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SUBORDINATION THEOREMS FOR SOME CLASSES OF
STARLIKE FUNCTIONS

RoOGER BARNARD AND JOHN L. LEWIS

Let K, ={z:|z|<r},r>0. For given o,0<a <®,d,0=
d<1, and M,1<M =, let S(a,d, M) denote the class of
univalent and normalized « starlike functions f in K, with
Ki Cf(K,) CKuy. The authors show the existence of a function
F € S(a,d, M) with the properties: (a) log F(z)/z, z € K,, is
univalent, (b) if f € S(a,d, M), then log f(z)/z, z € K,, is sub-
ordinate to log F(z)/z, z € K,. Letting o — 0 they obtain a
similar subordination result for normalized starlike univalent
functions. They then point out that these subordination results
solve and give uniqueness for a number of extremal problem in
the above classes.

1. Introduction. Given a,0<a <o, let S(«a) denote the
class of normalized a starlike functions f in K ={z:|z|<1}. Thatis,
fE€ S(a)ifandonly if f(0)=0,f'(0)=1,z"'f(z)f'(z) #0(z € K), and

(.1 aRe{1+Z—ff,';—(Z?)—)} +(1—a)Re{5f%Z)—)} =0, zeK.

The class S(a) was first considered by Mocanu [12]. The following
facts about S(«a) are known (see Miller [11]),

(1.2a) Eachf &€ S(«a) is starlike univalent,

(1.2b) S(a,) CS(a,) whenever 0 < a, = a, < ©,

(1.2¢) If f € S(a) and bounded, then f’ is in the Hardy class H',

(1.2d) For given f € S(«a), there exists a starlike univalent func-
tion g satisfying g(0) =0, g'(0) =1, and

(f(2)[2)""'f'(z) = (g(2)[2)", z € K.

Here the 1/a powers of the above functions in K are defined to be 1 at

z =0. We note that S(1) is the class of normalized convex functions.
For given d, 0=d<I,M,1<M=c, and a,0<a <o, let

S(a,d, M) denote the subclass of functions f € S(a) that satisfy:

(1.3) d=|f(2)lz|=M, z EK.

We observe that S(a, d, M) is compact, as follows easily from (1.1) and
(1.3). Then in this paper we shall prove the following theorem:
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THEOREM 1. Let a, d, and M be fixed nonnegative numbers satis -
fying 0<a <w, 0=d <1, and 1 <M =x. Then there exists a func-
tion F=F(-,a,d, M)E S(a,d, M) with the following properties:

(A) The function g(z)=1log F(z)/z,z € K,(g(0) =0) is univalent
and convex in the direction of the imaginary axis,

B) Iff€S(a,d,M), then logf(z)/z, z € K, is subordinate to g.

In order to describe F we first make the following definition.

DErFINITION 1. Let a be given,0 < a <. Then vy is said to be an
a curve in the w plane, if there exists a line in the { plane, not
containing { = 0, which is mapped onto y by a continuous a power of {.

Second, we let dE denote the boundary of a set E, and K, = '
{z:]z]<r},0<r <o, r#1. Third, we let (M, ) denote the radius of
the largest disk with center at the origin contained in f(K) for all
f€ S(a,0,M). Here a and M are fixed numbers satisfying 0 < a <o
and 1 <M =o. Itis easily seen that S(a,d, M) = S(a, (M, a), M) for
0=d=6(M,a). Hence in describing F we assume for given « and M
as above that §(M,a)=d < 1. For such values of a, d, and M we now
describe dF(K). If d =68(M,a), then dF(K) contains

(i) An arc with endpoints C,C, of the « curve tangent to
dK,at —d.

If 6(M,a)<d <1, then 3F(K) contains

(i) An arc of 9K, through—d with endpoints A, A,

(ili) Two arcs with endpoints A, C, and A, C, of the two a curves

tangent to JK, at A and A respectively.
Either (a) 0<C=C=M or (b) C#C, M<x, and |C|=M. If (a)
occurs, then dF(K) is the arc in (i) for d = 6 (M, a), and the union of the
arcs in (i1) and (iii)) for 6(M,a)<d <1. If (b) occurs, then dF(K)
contains

(iv) The arc of 3K, through M with endpoints C,C.
dF(K) is now the union of the arcs in (i) and (iv) for d = 6(M, «), and
the union of the arcs in (ii)-(iv) for §(M,a)<d < 1. This completes
the description of dF(K).

The function F is uniquely determined by the above description of
dF(K) and the requirement that F € S(a,d, M), as we show in §3.

We remark that Theorem 1 is well known in the simple case a =1,
M =, d =3 In this case it is a simple consequence of the fact that a
normalized convex function is starlike of order ; (see Suffridge [15] for a
proof of this fact). However, in all other cases Theorem 1 is
new. The subordination result in (B) implies the following corollary
(see for example Golusin [4, Ch.8, §8]).
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COROLLARY 1. Leta,d, M, and F be as in Theorem 1. Let ® bea
given nonconstant entire function. If f € S(a,d, M), then
(A) For given z € K — {0}

Re{ [logf( )]}_S_ max Re{@[logF(ezz)”,

0<6=2m

(B) For given r,0<r <1, and A >0,
2 ) 27 )
f |f(re®)*d6 éf | F(re®)|’de,
0 0

(C) For a given positive integer N = 2,
N

N
Z |a |2§2 AT,
k=2 k=2

where f(z) =z +Zi,a.z* and F(z) =z + 25, Az%, z € K.

Equality holds in any one of (A), (B), or (C) only if for some real 6,
f(z)=e*F(e”z), z EK.

We note that with the appropriate choice of ® in Corollary 1, some
of the classical extremal problems follow for S(a, d, M). For example,
the quantities |f(z)/z |, | Arg f(z)/z |, Re{[f(z)/z]"}, where |z | =r,0<r <
1, f € S(a,d,M), and p >0, are all maximized or minimized on JK, by
F. Weremark that Krzyz [10] proved (A) of Corollary 1 for S(1,0, M),
and Barnard [1] proved (A) of Corollary 1 for S(1,d, M). However,
they did not show the F in their respective classes was the unique
function with property (A). Also Miller [11] proved (A) of Corollary 1
for S(a,0,%), 0 <a <o, and d(w) = = w.

Next for fixed d,0=d <1,and M,1 <M =, let S*(d, M) denote
the class of normalized starlike univalent functions f in K which satisfy
(1.3). We observe for given r, 0<r <1, and f& S*(d, M) that
f(rz)/r,z €K, is in S(a,d, M) for a >0 small enough. Moreover if f,
g €S*d,M) and 0<r <1, then the function z[f(z)/z][g(z)/z]"",
z €K, is in S*(d, M). Using these observations and Theorem 1, we
easily obtain in §9, the following theorem.

(A) The function g(z) =log F*(z)/z, z € K, (g(0)=0) is convex
univalent,
(B) IffeS*d, M), then logf(z)/z, z € K, is subordinate to g.

Theorem 2 implies, as in the discussion after Theorem 1, the
following corollary.
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COROLLARY 2. Let d and M be as in Corollary 1. Replace F by
F* and S(a,d, M) by S*(d, M) in Corollary 1. Then Corollary 1 is
valid for F*.

We remark that Theorem 2 and Corollary 2 are well known in the
simple case d =}, M = » (see Goluzin [4, Thm. 1, p. 531]). Moreover,
Suffridge [16] proved (C) of Corollary 2 for S*(d,») and N =
2. Barnard [2] proved (A) of Corollary 2 for S*(d,M) and ®&(w)=
+w. With these exceptions, Theorem 2 and Corollary 2 are new
results for starlike functions.

For given M, a, d, as in Theorem 1, let f be in S(a,d, M) and put
D = f(K). Then the proof of Theorem 1 is based upon a geometric
description of 3D and a use of the Julia variational formula similar to
Krzyz [10] and Barnard [1]. This geometric description of 4D is
obtained in Lemmas 1-3 of §2. In §3 we use Lemmas 1-3 to determine
8(M, a) and show F € S(a,d,’M) is uniquely defined by (i)-(iv).

In §4 we define our variations of D when 8D contains an arc of an «
curve. In §5 we show that the Hadamard variational formula holds for
the Greens functions of our varied domains. In §6 we deduce the Julia
variational formula from the Hadamard variational formula, and show
how it can be used to solve an extremal problem. In §7 we prove
Lemmas 4-7. We use these lemmas in §8 to prove Theorem 1. In §9
we deduce Theorem 2 from Theorem 1 and describe dF*(K, d, M).

As motivation for the proof of Theorem 1, we first remark that it
turns out (A) of Corollary 1 implies Theorem 1. Second, we remark
that our geometric description implies dD is made up of a finite number
of arcs with the following property: each arc is the image, under ¢, of
an arc contained in the boundary of a convex domain. Since the Julia
variation is a local boundary variation, it follows that the solution to (A)
of Corollary 1 in S(a,d, M) should be obtainable from a local use of
conformal mapping and arguments similar to those of Krzyz [10] and
Barnard [1]. Furthermore, a general description of JF(K,a,d, M)
should follow from considering local a powers of ¢ on
oF(K,1,d,M). This is indeed the case, as we see from (i)-(iv). We
emphasize, though, that the extremal functions in Theorem 1, corre-
sponding to different values of «, do not bear such a simple
relationship. Even though the bounds on F(K, a,d, M) make it quite
difficult to obtain an explicit representation formula for F, this function
is completely described by its geometric properties. Since the Julia
variational method allows to preserve both bounds and the class, it
seems the most natural way to prove Theorem 1.

