •= fe€(w*), and (5.11) we deduce

(5.12) | /c e(w)-k €(w*) |^Cτ 1 |w -

Using (5.12) and (5.10) it follows for

_ K(w)-k€(v»\) „ „
, v —
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that

ι>|-' u

Using this inequality, (5.4), and the fact that - log(1 - x) ^2x for
0 ^ x ^ I, we get

g 6 ( w , u>,) = — l o g I M I = - l o gu - v + 1 - log I υ I ̂  2 u — v

Letting w*-* w(), we obtain since log •0 that

w GD(6)-{ΔUΔ(w,)}. Similarly from (5.10) and (5.12), we get
ft (w,0) ^ Cp(w,e) for w e D(e) - {Δ U Δ(w,)}. We conclude that (5.3)
is true.

Next we use (5.3) to prove (5.2). We first claim for given e ,eG Yu

that

(5,13) go(w,,0)-ft(w I,0) = /, + /2 + /, + o(€)

as e -»0 where

μ,ΠD(0)

\go(s9 w.) ^ - go(5, 0) - go(s, 0) I2-0 (5,
L on an

To verify this claim we consider two cases. First suppose that β
is as in variation III. In this case we let D*(e) CD(e) Π D(0), be the
domain whose boundary is the union of the arcs: dD{e) Π <9D(0),
β Π D(e), μ, Π D(0), and the arc of dKd with endpoints A{, A, which is
contained in V. Here A, is as in variation III. Let v denote the above
arc of dKd. We observe that D*(e) is a starlike. This observation is
verified using (2.3b) and Lemma 1.

From the above observation and Lemma 2, it now follows that
D*(e) can be approximated by a sequence of a starlike domains (Ω(n))T
with the property that

(i) the sets β C\D(e), μ,ΠD(0), and v,
are contained in
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(ii) Ω(n)CD*(€),

(iii) Each point of dίl(n) is within 1/rc distance of a point of

(iv) d(l(n) consists of a finite number of a arcs and υ.

Since D*(e)CDΠD(e)we clearly may apply Green's second identity
inΩ(n)-{w: | w - w,| ^ η}, η small, to the functions: go(w, w,),go(^,O)-
&(H>,0), W e D(e) (Ί D (see Nehari [13, p. 9] for this identity). Doing
this, letting η -*0, using (iii) and (5.3), we get

where

We note that each point of v is 0{e) distance from A. Furthermore
the arc length of v is O(e) as e -»0. Hence from (5.3), Λ= O(β2) as
e —»0. Using this fact and letting n -*°o in the above equality, we get
(5.13) when β is as in variation III. The proof of (5.13) when β is as in
variation II is similar. We omit the details.

To continue the proof of (5.2) we show

(5.16)

To prove (5.14) let VDβ be the domain of definition of p, as
defined at the beginning of §4. Let /e, e E Yr {0}, and /<,, denote the line
segments which are images of β,-β,(e) and β under p
respectively. We also put H€(ζ) = g€(w,0) when p(w) = ,̂
w E V Π D(e), e E y,. Then fJ, is harmonic in p( V Π D(e)), vanishes
on L and from (5.3), (5.1), it follows that
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(5.17)

( 5 1 8 ) = H0(ζ), ζEp[VΠ

Now suppose that s is a fixed number in β -{A,£}and t = p(s). Then
if 6 2 >0 is small enough, we have sGD(e)Γ)β for e GY Π(0,e2],
0 < e 2 ^ e , , as follows from the definition of D(e). Let R = R(e)
denote the point of intersection of βx and the a arc containing β in V
(Either R = A or i? = P,). Then we may write f = p(K) + jce", where
j c = x ( e ) > 0 and eiθ denotes the direction of /0. Since the angle
between le and the line containing /0 at p(R) is β, either the point
u(e) - p(R) + xeι{θ+€) or the point t(e) = p(R) + xeiiθ'e\ is in le for 62 > 0
small, 6 E 7, Γ) [0, e2]. We first assume that t{e) is in /(e). Then if e2

is small enough there exists p > 0 and a semicircular disk, Q(e), of
radius p, center t(e), and whose diameter is a line segment of /e, which is
contained in p[V ΠD(e)] for e E Y,n[0,e 2]. Since H€ vanishes on
the diameter of ζ)(e), it follows from the reflection principle, that

( 5 1 9 ) H.(ί) = H

ζ E Q(e), where an(e) is real, n = 1,2, , and

(5.20) \an(e)\^Cp-n, n = l,2, ,

(5.21) ai(e) = —[° € " H€[t(e) + peiφ]sin(φ - θ + e)dφ.

