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COEFFICIENT BOUNDS FOR SOME CLASSES
OF STARLIKE FUNCTIONS

R O G E R B A R N A R D A N D J O H N L. L E W I S

Let t be given, 1/4 ^ t ^ oo, and let 5 ( 0 denote the class of

normalized starlike univalent functions / in | z | < 1 satisfying (i)

| / ( z ) / z | ^ ί , | z | < 1, if 1 / 4 ^ * ^ 1, (ii) |/(z)/z 1 ̂  f, \z\< 1, if

1 < t ^ oo. If f(z) = 2 + ΣΓ=2flfcZfc G S ( ί ) and n is a fixed positive

integer, then the authors obtain sharp coefficient bounds for | an \

when t is sufficiently large or sufficiently near 1/4. In particular

a sharp bound is found for | a-κ | when 1/4 ^ t ^ 1 and 5 ^ ί ^ oo.

Also a sharp bound for \a4\ is found when l / 4 ^ ί ^ l or

12.259 =i t ^oo.

1. Introduction. Let S denote the class of starlike univalent
functions/ in K = {z : \z \ < 1} with the normalization, /(O) = 0, /'(0) = 1.
Given ί, 1/4^t ^oo, let S(t) denote the subclass of functions / e S
satisfying

(1.1) |/(z)/z I ^ ί, z e K, if 1/4 ^ ί ^ 1,

(1.2) |/(z)/z I ^ ί , z G K , if K ί ^ o o .

If l/4<ί g l , we let F = F( ,f) be defined by

(1.3) zF'{z)IF(z) = [1

w h e r e 0 ^ b < l a n d ί = [ ( 1 + fc)l+fc (1 - ft)1-*]"1. T h e f u n c t i o n F =

F ( , 0 defined b y (1.3) is in S{t) for l/4<t^ 1, a s c a n b e s h o w n by a

long but straightforward calculation (see Suffridge [9]). For fixed t,
1/4 < t ^ 1, this function maps K onto the complex plane minus a set

{w: I w I ^ ί, Trfc ^ arg w ^ 2ττ - πb}.

If K ί <oo, we let F = F(-J)<Ξ S(t) be defined by

( L 4 ) [ l - r 1 F ( z ) ] 2 = ( Γ : 7 j I ' z E K

It is well known (see Nehari [4, p.224, ex.4]) that the function F maps K
onto a domain whose boundary consists of {w: | w| = ί}, and a slit along
the negative real axis from - t to - λ where 4λί2 = (t -I- λ )2. If t = 1/4 or
ί = oo, we let
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F(z, 1/4) = F(z^) = z/(l - z)\ zEK.

in [2] the authors proved a subordination theorem for some classes
of univalent functions. For S(t) this theorem may be stated as follows:

THEOREM A. Let t be given, 1 /4 ̂  / ^ oo. Let F = F( , 0 be as in
(1.3) and (1.4). ί / / 6 S ( ί ) , ίΛeπ Iog/(z)/z,zEX, is subordinate to
log F(2)/2, 2 e/C

Theorem A implies for a given t, 1 /4 ̂  ί ^ oo, that F = F(J) solves
a number of extremal problems in S(t). Some of these problems were
pointed out in [2]. There, however, only general prperties of subordina-
tion were used. In this note, for certain values of t, we use our specific
knowledge of F, together with Theorem A, to obfain coefficient bounds
for functions fES(t), More specifically, we prove

THEOREM 1. Let t be given, 1/4^ t goo. Let F(z) = F(z,t) =
z +Σ;=2Ak(t)zk, z EK, be as in (1.3) and (1.4). Let f(z) = z+Σ;=2akz\
z EK.be in S(t). If n a positive integer is given (n > 2), then there exist
αn, βn satisfying 1/4 < an ^ 1, 1 ̂  βn < oo, vWί/t f/?e property that

(1.5) Ifl

whenever 1 /4 ̂  ί < an or βn < t ^ oo. α n ^nd βn may be chosen in such a
way that equality holds in (1.5) only iff(z) = η~]F(ηz), z G X, for some
η, |η I = 1. /n particular

(1.6) |α 3 |§A 3 (f) i / l / 4 ^ ί ^ l o r 5 < ^ ^ ,

(1.7) |α 4 | ^ i4 4 ( ί ) // 1/4^ί ^ 1 or 12.259^ί goo.

Equality holds in (1.6) and (1.7) on/y if f(z) = η~]F(ηz), z E K, /or
sorae 17, |τj | = 1.