Finally the authors would like to thank Professor Frank Keogh for
some helpful comments concerning the geometric description of S(a).
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2. A geometric description of the image domains of «
starlike functions. Given w#0, let Argw, — 7 = Argw =7, de-
note the principal argument of w. Let y be an a curve as in Definition
1. Since y is the image of a line, not containing ¢ =0, under a
continuous @ power of £, it follows for 0 < a =2, that y divides the w
plane into two disjoint domains. Moreover the domain containing
w =0 is starlike. However for a >2, vy intersects itself, and conse-
quently there exist rays through w =0 which intersect y more than
once. Since we shall be studying starlike domains in which part of the
boundary is an arc of v, it is necessary to make the following definition
for fixed a, 0 <a <o,

DeriNITION 2. Let B denote a closed arc of an « curve y. Then
we shall call B an « arc of v, if each ray through w = 0 intersects B in at
most one point.

We shall determine the number of « arcs with endpoints
A,B(A# B) in the w plane. Clearly the number is zero if either
Arg(AB) =0, or one of A and B is zero. Hence we assume A # 0,
B#0,and Arg(AB) #0. Next we draw the rays from w = 0 through A
and B. These rays divide the w plane into two sectors, T, and T, with
angular openings 6, and 6, respectively. We may suppose that 0 < 0, =
0, <2, since otherwise we renumber. We observe that if B8 is an «
arc with endpoints A and B, then either B CT,U{A,B}, or BCT,U
{A, B}, as follows from Definition 2. We claim for fixed a, 0 < a <,
that

(2.1a) Leti befixed,i =1or2. Then if 0<6; < ma, there exists
exactly one « arc B with endpoints A and B for which BCT, U
{A,B}. If ma = 6, there does not exist an a arc 8 with endpoints A
and B for which B C T, U{A, B}.

To prove (2.1a), let h; denote an analytic 1/a power of w in T;(i = 1
or 2) which is continuous on 47;.. Then the line segment with endpoints
h;(A) and h;(B) is contained in h;(T;) U{h;(A), h;(B)}, if and only if
0< 6, <ma. Using this fact and considering the inverse mapping to h;,
we get (2.1a).

From (2.1a) we see for 0 < a =1 that if 0 <|Arg(AB)| < ma, then
there exists exactly one a arc with endpoints A,B. For 1 <a <o, it
follows from (2.1a) that there is at least one a arc with endpoints
A, B(Arg(AB) #0). Also for 2 < a <, there are exactly two a arcs
with endpoints A, B(Arg AB # 0).

Next we determine a geometric criterion for a bounded domain to
be a magnification of the image domain of an « starlike function. This
criterion is given by Lemma 1. In Lemma 1, B8 denotes the a arc with
endpoints A, B, satisfying 8 CT, U {A, B}.
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LeEmMMA 1. Let D be a bounded domain containing w = 0 with the
property that each ray through w =0 intersects 3D in exactly one
point. Let a be a fixed positive number and suppose there exists a
sufficiently small n >0 such that whenever A,B€ 3D and 0<
|Arg (AB)|<mn < ma, then either 8 CD U{A, B} or B8 CdD. Then there
is a function g € S(a) and a number t >0 such that tg(K)= D.

Proof. Let A, B, be any two points of 4D with 0 <|Arg (AB)] <
n =ma. Define T, and B CT,U{A, B} relative to A and B as in
(2.1a). Let h, be an analytic 1/a power of w on T, which is continuous
on dT,. Put D,=DNT, A=34DNT,and suppose that E, F, E# F,
are any two points of A. Then from the hypotheses of Lemma 1 (with
E, F, replacing A, B), either the line segment connecting h,(E) to h,(F)
is contained in h,(A) or it is contained in h,(D,) U{h,(A), h(B)}. Since
dh,(D,) consists of h,(A) and segments of two rays from w = 0 forming
an angle less than 7, it follows that k(D)) is convex. Hence h,(A) may
be approximated by a polygonal arc 7, made up of chords connecting
points on h,(A), with endpoints h,(A), h\(B). If n a positive integer is
given, then 7 can be chosen such that each point of 7 lies within 1/n
distance of a point of 4(A). Also, 7 can be chosen in such a way that a
piecewise continuous argument of the tangent to = does not decrease as
7 is described in the counterclockwise direction with respect to w = 0.

Taking the preimage of 7 under h,, we find that A may be
approximated by an arc o, CD, U A U{A, B}, made up of a arcs, with
endpoints A, B. Moreover each point of o, is within C/n of a point of
A, where C is a positive constant which depends only on « and
D. Also the tangent to o, rotates counterclockwise as we pass from
one a arc to another in the counterclockwise direction. Since 4D may
be written as a finite union of sets of the form A, we see that dD may be
approximated by a Jordan curve o with the same properties as o;. The
bounded domain D(n), with dD(n) = o, is clearly starlike with respect
to w=0. Let g, denote the Riemann mapping function satisfying
g2.(0)=0, g(0)>0, and g,(K)=D(n). Then g, is continuous in
K UdK and a continuous 1/a power of g, maps 4K —{1} onto a
polygonal arc. Moreover, as dK — {1} is described in the counterclock-
wise direction, a piecewise continuous argument of the tangent to this
polygonal arc does not decrease. Using this fact and a Schwarz-
Christophel type argument we deduce that

a Re{l +2z27(2)/g(2)} + (1 — @) Re{zg (2)/g.(2)}

& 1+ e %z
= k; b, Re (——1 — e"“*z)’ z €K,
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where b, and 6, are positive, and m is a positive integer. Hence
(2.2) g.g:0) € S(a).

The sequence (g,)7 is a uniformly bounded sequence of univalent
functions in K. Moreover from the construction of D(n), we see that
g.(K)=D(n)— D in the sense of kernel convergence. Using these
facts and applying a theorem of Carathéodory (see Goluzin [4, Thm. 1,
p. 551), we deduce that lim,_..g, = &, ,g;’(O) >0, and g¢(K)=D. Using
the compactness of S(a) and (2.2), we further deduce that g/¢'(0) =
g € S(a). Hence Lemma 1 is true.

To continue our geometric description of the image domains of «
starlike functions we prove

LEmma 2. Let f€ S(a,0,M) for some M <o and put D=
f(K). Then each ray through w =0 intersects oD in exactly one
point. If A, B, A# B, are in D and if B is an a arc with endpoints A
and B, then

(a) either B CoD or B CD U{A, B},

(b) if Q denotes the component of D — 8 containing w =0, then
there exists a g € S(a) and t >0 such that tg(K) = Q.

Proof. Letg (z)=f(rz)forz€Kand0<r<1. PutD, =g(K),
and I',(6) =g,(e®), 0= 0 <2m. Then from (1.1) we see that

a Re{l+zg(z)/gW(z)}+(1—a)Re{zgz)/g.(2)}=0, z € K UK.

Let log I, and log I, be continuous logarithms of I', and I'/(I'}(§) =
d/doT,(0)). Then the above inequality implies that

4108 T7()

a Imilog [=(0)I'(0)] = aIm%

dé

+(1— a)lmgdalogl",(())zﬁ

Geometrically this inequality means

(2.3a) The argument of the tangent to I')* does not decrease as 6
increases for a continuous 1/a power of T,.

Using (2.3a) we now prove Lemma 2. Let A, B, and 8 be as in
Lemma 2. Choose a sector V containing B in its interior and of angle
opening ¢, 0 < ¢ < ma. This choice is possible by (2.1a). Let p be an
analytic 1/a power of w on V. Then (2.3a) implies that p(V N D,) is
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convex, as is easily seen. Since D = U, D, and D, CD,, s <r, it
follows that

(2.3b) p(V N D)is convex.

Hence the line segment | with end points p(A), p(B), is either
contained in p(VND)U{p(A),p(B)} or in p(aD N V). Using this
fact and the inverse mapping to p, we deduce that (a) of Lemma 2 is
true. Also since each ray through the origin intersects p(V N D) in
exactly one point, we see that V NaJD likewise has this
property. Hence each ray through w = 0 intersects dD in exactly one
point. To prove (b) of Lemma 2 we observe that p(V N()) is equal to
the component of p(VND)—I containing zero in its
boundary. Hence p(V N Q) is convex. Using the inverse of p, it
follows that the boundary points of () in a sufficiently small neighbor-
hood of A satisfy the hypotheses of Lemma 1. A similar statement
holds for the boundary points in a small neighborhood of B. Since
n >0 may be arbitrarily small in Lemma 1, and since () consists of a
part of dD and B, we find from the above discussion and (a) of Lemma 2
that 9 () satisfies the conditions of Lemma 1. Applying this lemma we
deduce that (b) is valid. This proves Lemma 2.

Again suppose that f € S(a,0, M) for some M <». Then f'€ H'
(see (1.2¢)) and hence I'(8) = f(e®), 0= 6 <2 is a bounded rectifiable
curve in the w plane. (see for example Goluzin [4, Thm. 1, p.
409]). Let w €T and suppose that I' has unique left and right hand
tangents at w. If y is an a curve through w, then we shall say vy is
tangent to I' from the right (left) at w, provided the tangent to vy
coincides with the right hand (left hand) tangent of I" at w. With this
understanding we prove

LeEMMA 3. Let fand D be as in Lemma 2 and put I = dD. Then
' has a unique right (left) hand tangent at each w €T'. Consequently,
there exists exactly one a curve y which is tangent to T at w from the
right (left). If B Cyis an a arc with one endpoint w, then B N D = {¢}.

Proof. Lemma 3 follows easily from (2.3b) and geometric proper-
ties of convex domains. We omit the details.

3. Applications of Lemmas 1-3. We now determine
8(M, a) (see §1) for fixed M and « satisfying <M <xand 0<a <
o, To do this we let f, D, and I' be as in Lemma 3 and put
d(f)=min{/w|: w €T}. We shall use the following remark which also
will be used in §4 and §8.
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REMARK 1. If wo €T is such that |w,| = d(f), then there is exactly
one a curve 7y tangent to I' at w, from either the left or
right. Furthermore, y is tangent to 3K, at w,.