From (5.19) and (5.20) it follows with ζ = t(O) = t that

H,(f)-fl.(5.22)

Furthermore from (5.18), (5.21), the bounded convergence theorem and
the fact that Iim6^o^(€) = A w e deduce, \\mt^ax(e) = α,(0). Hence,

Here dH0/dn denotes the outer normal derivative of Ho on /0. If u(e) is
in le for 62 small, then the above equality also holds, as is easily
seen. We observe that, dgldn (s,0) = dH0/dn (t) \p'(s)\. Using this
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observation, (5.3), (5.23), and the bounded convergence theorem we
deduce that (5.14) is true.

The proof of (5.15) is similar to the proof of (5.14). Let N be the
domain of definition of ψ, as defined at the beginning of §4. Let yδ, and
y0, denote the line segments which are images of μ,ΠD(0), and
μ-{E, F} under φ respectively. We also put Ψ(ζ) = go(w, HΊ), H€(ζ) =
&(w,0) when ζ = φ(w), w E N ΠD(e), and e E Y{. Since the angle
between yδ and y0 at φ(E) is δ, we may assume that

yδ ={φ(E) + xeιiθ-δ): 0<x <xι(δ)}9

where eιθ is the direction of y0 and δ = δ(β), e E Yx. From the
definition of D(e) and the fact that lim€_0 δ(e) = 0, we see that limδ^0

Using our new notation and changing variables in the integral
defining J2 we find that

< 5 2 4 )

Here dHJdn denotes the outer normal derivative of Ht to ys. From
(5.3) we note that δ~'Ψ[φ(E) + xe'iθ-δ)] is bounded for δ = S(e),
e e y, - {0}, and 0 < JC < x ,(δ). Moreover,

(5.25) lim
δ-^o δ dtί

when φ(E) + xeiθ E y0. Also, as in (5.23) we find that

(5.26)

when φ(E) + xeιθ E y0. Using (5.24)-(5.26), (5.3), the bounded con-
vergence theorem, and changing back to our original variables, we
conclude that (5.15) is true.

The proof of (5.16) is essentially the same as the proof of
(5.15). We omit the details. Hence (5.14)-(5.16) are true.

Finally we show that

(5.27) Γ . , Λ/

hmδ(e)/e = q

where q is as in (5.2). (5.2) is then an obvious consequence of
(5.13)-(5.16) and (5.27). To prove (5.27) we put w, = 0 in (5.13). We
obtain from (4.9) that



SUBORDINATION THEOREMS STARLIKE FUNCTIONS 355

JβΠD(e) OΠ LΊT JμxnD(0) °n

(5.28)

+ o(e), as e—»0.

From (5.14)—(5.15) with w, = 0, we see that

- f gΛs,0)^(s,0) \ds \ =
Jβπou) on

-ί
Using these equalities and (5.28), we find that (5.27) is true.

We have now shown that (5.2) holds with a o(e) term that depends
on HV To complete the proof of (5.2), we show this term does not
depend on w, when w, lies in a compact subset, X, of D(0). Clearly, it
suffices to prove the above for given w0ED(0) and X =
{w2: I w2- wo\ ̂  r/2}, r small. Moreover, since a pointwise limit of
uniformly bounded harmonic functions is uniform, it suffices to show
that €~ι[g0(wί,0)-g€(wι,0)] is uniformly bounded for e E ^-{0} and
w, E{w2: | vv2-wo| ^ r/2}. From (5.13), its subsequent proof, and
(5.27), we see that this statement will be true if we can show the
constant in (5.3) does not depend on w] when H>, E {W2: | W2 - wo\ ̂  r/2}.