Let / and t be as in Theorem 1. We note that the inequality
02 | = A2(ί)> 1/4 = * =°°, is an easy consequence of Theorem A (see

[2]). We also note for 1 ̂  t ^ e that | α31 g 1 - t ~2, where equality holds
for the function feS(t) defined by /(z) = F(z\t2)u\ z E K. This
inequality is due to Tammi [10]. The problem of finding a sharp upper
bound for |α 3 | when f E S(t), e < t < 5, is still open. However, Barnard
[1] has shown that the function which maximizes |α 3 | in 5(ί) is either F
or a function which maps K onto a domain whose boundary consists
{w : I w I = t} and two radial slits of equal length.

We remark that several authors have considered similar problems
in the class U(t) of normalized univalent functions /(i.e., /(0) = 0,
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/'(0) = 1) bounded above by ί, 1< t < oo. If f(z) = z + Σx

n=2 anz\ z E K,
is in l/(O,then Schiffer and Tammi [6] showed that \a4\^Λ4(t), for
ί ^ 33 1/3. If in addition / has real coefficients, then Singh [8] proved
that \a4\^A4(t) for t ^ 11. Moreover, Schiffer and Tammi [7] have
proved for each positive integer n g 2, that there exists δn, 1 < δn < oo,
with the following property: If / G U(t) and 1 < t ^ δn, then

Here equality holds for f(z) = F ( z n I , ί π l ) 1 / ( π l ) , z E K , which in fact is in
S(t). Hence the above inequality is also sharp for functions in 5 ( 0
when 1< t ^ δπ. Finally we remark that Schiffer and Tammi [6] have
shown that if suffices to take δ 4 ^ 34/19.

2. Proof of Theorem 1. Let G, ω, be analytic in K and suppose
that

(2.1) ω(0) = 0,

(2.2)

Put g(z) = G[ω(z)], z GK. Suppose that G(z) = Σ;=ιckz\ and g(z) =
ΊTk=xbkz

k. Then Rogosinski [5, Thm. VI] proved

THEOREM B. Let n be a fixed positive integer. If cn > 0 and if there
exists an analytic function P in K with positive real part satisfying

X^ i k

k=n

for z E K, then \ bn \ ̂  | cn \. Equality can occur only if g(z) = G(ηz)
for some η, | η | = 1, or if n > 1 and P has the form,

(2.3)

where A, > 0 , \εt | = 1, 1 ̂  i^J, and / g n - 1 .

Furthermore, Caratheodory (see Tsuji [11, Ch. 4 §7]) proved

THEOREM C. The function P in Theorem B exists if and only if the
n by n matrix
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/
/c,
/ cn.2

Cn I

Cn

Cn-\

Cn 2

Cn

Cn

is positive semi definite. If P exists, then P has the form (2.3) only if the
above matrix has determinant zero.

We now use Theorems A, B, and C to prove Theorem 1. Let t be
fixed, 1/4 ^ t ^oo, and / G S(t). Then Theorem A implies there exists a
function ω satisfying (2.1) and (2.2) for which f(z)/z = F[ω(z)]/ω(z),
z E K. Hence we may use Theorems B and C with g (z) = f(z )/z) - 1,
G(z) = ( F ( z ) / z ) - l , z G K , and c ,=A l + i(0, l ^ i ^ n - 1 , to prove
Theorem 1. To do so we shall want some notation.

Let n and k be fixed positive integers satisfying 2 ^ k g M. Let
δ(k,n,t) be the /c - 1 by /c - 1 matrix

(2.4) δ(fe,n,ί) =

Let I δ(fc, n, ί) I denote the determinant of.δ(k,nj). Then it is well known
(see Hohn [3, Thm. 9,17.3]) that δ(n,n,t) is positive definite if and only
if |δ(fc,π,f)|>0 for 2^fc i n .

We note that An{^) = Λπ(l/4) = n for n ^ 2. Using this fact we
obtain that |δ(M,°°) | = |δ(*,n, 1/4) | = (2n + 2 - fc) 2k 3 for 2%k^n
and n >2. Since (1.3) and (1.4) imply Λn is continuous as a function of
ί, 1/4^ t goo, it follows that

lim|δ(fc,n,0| = I δ ( M , oo)|= lim|δ(fc,π,ί)|>0

for each positive integer n > 2 and 2 i /c i n. From this inequality and
our previous remark we see that δ(n,n,t) is positive definite for
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sufficiently large t and t near 1/4, say 1/4 g t < αn, βn < t g ». Using
Theorems A, B, and C, it follows that (1.5) is true.