Remark 1 follows easily from Lemma 3 by way of
contradiction. Let vy,, v,, be the a curves tangent to I' at w, from the
right and left, respectively. If y, were not tangent to dK,, at w,, then
v: would contain points of K, arbitrarily near w,. Hence there would
exist an a arc B Cvy, with endpoint w, and B N D# {¢}. This inequal-
ity contradicts Lemma 3. Therefore 7y, is tangent to dK,, at
w,. Repeating the argument we see that vy, is tangent to K,y at
wo. Since the definition of an a curve implies there is exactly one «
curve tangent to 3K,y at w,, we must have vy, = v,.

To continue the determination of 6(M,a), we need some
notation. First, given a simply connected domain G containing w =0,
we shall let m.r. G denote the mapping radius of G (see Hayman [5, p.
78] for a definition). Also, we shall say G is a starlike, if there exists
h € S(a) and ¢t >0 such that th(K)=G. Second, for given M and «
as above, and given s5,0<s <M, we draw the a curve y tangent to
dK;at—s. From the definition of y we see that either y intersects
itself at a point t =¢(s), 0<t =M, or y does not intersect itself in
Ky U 3K, and vy intersects dK, at Me™, Me ™, for some ¢ = ¢(s),
0< ¢ <. In the first case we let {)(s) denote the bounded domain
containing w = 0 whose boundary is the two a arcs of y with endpoints
—s,t. In the second case we let {)(s) denote the bounded domain
containing w =0 whose boundary consists of the @ arc of y with
endpoints Me, Me ", and the arc of dK,, with endpoints Me™*, Me ™,
which contains M. We claim that Q(s) is a starlike. Indeed, it is
obvious that 9 )(s) satisfies the hypotheses of Lemma 1 except possibly
in a small disk about t in the first case or in small neighborhoods of
Me®, Me ™™, in the second case considered above. Using (2.3b) with A
and B properly defined, it is easily checked that § ()(s) also satisfies the
hypotheses of Lemma 1 at these boundary points. Hence Q(s) is a

starlike for 0 <s <M. Next we observe that Q(s,) CQ(s,) CK,, for
# #

0<s,<s,<M,as can be seen by examining d{)(s;) (i = 1or2). Using
elementary properties of subordination, it follows that

0= li_rg m.r. Q(s;) <m.r. Q(s,) < 11_{{14 m.r.Q(s) =M,

for 0 <s,<s,<M. From the above inequality we see there exists a
unique s,, 0 < s,< M, for which
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3.1 m.r. (se) = 1.

Finally we determine §(M, a). Let f,I', D, and d(f) be as previ-
ously defined in §3. We may assume — d(f) €T, since otherwise we
rotate D. Then from Remark 1 and Lemma 3, we deduce that
Qd(f)] DD and thereupon, m.r., Q[d(f)]=m.or.D =1. Hence,
Q(s0) CO[d(f)], and so, s, =d(f). Since Q(s,) is the image domain of a
function F € S(a,0, M), we conclude that §(M,a) = s,.

Next in §3 we show for fixed a, M, and d satisfying 0 < a <o,
<M<, and §(M,a)=d <1, that F(-,a,d, M) € S(a,d, M) is uni-
quely defined by (i)-(iv) of §1. To do this for given 6, 0 < 6 < 7, draw
the a curves v, v, tangent to dK, at de® de ™, respectively. Then
either y intersects y at a point u = u(6),0<u = M, or y and ¥ intersect
0K, at points P = P(8), P = P(0), respectively with P# P. In the first
case we let A(d, 0) denote the bounded domain containing w = (0 whose
boundary consists of

(+) the arc of 9K, with endpoints de®, de ™, containing —d, and «
arcs of y and y with end points de®, u, and de™™, u, respectively.

In the second case we let A(d, §) denote the bounded domain containing
w = 0 whose boundary consists of the arc of dK, in(+), the a arcs of y
and ¥ with end points de”, P, and de ", P, respectively, and the arc of
9K, with end points P, P, containing M. We also put A(d, ) = Q(d),
where Q(d) is as defined previously in §3.

Again using (2.3b) and Lemma 1, we see that A(d, 6) is « starlike

for 0<69 =a. Furthermore A(d, 0,)CA(d, 6, for 0<6,<6,=
#

. Hence,
32 d= B_r)rg m.r. A(d, 8) <m.r.A(d, 6,) < m.r. A(d, 0,) <m.r. A(d, 7),

for 0<0,<0,<m.

Now suppose that F € S(a,d, M) is a function for which dF(K)
satisfies (i)-(iv) of §1. If d = 6(M,a), then from (3.1) we see that
F(K)=AWd,7)=Q(sy). If 8§(M,a)<d <1, then from (3.1), (3.2), and

the fact that A[6(M, a), 7] gA(d,w), we see there exists exactly one

6, = 0,(d) satisfying 0< 6, <7 and for which F(K)=A(d,6,). We
conclude forafixed a,0<a <o, M, 1< M <x andd,6(M,a)=d <1,
that F € S(a, d, M) is uniquely defined by (i)-(iv) of §1. The situation
M=x 0<a <o, §(o,a)=d <1, can be handled by treating it as a
limiting case, as M — o, of the previous cases considered. We omit
the details.
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4. Boundary variations. Again we assume that M, «,d,
are fixed numbers satisfying 1 <M <o, 0<a <o, and §(M,®)=d <
1. IffeS(a,d,M),wealsoput D = f(K),I'=9D. Let A,B(A# B)
and E, F(E# F)beinI'. We suppose that I" contains an a arc 8 with
end points A, B, and an a arc u with endpoints E, F. We further
suppose that u and B are disjoint, except possibly B=F or A =
E. Let V and N be sectors drawn from w = 0 which contain 8 and u
in their interiors, respectively. Thanks to (2.1a), we may choose V and
N to each have angle opening less than wa. We let p and ¢ be analytic
1/a powers of w on V and N respectively. Then we shall define the
following variations on I' (see Barnard [1] for similar variations in the
convex case).

I. Aninward variation whenever w is not tangent to dK,, and the
right and left hand tangents to I' at F do not coincide.

II. An outward variation whenever the right and left hand
tangents to I' at A do not coincide, and B satisfies either (a) or (b):

(@ |B|=M,

(b) |B|<M, and the left and right hand tangents to I" at B do not
coincide.

III. An outward sliding of B8 when I'N 9K, contains a set of
distinct points, {Q, }7, with lim,_.. Q, = A, and B satisfies either (a) or (b)
of IL

Variation I will be defined in terms of a parameter § for 0 < = §,
(8, small) in such a way that if I',(6) denotes the variation of I', then
I'(6) is the boundary of an « starlike domain D,(8), and

4.1) r@)c{z:d=|z|=M}=L(d,M).
Furthermore,

(4.2) D\(,) CD\(6,), whenever 0<68,<8,=6,,
#

(4.3) D\(8) = D.

0=58=60

3

To define I let F,, be a point on (I'— ) N N which is near F. Draw
the a arc u, whose endpoints are E and F, contained in N. It is
possible to draw such an arc for F, near F by (2.1a). Since F isasinl
it follows from (a) of Lemma 2 that w,CD U{E, F,}. Hence the
smallest angle between the tangents to u and u, at E is positive. Let
80> 0 denote this angle.
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Now suppose that F,, F,(F, # F,) are points on the arc of TN N
with endpoints F,, F. Also we suppose that F, # F, F,# F. Draw the
a arcs w, and w, with endpoints E, F,, and E, F,, respectively. Let §,
i = 1,2, denote the smallest angle between w; and u at E. As above we
observe that u; CD U{E, F;} and thereupon that & >0. Also since
w, CDU{E,F}, we must have u, N(u,—{E})={¢}. Hence
5,# 8,. Let D(8;), i = 1,2, denote the component of D — u; containing
w =0. From Lemma 2 we see that D,(§;) is an « starlike domain and

D) CD. Furthermore if 0<§,<8,=8,, then D8, CD(6,). To
# z

see this observe that u, is an @ arc connecting two boundary points of
D\(8,). Furthermore since 8, # 8,, u, CD,(8,) U{E, F,}. Since D(8,)
is the bounded component of D,(8,) — u, containing w =0, it follows
that (4.2) is true.

We put 6=68, and let F, vary subject to the above
restrictions. For each 8, 0< 8 = §,, we obtain an a starlike domain

D,(8)CD with boundary I'(§). Moreover, from the definition of
#

D,(d) it is clear that (4.3) holds. To prove (4.1) it suffices to show that
K, CD(6,) since D,(8,) CD(8)CD for 0<8 =8, To do this recall
that by assumption w is not tangent to dK,. Then by Remark 1, u hasa
positive distance from dK,. Hence for §,> 0 small enough w, also has
a positive distance from 9K, and so, K, CD,(§,).

Variation II will be defined in terms of a parameter € for 0 < e = ¢,
while variation III will be defined for € >0 in a sequence, z = (¢;), with
lim;_..  =0. The variations will be defined in such a way that if I',(e)
denotes the variation of I', then I',(¢) is the boundary of an « starlike
domain D(¢), and

(4.4) I'(e)CL(d,M),

(4.5) Dz(el) EDz(ez), Whenever 0 < € < €,,

(4.6) N Dye)=D.

We remark for later use that if the right and left hand tangents at A
coincide, then our method of variation in II will still produce a starlike
domain D,(€) satisfying (4.4)—(4.6).