To argue the last statement we first assert that [ge(w, wo)]~ιg€(w, w>,)
is uniformly bounded whenever w, E {w2: | w2 - wo\ ̂  r/2}, w E
{w2: \w2- wo\ = r}, and e E y,. Indeed, since D(e)-^D(0) in the sense
of kernel convergence, we have k€ ->/c0 uniformly on {w2: \ w2- wo\ ̂
r}. Using this and (5.4), it follows that our assertion is true. If c
denotes the uniform bound in our assertion, then from the maximum
principle for harmonic functions we have, g£(w, w,) ̂  cg€(w, w0) when
w ED(e)-{w2: | w2- wo |<r}, w, E{w2: | w2- wo\ ̂  r/2} and eG
Yx. Using (5.3) with wλ = vv0, we conclude that

when w, w,, and e are in the above sets. Hence the constant in (5.3)
does not depend on w, E{w2: | w2- wo\ g r/2}. This completes the
proof of (5.2).

6. The Julia variation^ formula. In this section we
show how the Julia variational formula for the mapping functions fe,
corresponding to D(e), can be derived from the Hadamard variational
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formula for ge [see (5.2)]. We then show in a general way how the Julia
variational formula can be used to solve some extremal problems. We
use the same notation as in §5.

First note that Γ(0) is a Jordan curve. Hence from the strong form
of the Riemann mapping theorem (see Goluzin [4, Thm. 4, p. 44]), /0 is a
homeomorphism of K U dK onto D(0)UΓ(0). Consequently there
exist arcs A, r, of dK, disjoint, except possibly for endpoints, such that
/o(λ) = μ, and /0(τ) = β. Also from the reflection principle we see that
/o can be extended analytically to a larger domain containing all of λ Ur,
except possibly the endpoints of these arcs. We denote this extension
again by /0.

Put 5 = fo(ζ)9 ( E A U T , and choose z E K such that w, =
/o(z). Furthermore, let h(ζ)= -q\φ(s)-φ(E)\l\φr(s)\, when s =
μζ) E μ,and h{ζ) = \p(s)-p(A)\l\p'{s)\ when s=fo(ζ)Eβ. Here q
is as in (5.2). Using (5.4), changing variables in (5.2), and arguing as in
Julia [7], we get

(6.1)

as € -»0. Now let dA(ζ) = ̂ f^lf/^ when ζ <Ξ λ U τ. Then from

(6.1) we obtain

log[/6(z)/z] =

as e ->0. If Φ is a given nonconstant entire function, then

φ [ l O i ψ ] . φ [ l o s ψ ] + e L Φ.[]ΰeψ] tm (ί±| ) ί A ( ί,

+ o(e),

as e -»0. Hence

(6.2) Re{φ[log^]}-Re{φ[log^]} = e[ σ(ζ)dA(ζ) +o(e)

where,

( 6 , ,

Next let α, d, and M be fixed positive numbers satisfying 0 < a < °°,
0 ̂  d < 1, and 1 < M < °°. Let C denote a given compact subclass of
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S{a,d,M). Let Φ be a given nonconstant entire function. Consider
the following extremal problem:

Problem 1. Find max / e c Re {Φ[log f(z )/z ]} for given zEK- {0}.

Assume that fe is in C for eGY,. Then we shall outline the
method in which (6,2) can be used to obtain information about an
extremal function which solves Problem 1 in C. First observe that if
Φ'[log/0(z)/z] ^ 0, then σ defined by (6.3) is the real part of an analytic
function which maps dK onto a circle. Hence dK can be divided into
two arcs, disjoint except for endpoints, such that σ is increasing on one
arc, and decreasing on the other. It follows from this monotonic
property of σ that if we are given any three arcs of dK (disjoint except
possibly for endpoints), then we can choose two of the arcs, say λ and r,
such that
(6.4) min σ(ζ) ^ max σ(ζ).

ζEτ ζGλ

If (6.4) holds, we claim that either f0 is not an extremal function for
Problem 1 or Φ'[log/0(z)/z] = 0. To verify this claim observe that
dA(ζ) < 0, ζ E λ, and dA(ζ) > 0, ζ E r, except possibly at endpoints of

these arcs. Also, dA(ζ) = 0. Using these facts and (6.4), we
JλUT

obtain from (6.2) that either

(6.5) Re {φ[ log^]} > Re

for e > 0 small or

(6.6)

If (6.5) occurs clearly /0 is not an extremal function for Problem
1. Hence our claim is true.