To prove (1.6) and (1.7) we make some explicit calculations. The
case t = 1 is trivial since then S(t) consists only of the identity
function. First from (1.4) we find for x = t'\ and 1 < t goo, that

(2.5) A 2 ( O = 2 ( 1 - J C ) ,

Second if 1/4 ^ t < 1 and a = 2b2- 1 [b as in (1.3)], then from (1.3) we
get

(2.6) A2(t)=

Λ4(t) = (1 + a) (17 + 6a +a2)l\2.

Here - K α ^ l .
To prove (1.6) it suffices, by the previous argument, to show that

Λ 2 (ί)>0and

for 5<ί<oo or l/4^f < 1 . From (2.5) and (2.6) we see that these
inequalities are valid for the above values of t. To prove (1.7), we need
to show that δ(3,4,ί) >0, δ(4,4,ί) >0, for the stipulated values of t in
Theorem 1. To do this we consider two cases. If l < f Soo, and
x = lit, then from (2.4) and (2.5) we have

4

3

2

+ 14x2-

- 5 J C

16JC 3 -

4 +

3 -

5JC

1 4 J C 2 -

5JC

16JC

2

3 -

4 + 1 4 Λ : 2 - 16JC

Adding the second row to the first and third rows we get

7(1-2JC) 1(1 x2x) 5

U ) | = ( l - * ) 5
 3-5JC 4 + 1 4 X 2 - 1 6 J C 3-5x

5 7(1 - 2 J C ) 7 ( 1 - 2 J C )
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Evaluating this determinant we obtain

,i)| = 4(l-jc)5(l-7jc)[3-47;t + 126x2-98x3] >0

for 12.259sr go), it is easily checked that 15(3,4,01 =
Al(t)-Al(t)>0 for 12.259^ f ^oo. Hence (1.7) is true for 12.259 =§
(goo.

If 1/4^ t < 1, then from (2.4), (2.6), we obtain

174

3(5-

12

6a +

f α )

α2 3(5-

174

3(5-

6α

1

+

1

a2

12

3(5

17 +α

Subtracting the second row from the first and third rows, we get

α + 2 - α - 2 - 3

(12)J|δ(4,4,ί)| = 3(5 + α ) 17 + 6 α + α 2 3(5 + a)

- 3 - α - 2 a+2

Adding six times the first and third rows to the second of this
determinant, we find that

a+2

- 3

-fl-2

a - 7

- α - 2

- 3

9

α + 2

Evaluating this determinant we obtain

+215) > 0

for - K α ^ l . Hence |δ(4,4,f) |>0 for l / 4 ^ ί < l . It is easily
checked that |δ(3,4,ί) |>0 for l/4^ί < 1. We conclude that (1.7) is
true for 1/4 g f < 1. The proof of Theorem 1 is now complete.

Finally we remark for 1/4 s= t < 1 that

10α2-2α3)<48A4(O

for t near 1, t<\. It follows that |δ(3,5,ί) |<0 for t near 1, t<
1. Hence our method does not imply for all t, l / 4 ^ ί ^ l , that
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\as\ ^A5(t). However, it is still possible our method implies that an in
Theorem 1 can be chosen independent of n.

REFERENCES

1. R. Barnard, A variational technique for bounded starlike functions, to appear.
2. R. Barnard and J. Lewis, Subordination theorems for some classes of starlike functions, to
appear.
3. F. Hohn, Elementary Matrix Algebra, the Macmillan Company, 1966.
4. Z. Nehari, Conformal Mapping, McGraw-Hill, 1952.
5. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc, 48
(1943), 48-82.
6. M. Schiffer and O. Tammi, On the fourth coefficient of bounded univalent functions, Trans.
Amer. Math. Soc, 119, 67-78.
7. M. Schiffer and O. Tammi, On bounded univalent functions which are close to identity, Ann.
Acad. Sci. Fenn. Ser. AI, no. 435, 1969.
8. V. Singh, Grunsky inequalities and coefficients of bounded Schlicht functions, Ann. Acad. Sci.
Fenn. Ser. AI, no. 310, 1962.
9. T. Suffridge, A coefficient problem for a class of univalent functions, Mich. Math. J., 16 (1969),
33-42.
10. O. Tammi, On the maximalization of the coefficient a3 of bounded Schlicht functions, Ann.
Acad. Sci. Fenn. Ser. AI, no. 149, 1954.
11. M. Tsuji, Potential Theory in Modern Function Theory, Maruzen Company, 1959.

Received December 4, 1973.

UNIVERSITY OF KENTUCKY