To define 1I(a), choose a point B, € (dK,, —3D)N V near B with
the property that the ray from the origin to B, intersects 8. Draw the a
arc B, whose endpoints are A and B, which is contained in V. Again it
is possible to draw such an arc for B, near B by (2.1a). Let €,>0
denote the smallest angle between B and B, at A.
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Now suppose that B,, B,(B, # B,) are points on the arc of dK,, N V
with endpoints B, B,. Also we suppose that B, # B, B, # B. Draw the
a arcs B, and 3, with endpoints A, B,, and A, B,, respectively. Let
€(i = 1,2) denote the smallest angle between B; and B at A. Clearly
€,6,>0 and €, #€,. Let Dye), i =1,2, denote the domain whose
boundary is the union of the arcs: B, I'— B, and the arc of 3K, with
endpoints B, B,, contained in V.

We claim that Dy(¢;), i = 1,2, is a starlike when B, is near B. To
see this note from (2.3b) that p(V N D) is convex. Also dp(V N D)
contains the line segment / with endpoints p(A), p(B). Since A is as
in II(a), we see that the left and right hand tangents to dp(V N D) at
p(A) do not coincide. Using these observations and well known
geometric properties of convex domains we deduce for given i =1 or 2
that the bounded domain with boundary,

(i) the line segment with endpoints p(A), p(B:),
(i) the arc of p(Ky N V) with endpoints p(B), p(B;),
@iii)) ap(VND)—|,

is convex. Also the boundary of this domain is contained in p[K,, N
V]. Since this domain is also equal to p[D.(€;) N V1], it follows, upon
taking the inverse of p, that D,(¢;) satisfies the hypotheses of Lemma 1
and that dDJe;) CL(d,M). Hence D,(¢;) is a starlike and I')(¢) =
aD,(¢;) satisfies (4.4).

Next we prove (4.5). If 0<e, <€, =€, then from Lemma 1 we
see that B,CD,(e,) U{A, B,}. It follows that D,(e,) is the bounded
component of D,(e,) — B, containing w = 0. Hence (4.5) is valid. Put
€ = ¢, and let B, vary subject to the previous restrictions. For each e,
0 < € = ¢, we obtain an « starlike domain D,(e) which satisfies (4.4)-
4.5). From the definition of D,(e) and (4.5) we also see that (4.6) holds.

To define II (b), let y be the a curve tangent to I" at B which does
not contain B. Let B,, |B,|<M, be a point on y near B with the
property that the ray from the origin through B, intersects 8. Let B,
denote the a arc with endpoints A and B, which is contained in V. Let
€, >0 be the smallest angle between B8 and B, at A. Now let B, # B be
a point on the arc of y N V with endpoints B,, B. Draw the a arc 3,
with endpoints A, B,. Let € >0 denote the smallest angle between 8
and B,at A. Let D,(e) denote the domain whose boundary is 8,,I' — 3,
and the a arc of y with endpoints B, B,, which is contained in V. Then
Dy(e) is an a starlike domain with boundary T,(e) for 0<e =
€,. Furthermore, (4.4)-(4.6) are true. The proof of these facts is
similar to the proof used in II (a). We omit the details.

To define III when B satisfies II (a), we first note from Remark 1
that B is tangent to dK, at A. Let A,€EJdK,NI'NV be near
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A(A,# A). Let y be the a curve containing 3, and let y, be the «
curve tangent to dK, NT" at A,. Let P, be the point of intersection in V
of y and vy, which is nearest A. Let ¢,>0 denote the smallest angle
between the tangents to y and vy, at P,.

Now suppose that A, # A is a pointon thearc of 9K, NV NT
with endpoints A,, A. Draw the a curve vy, tangent to dK, NT at
A,. Let P, denote the point of intersection of v, and y in V which is
nearest A. Let €,0 <e = ¢,. be the smallest angle between y and v, at
P,. The bounds on € may be established using the function p and
elementary geometry. Let B, be the point of 4K, N vy, which is nearest
B. We claim for €, small enough that there exists an « arc B, of y,N V
with endpoints A,, B,. Again this is easily seen using (2.3b) and the
function p. Let o, be the arc of I' with endpoints A, A,, which is
contained in V. Finally let D,(e) be the domain whose boundary is the
union of the arcs, 8,, I’ —{B U o}, and the arc of dK,, with endpoints B,
B,, which is contained in V. Put I'y(e) = dD,(e). Next we let € vary
subject to the above restrictions. Since {Q,}; CdK, NI, we obtain a
sequence, (D,(€)).c., of domains with boundaries, I',(¢), e €z. We
assert that D,(e), e €z, is « starlike and (4.4)-(4.6) are true. The
assertion that D,(€) is.a starlike may be proved using (2.3b) and Lemma
1. (4.4) follows from the definition of I',(e). (4.5) is a consequence of
Lemma 3 and the fact that the y, corresponding to ¢, is tangent to I',(¢€,)
for 0<e,<e, =€, (4.6) then follows from (4.5), the definition of
Dy(€), and the fact that lim,_. Q, = A (see III).

To define I1I when B satisfies II (b) we choose a point A,€T N 3K,
near A, A¢# A, and let A, be a point on the arc of 3K, NT with
endpoints A,, A. With this notation v, y,, and v, are defined as in III
(a). Let y* be the @ curve tangent to I' at B which does not contain
B. Let B, be the point nearest B in V where y, and y*
intersect. With this notation we define B, relative to A,, B,, and o,
relative to A, A,, asin III (a). P, and € >0 are also as in III (a). Let
D,(e) be the domain whose boundary is the union of the arcs B,
'-{B Uo)}, and the a arc of y*N V with end points B, B,. Then
Dy(€) is a starlike and (4.4)—(4.6) are true, as follows from an argument
similar to our previous arguments. We omit the details.

We now consider the effect on D of applying an outward variation
of I', as in II or III, followed by an inward variation of the formI. To
simplify our notation we put Y = (0, €], if D is variedasinIl,and Y = z
if D is varied as in III. First applying variation II or III we obtain for
each €, e € Y, an « starlike domain D,(e) with boundary I'y(e). Also,
I,(e) contains an « arc w(e) with one endpoint E, and w Cpu(e)
(v = u(e) unless B = F). Next we apply variation I with w(¢), I';s(¢€),
replacing u, I, in 1. This is permissible if €,>0 is small
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enough. Applying variation I, we obtain for each 8,0 < 8 = 8,(€), an «
starlike domain D(e, §) with boundary I'(¢,6). We claim that §y(¢)
does not depend on e. This claim is clearly true if B # F, since in this
case the inward and outward variations are independent for small
€,>0. If B =F, then it is easily checked that D(e, 6) is well defined
fore € Y and 0 < 8 = 8.(€,), when €, € Y is small. Hence our claim is
true and we may take 8q(€) = &,(€).
Finally in this section we consider the equation

4.7) m.r. D(e,8) = 1

for 0 <8 =64(€y) and e € Y. Here m.r. D(e, 8), as previously defined,
denotes the mapping radius of D(¢,8). We claim that the ordered pairs
(e,8) satisfying (4.7) define a decreasing function & = é(e) for
€eEYNO,¢],0<e =¢. Alsod(e)—>0ase—0in Y. Thisclaimis
verified using (4.1)-(4.6), and the monoticity of the mapping
radius. We omit the details.

We put D(e)=Dle b(e)], e€ Y N(0,€e], I'(e)=03Dle b(e)l,
e€YN(@O,e]. We also put DO)=D, I'O)=T. Then D(e) is «a
starlike and from (4.1), (4.4), (4.7), we have

(4.8) INe)CLMd,M),e€ Y, =[Y U{0}]NI[0,€],
4.9 m.r.D(e)=1,e€Y,.

5. The Hadamard variational formula. From the def-
inition of I'(e) for e € Y N (0,¢€,] we see that I'(e) contains an a arc
B, = Bi(e) with € the smallest angle between B, anc: the a arc containing
B at A or P,. Also I'(e) contains an a arc u, = u,(e) with 6(e) the
smallest angle between w, and w at E. This ob: :rvation will be used
throughout §5. In the sequel the symbols, € — 0, lim,_,, apply only to
€EEY,

Givene e € Y, let g.(-,w),) denote Green’s function for D(e) with
pole at w, € D(e). If w,€ D(0) is fixed, then

SR lim [g.(+, w1) = go(, w)] =0

uniformly on compact subsets of D(0). This inequality follows from
the fact that D(e)—>D(0) as e€—0 in the sense of kernel
convergence. We remark for fixed w, € D(e) that the outer normal
derivative of g (-, w,) exists at each s € u, U B,, except possibly at the
endpoints of these arcs. We denote this derivative by dg./dn(s, w,).
We wish to show for fixed w, € D(0) that
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8o 0= g0, 0) = 2 [ 980 (0 o OGN g

[6'[s)]
(5.2)
__€ [ 9% 980 p(s)—p(A)
27T J;i an (S’O)an (S,Wl) |p/(s)l ldsl
+o0(€)

as € >0. Here p and ¢ are analytic 1/a powers of w in V and N
respectively (see §4). Also, q = LI,/I,, where

[ [ )] Lo©) = 8(E)
L=, (oo e

_ [ (32 0T L) =p(A)
I2 fﬁ l:an (S,O)] ’p/(s)l Ids’

For w, =0 the lefthand side of (5.2) is to be interpreted as the value of
the harmonic function g¢w,0)—ge(w,0), w € D(0)ND(e), at w =
0. The term o(e) in (5.2) is independent of w, when w, lies in a
compact subset of D(0). Formula (5.2) is essentially just the
Hadamard variational formula (see Bergman [3, Ch.8]). However
since our variations are not strictly normal and since I' need not be twice
continuously differentiable, we shall give the proof of (5.2).