7. Preliminary l e m m a s . Let α, d, and M be fixed posi-
tive numbers satisfying 0 < α < ° o 9 l < M < o o ? and 0 g d < l . Then in
this section we first consider Problem 1 in some subclasses of
5(α, d, M). Using this information, we then consider Problem 1 in
S(ay d, M). Our goal is to show that a rotation of F defined by (i)-(iv)
of §1 solves Problem 1 in 5(α, d, M) (Lemma 8). We use the method of
§6. To begin, let si denote the class of a starlike domains Ω with Ω in
sΛ if and only if f(K) = Ω for some / E S(a, d, M). Let sέn denote the
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subclass of d consisting of all domains Ω whose boundary is the union
of a finite number of a arcs with at most n nondegenerate vertices. By
a vertex we mean of course the intersection point of two a arcs. The
vertex is nondegenerate if the smallest angle θ between the two a arcs
at this vertex satisfies 0 < θ < π. If β is an a arc connecting two
nondegenerate vertices of Ω, then we shall call β an a side of Ω. If the
vertices of an a side β lie on dKM, then we shall call β an a chord of
dKM. The following lemma shows that U Xign^sέn, is dense in sέ.

LEMMA 4. If Ω E sέ, then there exists a sequence of domains {Ωn}
with Ωn E sdn such that Ωn -» Ω in the sense of kernel convergence.

Proof. It obviously suffices to show that for each 17 > 0 there
exists an integer n and Ωn E.sίn such that dΩn is contained in an η
neighborhood of <9Ω. Let / E S(a, d, M) be such that f(K) = Ω. For
given r, 0 < r < l , we consider the function fr(z) = /(rz)/r,
z EK. From (1.1) we see that fr is an a starlike function. Moreover
the maximum and minimum modulus principle guarantee the existence
of a dx and M, such that

(7.1) d<d,< \fr(z)lz I < M, < M, z £ K.

We put Ω* = fr(K). Then since / is continuous on K U dK, we may
choose r near enough 1, such that each point of dΩ* is contained in an
η/2 neighborhood of <9Ω. From Lemma 2 we see that Ω* may be
approximated by an a starlike domain G with the following properties:

(i) GCΩ*,
(ii) dG CL(d,, M,) = {z: d, ^ Iz I ^ Λf,},
(iii) dG is the union of a finite number of a arcs,
(iv) <9G is contained in an η/4 neighborhood of dΩ*,

(v) if p =m.r. G < 1 , then - ^ min filf/M,, 1 +τ?τ}.
p { AM)

From (ii), (iii), and (v) we see that l/pGErfn for some n. Also, (iv)
and (v) imply that 3{MρG) is contained in an η/2 neighborhood of
Ω*. Hence if Ωn = 1/pG, then d(ln is contained in an 17 neighborhood
of Ω. This completes the proof of Lemma 4.

Lemma 4 and A Theorem of Caratheodory imply that if f(K) = Ω,
/n(K) = Ωn, where /,/„ ES(a,d,M), then

uniformly on compact subsets of K.
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For a given positive integer n, let Cn denote the class of
functions / E 5(α, d, M) with f(K) E ^ n . As in the proof of Lemma 1,
we see that if / E Cπ, then / may be written in the form

where m g n, ak > 0 (1 ̂  k S ra), and ΣΓ=i αk = 1. From this formula it
is easily seen that Cn is compact. Hence if Cn^ {φ}, then there exists
an extremal function Fn for Problem 1 with C = Cn. Choose a subse-
quence (M^T of (n)T such that if /ή = Fπ,, j = 1,2, , then Hm^xH, =
H E S(a,d,M) uniformly on compact subsets of K. Then from (7.2)
we see that H is an extremal function for Problem 1 with C =

S(a9d,M).
We note for given f E S(a,d,M) and tEK that the function

f(tz)/t,z E K, is also in S(a, d, M). It follows from this fact and a
result of Kirwan [9] that

(7.3) <]

Here Φ and z are as in Problem 1, and H = lim,^xHj is as
above. Hence we may choose n0 large enough such that

(7.4) Φ'[log(H y(z)/z)]^0,y^π0.

We use (7.4) to obtain a partial description of Ω, = Hj(K),j ^
n0- Indeed, we have

LEMMA 5. Let H} and Ω̂  = H}(K) be as above for j g n0. Then
all but at most two of the a sides of d Ω, are either a chords of dKM or are
tangent to dKd.

Proof Assume for some / ^ n0 that Lemma 5 is false. Put
D(0) = ΩΓ Γ(0) = dCίn and /0 = Hr Then Γ(0) has at least three a sides
which are not a chords of dKM and which are not tangent to dKd. The
preimage of these sides consists of three arcs of dK, disjoint except
possibly for endpoints. As in §6 we choose two of these arcs, A and r
such that (6.4) holds. Let /0(λ) = μ, /0(τ) = β. Then μ can be rotated
inward as in variation I, and β can be rotated outward as in variation II
(b) in such a way that we obtain D(e) (see §4) for e E Yλ. Also if e, > 0
is small enough, then D{e) has the same number of vertices as
D(0). Hence D(e)E dnι for e EY,. It follows that the functions /«,
corresponding to D(e) are in Cnr Using this fact, (6.4), (7.4), and
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arguing in §6, we find that /0 is not extremal for Problem 1 in Cnr Since
/o = Hh we have reached a contradiction. We conclude from this
contradiction that Lemma 5 is true.

We recall that our goal is to show that a rotation of F defined by
(i)-(iv) of §1 solves Problem 1. We shall need the following lemma.

LEMMA 6. Let dx and Mx be fixed positive numbers satisfying
d <d]<Mι<M. Let Ω, be as in Lemma 5 for j ^ n0. Then there
exists, independently of j , a maximum number N of a sides of dΩ} that
intersect the closed annulus L{dx,Mx).

Proof. We first consider those a sides of θΩ7 (j fixed) that have
their endpoints on dKM. If an a chord of dKM intersects L(d, M), this
chord subtends a minor arc of dKM of arc length at least tx. tx may be
taken to be the arc length of the minor arc subtended by an a chord of
dKM which is tangent to dKMι. Again this statement is proved using
(2.3b) and properties of convex domains. Choose an integer /, such
that lxtx > 2πM. Then, independently of /, no more that lx sides of <9Ωy

which are a chords of dKM, can intersect L(dXyMx).
Suppose next that β is an a side tangent to dKd which intersects

L{duMx). Let P be a point of β Π L{duMx) and let P, be the radial
projection of P on dKd. Let P2 be the point where β is tangent to
dKd. Then the length of the minor arc of dKd with endpoints P,, P2, has
length at least t2, where t2 depends only on d, du and a. Since Ω, is
starlike, two arcs of dKd, obtained from two different a sides tangent to
dKd in the above way, cannot overlap. Hence if l2 is a positive integer
satisfying l2t2^2τrd, then 3Ω/ has at most /2, a sides intersecting
L(duM,) which are tangent to d'Kd. Using Lemma 5 we conclude that
dfij has at most N = /, + /2 + 2 sides which intersect L(dx,Mx).

Next we use Lemma 6 to characterize Ω = H(K). We shall need
some notation. Given 0, 0< θ ^ 2 π , and j g n0, let w}(θ) denote the
unique point of intersection of <9Ωy with the ray from w = 0 which has
direction eιθ. The uniqueness of Wj(θ) is guaranteed by Lemma
2. w(θ) is defined relative to <9Ω in a similar way. Forgiven e >0and
0, 0 < 0 ^ 2ττ, we claim there exists a positive integer n, = n,(e, 0) ^ n0

such that

(7.5) K ( 0 ) - w ( 0 ) | < € for j g n , .

This claim is a direct consequence of the fact that Ω, -» Ω as / -> »in the
sense of kernel convergence. We use (7.5) and Lemma 6 to prove.

LEMMA 7. Let dx and Mx be as in Lemma 6. Let Ω =
H(K). Then dfiΠ{w: dλ < \ w | < M,} consists of a finite number of a
arcs.
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Proof. Suppose xi9 l ^ ί ^ Λ Γ + 2, are N + 2 points of <9Ω with
O^Arg(jc/Jc1)<Arg(jct+1jc1)<τrα, 1 ^ / ^ N + l , and d, < |jcf | < M,, 1 ^
i ^ N + 2. Let V be a sector, whose boundary consists of two rays
drawn from w = 0, which contains each xn 1 ̂  ί ^ AT + 2, in its
interior. We may assume V has angle opening less than πa. Draw
the a arcs 0,-, 1 ^ / ^ N + l , which are contained in V, and have
endpoints xh xi+]. Let </>, denote the smallest angle between the
tangents of βι and βi+] at jc,+1 for 1 ̂  / ̂  JV. Then if Lemma 7 is false
we clearly can choose xn 1 ̂  / ̂  JV + 2, as above, and such that

(7.6) 0<φi<π, l^i^N.