Let w, be given in U ..y, D(€), and let A, A(w,), denote disks about
w =0, w = w,, of radius r > 0 respectively, which are contained in each
D(e) for e € Y,. Let p(w,e€) denote the distance of w € D(e) from
I'(e) for e € Y,. We also let C denote a positive constant, not
necessarily the same at each occurence, which may depend on a,r,
D(0), and €, (see (4.8)),butnotone orw € D, —{AUA(w,)}. Thenasa
first step in proving (5.2) we show

(53) max{ge(W,Wl),gs(W,O)}é CP(W,G)

for we D(e)-{AUA(w)} and e € Y.

To prove (5.3), let f,, € € Y, be the function in S(«a, d, M) for which
f{(K)=D(e). The existence of f, is guaranteed by (4.8) and
(4.9). Let k. denote the inverse of f. and note that

ge(w’ O) = -
(5.4)

_ | k(w) = K (w)
g.(w,w) = —log 11—k (w)k.(w)

for w € D(e) —{A UA(w,)}. We assert that
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(5.5) |f.a)—f.(b)|=C\|b-a

whenever a,b € K and {f.(b),f.(a)} CD(e) —{AUA(w,)}. Here C,isa
positive constant which has the same dependence as C defined
previously. (5.3) is then an easy consequence of (5.4) and (5.5).

If |Arglf.(b)f.(a)]|Z7a/2 and f.(a), f.(b), are in D(e)—
[A UA(w))], then clearly

L) - f@|zcz$ b -al

Hence we assume 0=|Arg[f.(a)f.(b)]|<ma/2. Let R be a sector
drawn from w = 0 which contains f.(a), f.(b), in its interior. We also
choose R to be of angle.opening less than 7w« /2. Let h be an analytic
1/a power of w on R. Let A, be the a arc contained in R with
endpoints f.(a), f.(b). Then since h[R N D(e)] is convex, the line
segment o,, with endpoints h[f.(a)], h[f.(b)], is contained in h[R N
D(e)]. Since |Arg[h(f.(a))h(f.(b)]| < 7/2 and min(|f.(a)|, |f.(b))=
r, it follows from elementary geometry that

r{réin || z¥r”".

Moreover since h maps A. onto o., we deduce that

(5-6) min |w|= (\—g—i)ar.

If 7. denotes the preimage in K of o. under h of, then 7. has
endpoints a, b, and

(5.7)

d
-‘Eh of (z)| |dz|.

[ 1f.(b)1 - ki@ = [

Te

Since f. € S(a,d, M), and we have (1.2d), we may write for z € K —{0}
that

_ 1
= a .

z |7,

@ fdz)] =

Y (2)/z

1
a

1
a

58 [fLhet)

where ¢, is starlike univalent and ¢, (0) =0, ¢.(0) = 1. It is well known
that |¢.(z)/z|=i Tt also follows from well known estimates for
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normalized univalent functions and (5.6) that |z|=C, z €. (see
Goluzin [4, p. 52, (10)] for these estimates). Using (5.8) and the above
facts we get,

= ;i_ <_1_>l/ﬂcl/a—l — C

d
la‘;h“fe(Z) 1

for z €. From this inequality and (5.7) we deduce |h(f.(b))—
h(f.(a))|=C|b—a|. Since clearly lh(f.(b))— h(f.(a)| =
C|f.(b)~f.(a)| whenever {f.(a),f.(b)}CD(e)—[AUA(w,))] and
Arglf.(a)f.(b)] < ma/2, it follows that (5.5) is true.

We now prove (5.3). We first note that

5.9) max'{ge(w, wy), g(w,0)} = C,

whene € Y,and w € D(e) —[A U A(w))], as follows from the maximum
principle for harmonic functions. Consider the case when p(w,e)=

%(1 —|k.(w)]), [C, as in (5.5)]. Then from (5.9) we have

16 Cp(w, €)
(11— ke(Wl)l)

max {g.(w, w,), g.(w,0)} = C = Cp(w,€).

Here we have used the fact that sup.cy,
(1 -k (w)|C,

16 ’
be such that |w —w,|=p(w,e). Choose w*=w*(e)E D(e) near
enough w, such that

k.(w))|<1. Nextconsider the

case when p(w,e) < In this case let w, = wy(e) in I'(€)

(5.10) min {

ke (w)] kf(-——w*)‘k‘(w')j}zl
‘ = k.(wHk (w)l) 2

and such that
(5.11) lw—w*|=2p(w,e€).

Then from (5.5) witha = k.(w), b =k.(w*),and (5.11) we deduce
(5.12) k(W) =k (w*)|=Ci'lw—w*|=2C'p(w,€).

Using (5.12) and (5.10) it follows for

u= k.(w)—k.(w) v = k.(w*)—k.(w)
1—k (w,) k(w) 1=k (w )k (w*)
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that
k‘(w)—kf(w*j<8C‘,¥p(w.e)<l
l-—lke(w,)’ 11— ke(w,)] 2

o u—v|=20| "]

Using this inequality, (5.4), and the fact that —log(l—x)=2x for
0=x =3 we get

g(w,w)= —loglu|= —log 4 _v+l\~log|v'§2 uv—v
_ 16C 'p(w,€) _ _
loglv)é—-————-———l_lk((wl)J log|v|=Cp(w,e)—log|v]|.

Letting w*— w,, we obtain since log |v|—0 that g.(w, w)) = Cp(w,€),
w € D(e)—{AUA(w)}. Similarly from (5.10) and (5.12), we get
g (w,0)=Cp(w,e) forw € D(e) —{A UA(w,)}. We conclude that (5.3)
is true.

Next we use (5.3) to prove (5.2). We first claim for givene, e € Y,

that
(5.]3) gU(W[,O)_gS(WhO):J[+]2+J*g+O(e)

as € —> 0 where

1

__b 980
11_27’_ anDte) ge(svo) an (s9 WI)IdS Is
__1 98.
JZ - 277 D) g()(s’ W|) an (S, O) ,ds )
1 R _ 98o
Ji=5- fmmm [go(s, wi) 5 8u(s, 0) — 8o(s, 0) 2 (s, wl)] |ds].

To verify this claim we consider two cases. First suppose that 8
is as in variation III. In this case we let D*(e) CD(e) N D(0), be the
domain whose boundary is the union of the arcs: dD(e) N dD(0),
B N D(e), u,N D(0), and the arc of dK, with endpoints A,, A, which is
contained in V. Here A, is as in variation III. Let v denote the above
arc of dK,. We observe that D*(¢) is « starlike. This observation is
verified using (2.3b) and Lemma 1.

From the above observation and Lemma 2, it now follows that
D*(€) can be approximated by a sequence of o starlike domains (Q(n))7
with the property that

(1) the sets B N D(e), w, N D(0), and v,
are contained in d{)(n),
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(i) Q(n)CD*(e),

(iii)) Each point of #)(n) is within 1/n distance of a point of
aD*(e),

(iv) 9Q(n) consists of a finite number of « arcs and v.

Since D*(e) CD N D(e) we clearly may apply Green’s second identity
in Qn)-{w:|w —w,| =7}, n small, to the functions: go(w, w,), go(w, 0) —
g.(w,0), w € D(e) N D (see Nehari [13, p. 9] for this identity). Doing
this, letting 7 — 0, using (iii) and (5.3), we get

g"(w"o)_gf(who):J|+J2+Jx+f4+0<;1;>,

T v n

_%T— L gols, wy) 5% [g.(s,0)— go(s,0)]]ds |.

We note that each point of v is O(e) distance from A. Furthermore
the arc length of v is O(e) as e —»0. Hence from (5.3), J,= O(€?) as
€ = 0. Using this fact and letting n —  in the above equality, we get
(5.13) when B is as in variation III. The proof of (5.13) when 3 is as in
variation II is similar. We omit the details.

To continue the proof of (5.2) we show

o Ji 1 [ 98 098 Ip(S) p(A)
(5.14) ]EI_I:I(’)IG =37 ), on (s,0) o (s, w )| |ds |,

; tim 2= L [ 9 3go (s)—¢(E
(515 lim> f (s,0) % L—_llcb()l \ds |

I
(5.16)  lim3 =0.

To prove (5.14) let V O B be the domain of definition of p, as
defined at the beginning of §4. Let [, e € Y,-{0}, and [,, denote the line
segments which are images of B,=pg,(e) and B under p
respectively. We also put H,({)=g.(w,0) when p(w)=¢,
weVND(e),e €Y, Then H, is harmonic in p(V N D(¢)), vanishes
on [, and from (5.3), (5.1), it follows that
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(5.17) H.({)=C, {€p(V N[D(e) - A,

(5.18) lim H.({) = H({), { €p[V N D(0)].

Now suppose that s is a fixed numberin 8 —{A,B}andt = p(s). Then
if €,>0 is small enough, we have s ED(e)NB for e € Y N(0,¢,],
0<e,=¢€, as follows from the definition of D(e). Let R = R(e)
denote the point of intersection of 3, and the « arc containing 8 in V
(Either R = A or R = P,). Then we may write t = p(R) + xe®, where
x =x(e)>0 and e”® denotes the direction of [,. Since the angle
between [ and the line containing [, at p(R) is €, either the point
u(e)=p(R)+ xe' " or the point t(e) = p(R) + xe'“©,is in [, for e, >0
small, e € Y,N[0,€,]. We first assume that t(e)isin [(e). Thenif ¢,
is small enough there exists p >0 and a semicircular disk, Q(e), of
radius p, center t(€), and whose diameter is a line segment of /., which is
contained in p[V N D(e)] for e € Y,N[0,€,]. Since H, vanishes on
the diameter of Q(e), it follows from the reflection principle, that

(5.19) HE(§)=Im{2 a©)e™ L~ 1},
{ € Q(e), where a,(e) isreal, n =1,2,---, and
(5.20) [a,,(e)léCp‘", n=12---,

(521)  afe)= ;T%JHMHEU(G) + pe®]sin (¢ — 0 + €)dob.