Furthermore, from (7.5) we can choose, for arbitrarily small e > 0 and /
large enough, N + 2 points of dίϊj9 say yi,y2, * ',yN+2, so that

However if e is small enough this inequality and (7.6) imply that dΩ, has
N + l , a sides which intersect L(d,,M,). We have reached a con-
tradiction to Lemma 6. Hence Lemma 7 is true.

8. Proof of Theorem 1. Finally we prove.

LEMMA 8. For some real θ, Ω = eiθF(K), where F = F( , α, d, M)
is as in (i)-(iv).

Proof First we extend the definition of an a side. Let γ be an a
curve and suppose that β = y Π dΩ is a set consisting of more than one
point. Then we shall call β an a side of <9Ω. From Lemma 2 we see
that β is a closed α arc. Hence if d Ω ^ β, then β has endpoints A, 2?,
with A ^ β . In this case we assume, as we may, that d ^ | A \ ^ | B | ^
M. We assert that

(a) the left and righthand tangents to <9Ω at B do not coincide.
If IJ5 I < M, then (a) is a consequence of Lemma 7. If | B | = M,

then (a) is easily proved using (2.3b) and geometric properties of convex
domains. Hence our assertion is true.

Next, we assert that one of (b), (c), or (d) is valid for A,
(b) The left and right hand tangents to dΩ at A do not coincide

and d < \A |,
(c) |j4| = d and there exists a set {Qn}7 of distinct points in

dKd Π dΩ with limn_oo Qn = A,
(d) \A I = d and there exists set {pn}7 of distinct a sides CdΩ,

with endpoints An9 Bn, n = 1,2, , for which d <\An\^\Bn\^M and
ec An = l imbec Bn = A.
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The proof of (b) is the same as the proof of (a). If | A | = d, then
from Remark 1 we see that γ is the unique a curve tangent to dKd Πdfl
at A. Using this fact, Lemma 3, and Lemma 7, it follows that either (c)
or (d) is true.

We now use (a)-(d) to show that dΩ contains at most two a
sides. Suppose to the contrary that there are at least three distinct a
sides in dΩ. To obtain a contradiction we consider two
possibilities. First assume that one of the statements (a), (b), or (c) is
valid for each endpoint of the a sides. Then the preimage of these
sides consists of three arcs, disjoint, except possibly for endpoints. As
in §6 we can choose two of the arcs λ and r such that (6.4) holds with
/0 = H. Let A i be a subarc of λ with the property that

(f) λi has an endpoint in common with λ,
(tf) H(λt)ΠdKd={φ}.

Clearly there exists such an arc A,. We put H(λ{) = μ, H(τ) = β. We
also put Ω = D(0) and /0 = H. Then μ satisfies the conditions of
variation I, and β satisfies the conditions of either variation II or
III. Hence we can perform these variations on D(0) in such a way that
we obtain D(e) (see §4) for e G ί , . From the construction of D(e), we
have D(e) E si. Hence if /6 is the function corresponding to D(β), then
fe E 5(α, d, M). Using this fact, (6.4), (7.3), and arguing as in §6, we
find that /0 = H is not extremal for Problem 1 in S(a, d, M). We have
reached a contradiction. Thus if the above possibility occurs, then dΩ
contains at most two a sides.

Next consider the possibility that all of the statements (a), (b), and
(c) are false for an endpoint of one of the above a sides. Then from (d)
we see that dΩΠ{z: d <\z\<M} contains three other a
sides. Furthermore, either statement (a) or statement (b) is valid for
each endpoint of these a sides. Hence we may apply the argument of
the first case to these a sides. Again we obtain a contradiction. We
conclude from this contradiction that <9Ω contains at most two a sides.