From (5.19) and (5.20) it follows with { = £(0) =t that

5.22) [H0 —a@me 0 1)) < ¢

€

Furthermore from (5.18), (5.21), the bounded convergence theorem and
the fact that lim._,R(e) = A we deduce, lim._,a,(¢) = a,(0). Hence,

oH,

Sl —t|

(5.23) ljﬁ)‘ 2.(s,0)/e = lsi_{l(} H.(t)le = a,(0) [p(A)—t|= —

Here dH,/dn denotes the outer normal derivative of Hyon l,. If u(e)is
in [, for e, small, then the above equality also holds, as is easily
seen. We observe that, dg/an (s,0) = dH,/an (t) |p’(s)|- Using this



354 ROGER BARNARD AND JOHN L. LEWIS

observarion, (5.3), (5.23), and the bounded convergence theorem we
deduce that (5.14) is true.

The proof of (5.15) is similar to the proof of (5.14). Let N be the
domain of definition of ¢, as defined at the beginning of §4. Let y;, and
¥o, denote the line segments which are images of w,MN D(0), and
u-{E, F} under ¢ respectively. We also put W({) = gy(w,w)), H.({) =
g.(w,0) when { =¢(w), w ENND(e), and e € Y,. Since the angle
between y; and y, at ¢(E) is §, we may assume that

ys ={p(E)+xe'"": 0 <x <x,(8)},

where e is the direction of y, and 6 =68(¢), e € Y,. From the
definition of D(e) and the fact that lim,._, 8(e) =0, we see that lim,_,
x1(0) = x,(0).

Using our new notation and changing variables in the integral
defining J, we find that

_j_li_ x.(a)\P[¢(E)+xei(u—a)] 6_& o-5)
(5.24) 5 —fo 55 o [6(E)+ xe 1dx.

Here 6H./on denotes the outer normal derivative of H, to y,. From
(5.3) we note that 6 'W[¢d(E)+xe'® ] is bounded for & = d6(e),
e €Y, —{0}, and 0 <x <x,(6). Moreover,

V[p(E)+ xe' "]
b

(5.25) 151% = —%}M(E)%—xe"’]‘x

when ¢(E)+ xe” € y,. Also, as in (5.23) we find that

oH., 9H,
on on

when ¢(E)+xe” €y, Using (5.24)-(5.26), (5.3), the bounded con-
vergence theorem, and changing back to our original variables, we
conclude that (5.15) is true.

The proof of (5.16) is essentially the same as the proof of
(5.15). We omit the details. Hence (5.14)—(5.16) are true.

Finally we show that

(5.27)

(5.26) lim < [S(E) +xe ™) = Z$(E) + xe ],

li_r}()l d(e)e =¢q

where q is as in (5.2). (5.2) is then an obvious consequence of
(5.13)—(5.16) and (5.27). To prove (5.27) we put w,=01in (5.13). We
obtain from (4.9) that
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1

27 BND(e)

980 _ 1
8(5,0) 2> (s, 0)|ds|= zwf 2o(s,0)

w1ND(0)

08,
o (s,0) |ds |

(5.28)
+o0(e), as e€—0.

From (5.14)-(5.15) with w, =0, we see that
—f 2.(5,0)282(5.0) | ds | = [1 + 0 (1)]eL,
BNAD(e) on
—f go(s,O)i&a(s—’O—)lds{=[l+o(l)]81,.
#1ND(0) n

Using these equalities and (5.28), we find that (5.27) is true.

We have now shown that (5.2) holds with a 0 (e) term that depends
on w,. To complete the proof of (5.2), we show this term does not
depend on w, when w, lies in a compact subset, X, of D(0). Clearly, it
suffices to prove the above for given w,€D(0) and X =
{wy: |w,—wo|=r/2}, r small. Moreover, since a pointwise limit of
uniformly bounded harmonic functions is uniform, it suffices to show
that € '[gy(w,,0) — g.(w,,0)] is uniformly bounded for € € Y, — {0} and
w,E{w,:|w,— wo|=r/2}. From (5.13), its subsequent proof, and
(5.27), we see that this statement will be true if we can show the
constant in (5.3) does not depend on w, when w, € {w,: |w,— wy| = r/2}.

To argue the last statement we first assert that [g.(w, wy)] 'g.(w, w))
is uniformly bounded whenever w,E{w, |w,—w,|=r/2}, we€E
{w,: |[w,—w,|=r},and e € Y,. Indeed, since D(e)— D(0) in the sense
of kernel convergence, we have k. — k, uniformly on {w,: |w,— wy| =
r}. Using this and (5.4), it follows that our assertion is true. If ¢
denotes the uniform bound in our assertion, then from the maximum
principle for harmonic functions we have, g.(w, w)) = cg.(w, w,) when
wE D(e)—{wy |wra—wo|<r}, w E{w,:|w,—w|=r/2} and €€
Y,. Using (5.3) with w, = w,, we conclude that

ge(wa wl) é Cge(wa WO) § CCp(W’€)7

when w, w,, and € are in the above sets. Hence the constant in (5.3)
does not depend on w,E{w,: |w,—w,|=r/2}. This completes the
proof of (5.2).

6. The Julia variational formula. In this section we
show how the Julia variational formula for the mapping functions f,,
corresponding to D(e), can be derived from the Hadamard variational
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formula for g. [see (5.2)]. We then show in a general way how the Julia
variational formula can be used to solve some extremal problems. We
use the same notation as in §5.

First note that I'(0) is a Jordan curve. Hence from the strong form
of the Riemann mapping theorem (see Goluzin [4, Thm. 4, p. 44]), fyis a
homeomorphism of K UJdK onto D(0)UTI'(0). Consequently there
exist arcs A, 7, of dK, disjoint, except possibly for endpoints, such that
fo(A) =, and f(7) = B. Also from the reflection principle we see that
focan be extended analytically to a larger domain containing all of A U 7,
except possibly the endpoints of these arcs. We denote this extension
again by f,.

Put s=f({), €A U7, and choose z& K such that w,=
fo(z). Furthermore, let h({)= —q|¢p(s)— , when s =
fl) E m,and h($) =|p(s)—p(A)|/|p'(s)| when s = f({) EB. Here q
is as in (5.2). Using (5.4), changing variables in (5.2), and arguing as in
Julia [7], we get

60 o) =fe)+ L2 (“2),;’,§2|1d§l+o(e)

as € >0. Now let dA({)zgg),dg , when (€A U7 Then from
(6.1) we obtain

loglf.2)/z) = loglfa)lz1+¢[  FHE (L2 E)an)+oce)

as e >0. If ®is a given nonconstant entire function, then

i)t (200

+o(e),

as € —»0. Hence

6.2) Re{@[long(Z)]}~Re{ [ foz )]} ef ()AL + o(e)

where,

63)  o()= Re{cb'[logf"(zz)] Z]i:"é(zz)) (éfj)} [ € oK.

Next let a, d, and M be fixed positive numbers satisfying 0 < a <o,
0=d<l,and 1<M <x. Let C denote a given compact subclass of
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S(a,d,M). Let ® be a given nonconstant entire function. Consider
the following extremal problem:

Problem 1. Find max,cc Re{®[log f(z)/z1} for given z € K-{0}.

Assume that f. is in C for e € Y,. Then we shall outline the
method in which (6.2) can be used to obtain information about an
extremal function which solves Problem 1 in C. First observe that if
d'[log fo(z)/z] # 0, then o defined by (6.3) is the real part of an analytic
function which maps dK onto a circle. Hence dK can be divided into
two arcs, disjoint except for endpoints, such that o is increasing on one
arc, and decreasing on the other. It follows from this monotonic
property of o that if we are given any three arcs of K (disjoint except
possibly for endpoints), then we can choose two of the arcs, say A and 7,
such that

64 min o (¢) = max o (¢).

If (6.4) holds, we claim that either f, is not an extremal function for
Problem 1 or ®'[logfy(z)/z]1=0. To verify this claim observe that
dA({)<0,{ €A, and dA({) >0, { € 7, except possibly at endpoints of

these arcs. Also, f dA({)=0. Using these facts and (6.4), we

AUT

obtain from (6.2) that either

(6.5) Re{ [logf( )]}>Re{ [logfo(l)]}

for € >0 small or
(6.6) By [log @] =0

If (6.5) occurs clearly f, is not an extremal function for Problem
1. Hence our claim is true.

7. Preliminary lemmas. Let a,d, and M be fixed posi-
tive numbers satisfying 0 <a <o, <M <o, and 0=d <1. Thenin
this section we first consider Problem 1 in some subclasses of
S(a,d,M). Using this information, we then consider Problem 1 in
S(a,d,M). Our goal is to show that a rotation of F defined by (i)-(iv)
of §1 solves Problem 1 in S(a, d, M) (Lemma 8). We use the method of
§6. To begin, let & denote the class of « starlike domains Q with Q in
& if and only if f(K) = Q for some f € S(a,d, M). Let s, denote the
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subclass of & consisting of all domains ) whose boundary is the union
of a finite number of « arcs with at most n nondegenerate vertices. By
a vertex we mean of course the intersection point of two a arcs. The
vertex is nondegenerate if the smallest angle § between the two a arcs
at this vertex satisfies 0<9 <z. If B is an a arc connecting two
nondegenerate vertices of ), then we shall call 8 an a side of ). If the
vertices of an a side B lie on 9Ky, then we shall call B an « chord of
dK,. The following lemma shows that U .,<. ,, is dense in 4.

LeMMA 4. If Q€ oA, then there exists a sequence of domains {Q,}
with Q, € A, such that Q, — Q in the sense of kernel convergence.

Proof. It obviously suffices to show that for each >0 there
exists an integer n and Q, € &, such that 4}, is contained in an 7
neighborhood of 3. Let f € S(a, d, M) be such that f(K) = Q. For
given r, 0<r<1, we consider the function f(z)=f(rz)/r,
z € K. From (1.1) we see that f, is an « starlike function. Moreover

the maximum and minimum modulus principle guarantee the existence
of a d, and M, such that

(7.1 d<d <|f(z)lz]| <M, <M, zEK.

We put Q* = f,(K). Then since f is continuous on K U JdK, we may
choose r near enough 1, such that each point of d{)* is contained in an
1/2 neighborhood of 4Q). From Lemma 2 we see that Q* may be
approximated by an « starlike domain G with the following properties:

i) G CQ*,

(i) aGCLd . M)={z:d =|z|=M\},

(iii) 0G is the union of a finite number of a arcs,

(iv) 3G is contained in an n/4 neighborhood of ¥,

V) ﬁp=mLG<me%§mmhﬂMﬁ+ﬁ%}
From (ii), (iii), and (v) we see that 1/pG € o, for some n. Also, (iv)
and (v) imply that d(1/pG) is contained in an 7/2 neighborhood of
Q*. Hence if Q, = 1/pG, then 3(), is contained in an 1 neighborhood
of Q. This completes the proof of Lemma 4.

Lemma 4 and A Theorem of Carathéodory imply that if f(K) =,
f(K)=Q,, where f,f, € S(a,d, M), then

(7.2) limf, = f

n—«

uniformly on compact subsets of K.
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For a given positive integer n, let C, denote the class of
functions f € S(a, d, M) with f(K) € &f,. As in the proof of Lemma 1,
we see that if f € C,, then f may be written in the form

aRe{l +%%}+(1_“)Re{%%}:§ a, Re{:fjozz}

where m =n, a, >0 (1=k =m), and 27, a, = 1. From this formula it
is easily seen that C, is compact. Hence if C,# {¢}, then there exists
an extremal function F, for Problem 1 with C = C,. Choose a subse-
quence (n;); of (n)7 such that if H, =F,, j=1,2,---, then lim;_. H, =
H € S(a,d, M) uniformly on compact subsets of K. Then from (7.2)
we see that H is an extremal function for Problem 1 with C =
S(a,d, M).

We note for given f&€ S(a,d, M) and t € K that the function
f(tz)/t,z € K, is also in S(a,d, M). It follows from this fact and a
result of Kirwan [9] that

H(z)

(7.3) P’ [log —Z—] #0.

Here ® and z are as in Problem 1, and H =lim,_.H; is as
above. Hence we may choose n, large enough such that

(7.4) @'[log (H;(2)/2)]1 # 0, j Z n,.

We use (7.4) to obtain a partial description of €, = H;(K),j =
n,. Indeed, we have

LemMA 5. Let H, and Q; = H/(K) be as above for j = n,. Then
all but at most two of the a sides of d(}; are either a chords of K, or are
tangent to dK,.

Proof. Assume for some j=n, that Lemma 5 is false. Put
D0)=9Q,T0)=0Q, and f,= H. Then I'(0) has at least three a sides
which are not « chords of dK,, and which are not tangent to dK,. The
preimage of these sides consists of three arcs of dK, disjoint except
possibly for endpoints. As in §6 we choose two of these arcs, A and 7
such that (6.4) holds. Let fy(A) =, fo(r) = B. Then u can be rotated
inward as in variation I, and B8 can be rotated outward as in variation II
(b) in such a way that we obtain D(¢) (see §4)fore € Y,. Alsoif e, >0
is small enough, then D(e) has the same number of vertices as
D(0). Hence D(e)E o, for e € Y,. It follows that the functions f,,
corresponding to D(e) are in C,. Using this fact, (6.4), (7.4), and



360 ROGER BARNARD AND JOHN L. LEWIS

arguing in §6, we find that f, is not extremal for Problem 1 in C,. Since
fo= H;, we have reached a contradiction. We conclude from this
contradiction that Lemma 5 is true.

We recall that our goal is to show that a rotation of F defined by
(1)-(iv) of §1 solves Problem 1. We shall need the following lemma.

LEMMA 6. Let d, and M, be fixed positive numbers satisfying
d<d <M <M. Let QO be as in Lemma 5 for j=n,. Then there
exists, independently of j, a maximum number N of « sides of (), that
intersect the closed annulus L(d,,M,).

Proof. We first consider those a sides of (), (j fixed) that have
their endpoints on dK,. If an « chord of dK,, intersects L (d, M), this
chord subtends a minor arc of dK,, of arc length at least ¢,. f, may be
taken to be the arc length of the minor arc subtended by an « chord of
0K, which is tangent to dK,,. Again this statement is proved using
(2.3b) and properties of convex domains. Choose an integer /, such
that [,t,>2wM. Then, independently of j, no more that [, sides of 3£},
which are a chords of 3K, can intersect L(d,, M,).

Suppose next that 8 is an « side tangent to dK, which intersects
L(d,,M,). Let P be a point of 8 N L(d,, M,) and let P, be the radial
projection of P on 9K, Let P, be the point where B is tangent to
dK,. Then the length of the minor arc of K, with endpoints P,, P,, has
length at least ¢,, where ¢, depends only on d,d,, and @. Since (); is
starlike, two arcs of 4K, obtained from two different « sides tangent to
dK, in the above way, cannot overlap. Hence if /, is a positive integer
satisfying [,t,=2xd, then 9(); has at most [,, a sides intersecting
L(d,, M,) which are tangent to dK,. Using Lemma 5 we conclude that
d€Q); has at most N = [, +[,+2 sides which intersect L(d,,M)).

Next we use Lemma 6 to characterize Q) = H(K). We shall need
some notation. Given 6, 0< 0 =2, and j = n,, let w;(0) denote the
unique point of intersection of 9(); with the ray from w =0 which has
direction e”. The uniqueness of w;(#) is guaranteed by Lemma
2. w(6)is defined relative to 3} in a similar way. For given € >0 and
0, 0< 0 =2, we claim there exists a positive integer n, = n,(¢, ) = n,
such that

(1.5) |w;(8) —w(8)|<e for j=n,

This claim is a direct consequence of the fact that {}; — () as j —> = in the
sense of kernel convergence. We use (7.5) and Lemma 6 to prove.

LEMMA 7. Let d, and M, be as in Lemma 6. Let Q=
H(K). Then dQN{w:d,<|w|<M,} consists of a finite number of «
arcs.
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Proof. Suppose x;, 1=i=N+2, are N +2 points of Q0 with
0=Arg(xx) <Arg(x,, X)) <ma, ISi=N+1, and d,<|x;/|<M, 1=
i=N+2. Let V be a sector, whose boundary consists of two rays
drawn from w =0, which contains each x, 1=i=N+2, in its
interior. We may assume V has angle opening less than 7a. Draw
the a arcs B, 1=i =N +1, which are contained in V, and have
endpoints x;, x..,.- Let ¢ denote the smallest angle between the
tangents of B; and B,;, at x,,, for =i =N. Then if Lemma 7 is false
we clearly can choose x,, | =i =N +2, as above, and such that

(7.6) 0<¢d:<mwm, 1=i=N.

Furthermore, from (7.5) we can choose, for arbitrarily small € >0 and j
large enough, N +2 points of d€);, say y,, ¥, -, yn+2, SO that

|xi =y |<e, I=Si=N+2.

However if € is small enough this inequality and (7.6) imply that 3 (); has
N + 1, a sides which intersect L(d,,M,). We have reached a con-
tradiction to Lemma 6. Hence Lemma 7 is true.

8. Proof of Theorem 1. Finally we prove.

LemMma 8. For some real 0, Q)= e®F(K), where F =F(-,a,d,M)
is as in (1)-(v).

Proof. First we extend the definition of an « side. Lety bean «
curve and suppose that B8 = y N 9} is a set consisting of more than one
point. Then we shall call B an « side of Q). From Lemma 2 we see
that B is a closed a arc. Hence if Q) # B, then B8 has endpoints A, B,
with A # B. In this case we assume, as we may, that d =|A |=|B|=
M. We assert that

(a) the left and righthand tangents to d{) at B do not coincide.

If |B| <M, then (a) is a consequence of Lemma 7. If |B|=M,
then (a) is easily proved using (2.3b) and geometric properties of convex
domains. Hence our assertion is true.

Next, we assert that one of (b), (c), or (d) is valid for A,

(b) The left and right hand tangents to d{) at A do not coincide
and d <|A|,

(c) |A|=d and there exists a set {Q,}; of distinct points in
dK, N 3Q with lim,_. Q, = A,

(d) |A|=d and there exists set {p,}; of distinct a sides CaQ,
with endpoints A,, B,, n = 1,2, - -, for which d <|A,|=|B,|=M and
lim,_. A, =lim,_. B, = A.
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The proof of (b) is the same as the proof of (a). If |A|=d, then
from Remark 1 we see that vy is the unique a curve tangent to dK; N 9}
at A. Using this fact, Lemma 3, and Lemma 7, it follows that either (c)
or (d) is true.