Since Ω is a starlike and we have Lemma 7, it follows from the
above that <9Ω consists of at most two a sides, at most two arcs of ΘKM,
and possibly one or two points or a proper arc of dKd. Consider first
the case when <9Ω contains exactly one a side. Then from the
discussion in §3 for d = δ(M, a) we see that Lemma 8 is true. Second
consider the case when dΩ contains two a sides. In this case we shall
show that one endpoint of each a side must be on dKd. It then follows
from Remark 1 that these a sides are tangent to dKd and there upon
from the discussion in §3 that Lemma 8 is true.

The proof is again by contradiction. Assume that d Ω contains two
a sides with at least one of the sides having both its endpoints off of
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dKd. Observe from Lemma 1 that the other side then must also have
both its endpoints off of dKd. Let ξλ and ξ2 denote these two a
sides. Let ψl9 φ2,CdK be such that Hiφ,) = ξl9 H(φ2) = ξ2. Put/0 = H
and suppose that σ defined by (6.3) obtains its minimum at ζ0E.
dK. We first assume that ζ0 is an interior point of either ψ, or ψ2. We
may assume that ζ0 is in the interior of φx since otherwise we
renumber. Then by the monotonic property of σ (see §6), there is a
subarc φ3Cφι possessing an endpoint in common with φx and satisfying
max ε*, σ(ζ) ^minζeφ2σ(ζ). Choose a subarc λ of ψ3 possessing a
common endpoint with φx and for which H(λ) Π dKd = {φ}. This
choice is possible since ξλ has both endpoints off of dKd. We note that
λ and T = φ2 satisfy (6.4). Also if H(λ) = μ, H(τ) = β, /0 = ff, Ω =
D(0), then μ and β satisfy the requirements of variations I and II
respectively. Using this fact and arguing as previously in §8, we obtain
a contradiction to the fact that H is extremal for Problem 1 in
S(a,d,M). Hence ζ0 is not an interior point of either ψ, or φ2.

Now consider the case when ζ0 is not an interior point of either ψι

or φ2. In this case σ clearly varies in a strictly monotonic manner on
one of the sides, say φλ. Let ζl9 ζl9 denote the endpoints of ψ}. Let
the labelling of these points be such that

(8.1) σ(ζi)<σ(ζ2).

Choose a subarc v C φx with the property that ζ\E:v and H{v) Π dKd =

{φ}
Again we let H = fθ9 D(0) = Ω, and use the notation introduced in

§4. Let μ be a subarc of H{v), with H(ζx) G μ9 μ Π dKd = {φ}, and
such that if β = ξ{ - μ, then q defined as in (5.2) satisfies

(8.2) q>\.

This choice is possible since from (5.2) and (5.3) we have q -H»°O as the
arc length of μ —> 0. Let A = E denote the common endpoint of β and
μ. Then μ satisfies the hypotheses of variation I, but β does not
satisfy the hypotheses of either variation II or III. However from the
remark after (4.6) we see that we still can apply variations I and II to
obtain a starlike domain D(e) for e£iYx with m.r. D(e) = l and
dD(e)CL(d,M). We assert that in fact D(e) is a starlike for 6 GY.Π
[0,62] when e2 > 0 is small enough.

To prove this assertion we introduce a new domain D(β), e E
Y\. We obtain D(e) by applying variations I and II to D(0). More
specifically, put D(e) = D(e, e) (see §4 for the definition of
D(e, δ)). Then dD(e) contains a arcs μ, β, with e the smallest angle
between μ, μ, and β, /3, at E = A. Hence, μ U β is an α arc. Using
this fact and Lemma 1, we find that D(e) is a starlike.
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We claim that (5.3) is valid, where now g€( , w,) is Green's function
for D(e) with pole at w, E D(e). Indeed, it is easily checked that (5.3)
holds under the weaker assumption, lime^0 m.r. D(e) = 1. Using (5.3)
we deduce that (5.13)-(5.16) still hold for ge when 8 = e. It follows
from these equalities with wx = 0, δ = e, and (8.2) that

l-m.r.D(e) 1 ΓT Γ 1 Ix Γ1 , Λ

Hence, m.r. D(e) > 1 for e > 0 and small.
Since m.r. D{e)>\ for e>0 and small, we may now apply

variation I (with D(e), μ, replacing D(0), μ, in I) to obtain an a starlike
domain D(e) with m.r. D(e)=\. We note that
β C dD(e) Π dD(e). Using this fact and the monoticity of the mapping
radius, we conclude that D(e) = D(e). Hence our assertion is true.