We now use (a)-(d) to show that 91 contains at most two «
sides. Suppose to the contrary that there are at least three distinct «
sides in 3. To obtain a contradiction we consider two
possibilities. First assume that one of the statements (a), (b), or (c) is
valid for each endpoint of the o sides. Then the preimage of these
sides consists of three arcs, disjoint, except possibly for endpoints. As
in §6 we can choose two of the arcs A and 7 such that (6.4) holds with
fo=H. Let A, be a subarc of A with the property that

() A, has an endpoint in common with A,
() HA)NIK, = {d)}

Clearly there exists such anarc A,. Weput HA)=u, H(r)=p. We
also put & =D(0) and f,=H. Then u satisfies the conditions of
variation I, and B satisfies the conditions of either variation II or
III. Hence we can perform these variations on D(0) in such a way that
we obtain D(€) (see §4) for e € Y,. From the construction of D(e), we
have D(e) € . Hence if f, is the function corresponding to D(e), then
f. € S(a,d, M). Using this fact, (6.4), (7.3), and arguing as in §6, we
find that f, = H is not extremal for Problem 1 in S(«o, d, M). We have
reached a contradiction. Thus if the above possibility occurs, then 4}
contains at most two « sides.

Next consider the possibility that all of the statements (a), (b), and
(c) are false for an endpoint of one of the above « sides. Then from (d)
we see that dQN{z:d<|z|<M} contains three other «
sides. Furthermore, either statement (a) or statement (b) is valid for
each endpoint of these o sides. Hence we may apply the argument of
the first case to these o sides. Again we obtain a contradiction. We
conclude from this contradiction that 4 () contains at most two « sides.

Since (1 is a starlike and we have Lemma 7, it follows from the
above that () consists of at most two « sides, at most two arcs of K,
and possibly one or two points or a proper arc of dK,. Consider first
the case when 09} contains exactly one « side. Then from the
discussion in §3 for d = §(M, a) we see that Lemma 8 is true. Second
consider the case when 3() contains two « sides. In this case we shall
show that one endpoint of each a side must be on dK,. It then follows
from Remark 1 that these a sides are tangent to 9K, and there upon
from the discussion in §3 that Lemma 8 is true.

The proof is again by contradiction. Assume that 4 ) contains two
a sides with at least one of the sides having both its endpoints off of
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dK,. Observe from Lemma 1 that the other side then must also have
both its endpoints off of dK, Let & and & denote these two «
sides. Let ¢, ¢,, CAK besuchthat H(y)) =&, H({,) = &,. Putfy,=H
and suppose that o defined by (6.3) obtains its minimum at {, €
dK. We first assume that ¢, is an interior point of either ¢, or ¢,. We
may assume that ¢, is in the interior of ¢, since otherwise we
renumber. Then by the monotonic property of o (see §6), there is a
subarc i, C ¢, possessing an endpoint in common with ¢, and satisfying
max,e,, 0({) = min,e,, 0({). Choose a subarc A of ¢; possessing a
common endpoint with ¢, and for which H(A) N dK, ={¢}. This
choice is possible since £, has both endpoints off of dK,. We note that
A and 1 =, satisfy (6.4). Also if HA)=u, H(7)=8, fo=H, Q=
D(0), then w and B satisfy the requirements of variations I and II
respectively. Using this fact and arguing as previously in §8, we obtain
a contradiction to the fact that H is extremal for Problem 1 in
S(a,d,M). Hence ¢, is not an interior point of either ¢, or ,.

Now consider the case when ¢, is not an interior point of either ¢,
or ¢,. In this case o clearly varies in a strictly monotonic manner on
one of the sides, say ¥,. Let ¢, {,, denote the endpoints of ¢,. Let
the labelling of these points be such that

8.1 o({)<o({).
Choose a subarc v C; with the property that {, € v and H(v) N 9K, =
{6}

Again we let H = f,, D(0) = (), and use the notation introduced in
§4. Let u be a subarc of H(v), with H({,) € u, u N K, ={¢}, and
such that if B = &, — u, then g defined as in (5.2) satisfies

8.2) g>1.

This choice is possible since from (5.2) and (5.3) we have g — « as the
arc length of w+ —0. Let A = E denote the common endpoint of 8 and
w. Then u satisfies the hypotheses of variation I, but 8 does not
satisfy the hypotheses of either variation II or III. However from the
remark after (4.6) we see that we still can apply variations I and II to
obtain a starlike domain D(e) for e € Y, with m.r. D(e)=1 and
dD(e)CL(d,M). We assert that in fact D(e) is a starlike fore € Y, N
[0, €,] when €,>0 is small enough.

To prove this assertion we introduce a new domain D(e), € €
Y,. We obtain D(e) by applying variations I and II to D(0). More
specifically, put D(e) = D(e,e) (see 84 for the definition of
D(e, 8)). Then dD(e) contains a arcs &, B, with e the smallest angle
between u, fi, and B, B, at E = A. Hence, i U is an a arc. Using
this fact and Lemma 1, we find that ﬁ(e) i1s «a starlike.
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We claim that (5.3) is valid, where now g.( -, w,) is Green’s function
for D(e) with pole at w, € D(e). Indeed, it is easily checked that (5.3)
holds under the weaker assumption, lim,_,, m.r. D(e)=1. Using (5.3)
we deduce that (5.13)—(5.16) still hold for g. when § =e€. It follows
from these equalities with w, =0, § = ¢, and (8.2) that

tim L= L= Lo gy<o.
Hence, m.r. D(e)>1 for € >0 and small.

Since m.r. D(e)>1 for € >0 and small, we may now apply
variation I (with D(e), 4, replacing D(0), w, in I) to obtain an « starlike
domain D(e) with mr. D(e)=1. We note that
B CaD(e) N aD(e). Using this fact and the monoticity of the mapping
radius, we conclude that D(e) = D(e). Hence our assertion is true.

Let A Cv and 7 =¢,— A be the preimages of u, B, respectively
under f,. We observe that {,€ A. Using this observation, (8.1), and
the monoticity of o on ¢, we deduce that (6.4) holds for A and . Using
(6.4), (7.3), and arguing as in §6, we find that H is not extremal for
Problem 1in S(a,d, M). We have reached a contradiction. Therefore
{, must be an interior point of either ¢, or ¢y, However, we have
already shown this case cannot occur. Hence the assumption that £,
does not have an endpoint on 9K, is false. We conclude that Lemma 8
is true.

Next we use Lemma 8 to prove Theorem 1. We note that F
defined by (i)-(iv) of §1 is circularly symmetric. Using this fact and
Theorem 2 of Jenkins [6] we see that

(8.3) |F(re®)|>|F(re®)|, 0=6,<6,=m,

whenever 0<r <1. From (8.3) and Theorem 3 of Kaplan [8], we
deduce that the function g(z) =log F(z)/z, z € K, is univalent and
convex in the direction of the imaginary axis. Suppose now for some
f € S(a, d, M) that the function h(z) =log f(z)/z, z € K, is not subordi-
nate to g(z). Then for some z,€ K-{0} we would have w,=
h(z)) € g(K). It would then follow from Runge’s Theorem (see Rudin
[14, Thm. 13.9]) that there exists a polynomial P with

(i) [P(w)|=ifor wEg(K,.),
(i) |P(wo)|=3.

We choose y such that Re{e”P(w,)}=|P(w,)|. Then the function
d(w)=e"P(w) is entire and from (i), (ii), we have
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max Re {d)[log F(e'“zo)]} <2 <Re {Cb[logf(z")]}

0=0=2n ez, 4

This inequality contradicts Lemma 8. We conclude that Theorem 1 is
true, for fixed «, d, and M satisfying 0<a <o, 1<M <o, and
0=d<l.

The case 0 <a <o, M =, 0 =d <1, can be handied by treating it
as a limiting case as M — « of the above cases. We omit the details.

9. Proof of Theorem 2. Let M and d be fixed numbers satisfying
I<M<o, 0=d<1. Let S*(d,M) be asin §1. Given f € S*(d, M)
andr,0<r<1,letf.(z) =f(rz)/r,z € K. From the maximum principle
for harmonic functions and (1.1) we see that f, € S(a,d, M) for 0 < a =
a,, provided «, is small enough. Hence from Theorem 1, logf,(z)/z,
z € K, is subordinate, to the function log[F(z,a,d, M)/z], z € K, for
0<a =a, Using this fact and simple properties of subordination, it
follows that if F*(-,d, M) =lim,_, F(-, a,d, M) exists, then log f,(z)/z,
z€K, is subordinate to log{F*(z,d,M)/z], z&K. Since
F(K,a,d, M) converges as a« —0 in the sense of kernel convergence,
we see that the above limit exists. Furthermore, dF*(K, d, M) consists
of either

(1) Anarc of dK,, passing through — d, with endpoints de®, de ",
0<0<m,

(i) The arc of dK,, passing through M, with endpoints Me®,
Meﬂ'e’

(iii) The radial line segments connecting de”, Me”, and de ™,
Me ™", respectively, or

(iv) A line segment on the negative real axis with one endpoint
— M, and dK,,.

Since f =lim,_, f, we conclude that (B) of Theorem 1 is valid.

Finally we show that g(z) =log[F*(z,d, M)/z], z € K, is convex
univalent. Since g is the limit of univalent functions, it is clearly
univalent. Let z,, z,, be fixed points in K-{0} with z,/|z,| = e, z,/| z,| =
e and r,=|z,|=r,=|z,]. Thenforgivent,0<t<l,and r=r/r,=
1, the function

F*(e®z,d, M)]’[F*(re iz d, M)]H
ez rez ’

h(z)= z[

z €K, is in S*(d,M). The above fact follows from a property of
starlike functions stated in §1, and the maximum principle for harmonic
functions. Since log[h(z)/z], z € K, is subordinate to g, we see that
log[h(r)/r)=1tg(z)) +(1—t)g(z,) is in g(K). Hence g is convex
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univalent. The proof of Theorem 2 is now complete for 1 <M < and
0=d<1. Thecase M ==, 0=d <1, can be handled by treating it as
a limiting case as M — x of the above cases. We omit the details.
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