Let λ O and r = ψ\~-λ be the preimages of μ, β, respectively
under /0. We observe that ζx E λ. Using this observation, (8.1), and
the monoticity of σ on ψx we deduce that (6.4) holds for λ and r. Using
(6.4), (7.3), and arguing as in §6, we find that H is not extremal for
Problem 1 in 5(α, d, M). We have reached a contradiction. Therefore
ζ0 must be an interior point of either ψ, or ψ2. However, we have
already shown this case cannot occur. Hence the assumption that ξx

does not have an endpoint on dKd is false. We conclude that Lemma 8
is true.

Next we use Lemma 8 to prove Theorem 1. We note that F
defined by (i)-(iv) of §1 is circularly symmetric. Using this fact and
Theorem 2 of Jenkins [6] we see that

(8.3) \F(reiθ>)\ > \F(reiθή\, 0 ^ 0, < θ2^ π,

whenever 0 < r < l . From (8.3) and Theorem 3 of Kaplan [8], we
deduce that the function g(z) = log F(z)/z, z E X, is univalent and
convex in the direction of the imaginary axis. Suppose now for some
f £S(a, d, M) that the function h(z) = log/(z)/z, z E K, is not subordi-
nate to g(z). Then for some z0EK-{0} we would have wo =
h(zo)gig(K). It would then follow from Runge's Theorem (see Rudin
[14, Thm. 13.9]) that there exists a polynomial P with

(i)
(ii)

We choose γ such that Re{eiyP(w0)}= |P(wo)|. Then the function
Φ(w) = eiyP(w) is entire and from (i), (ii), we have
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This inequality contradicts Lemma 8. We conclude that Theorem 1 is
true, for fixed a, d, and M satisfying 0 < α <o°, 1 < M < oo, and
0 ^ d < l .

The case 0< α <o°, M = <*>, 0 ̂  d < 1, can be handled by treating it
as a limiting case as M —> o© of the above cases. We omit the details.

9. Proof of Theorem 2. Let M and d be fixed numbers satisfying
K M < o o , 0 ^ d < l . Let S*(d,M) be as in §1. Given / E S*(d,M)
and r, 0 < r < 1, let /r(z) = f(rz)lr, z E X. From the maximum principle
for harmonic functions and (1.1) we see that fr E 5(α, d, M) for 0 < a ^
α0, provided a0 is small enough. Hence from Theorem 1, logfr(z)lz,
z G K, is subordinate, to the function log[F(z, α, d, M)/z], z EX, for
0 < α ^ αo Using this fact and simple properties of subordination, it
follows that if F*( , d, M) = limα_0 F( , α, d, M) exists, then log/r(z)/z,
ZELK, is subordinate to log [F*(z, d,M)/z], ZELK. Since
F(X, α, d, M) converges as α->0 in the sense of kernel convergence,
we see that the above limit exists. Furthermore, ̂ F*(X, d, M) consists
of either

(i) An arc of dKd, passing through - d, with endpoίnts deiθ, de~ι\

0<0<7Γ,
(ii) The arc of dKM, passing through M, with endpoints Meiθ,

(iii) The radial line segments connecting deι\ Me'ι\ and de~ιθ,
Me~iθ, respectively, or

(iv) A line segment on the negative real axis with one endpoint
- M, and dKM.
Since / = limΓ^, fr we conclude that (B) of Theorem 1 is valid.

Finally we show that ^(z) = log[F*(z,d,M)/z], z E X , is convex
univalent. Since g is the limit of univalent functions, it is clearly
univalent. Let zu z2, be fixed points in K-{0} with zx\\zx\ = eie\ z2l\z2

eι\ and rι = \zι\^r2 = \z2\. Then for given ί, 0 < t < 1, and r = rjr

1, the function

z EK, is in 5*(d,M). The above fact follows from a property of
starlike functions stated in §1, and the maximum principle for harmonic
functions. Since log [ft (z)/z], z EX, is subordinate to g, we see that
Iog[h(r2)lr2] = tg(z2) + (l-t)g(zι) is in g(X). Hence g is convex
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univalent. The proof of Theorem 2 is now complete for 1< M < <*> and
0 g d < 1. The case M = oo, 0 ̂  d < 1, can be handled by treating it as
a limiting case as M-^oo of the above cases. We omit the details.
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