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A CHARACTERISTIC SUBGROUP OF A
GROUP OF ODD ORDER

Z. ARAD (ARDINAST) AND G. GLAUBERMAN

Let G be a finite solvable group of odd order. Suppose p is
a prime, S is a Sylow p-subgroup of G, and OP(G) = 1. Let
J(S) be the Thompson subgroup of S. Then, by a result of the
second author (Lemma 6), Z(J(S)) ^ G.

The object of this paper is to generalize the above result by
replacing the prime p by a set of primes π.

We obtain the following results:

THEOREM 1. Let G be a finite solvable group of odd order, π be a
set of primes, and H be a Hall π-subgroup of G. Assume that
OAG)=\. Then:

(a) for every p Eττ-{3} and A G ^ ( H ) , O p (A)Cθ p (G);
(b) the prime divisors of d(H), of \Z(J(H))\, and of \F(G)\

coincide
(c) d(G) = d(H); and
(d) Z(J(G)) = Z(J(H)).

In particular, if G/l, then 1 CZ(J(H)) ^ G.

COROLLARY. Suppose G is a finite solvable group of odd order, p is
a prime, and S is a Sylow p-subgroup of G. Assume that OP(G) =
1. Then Z(J(S)) = Z(J(G)). Moreover, if p/3, then J(S) = J(G) =
J(F(G)).

By the Odd Order Theorem of Feit and Thompson [1], Theorem 1
and its corollary apply to all finite groups of odd order. Since much of
our argument requires only that G be π- solvable and have an Abelian
Sylow 2-subgroup, we obtain a related result:

THEOREM 2. Suppose π is a set of primes, G is a finite π-solvable
group, and H is a Hall π-subgroup of G. Assume that G has an
Abelian Sylow 2-subgroup and that Oπ{G) = 1. Then:

(a) O2(G) = O2(Z(J(G)) = O2(Z(J(H))) = O2(H);
(b) // 2 fέ π, then for every p Err - {3} and A G sέ{H), OP(A) C

OP(G);
(c) if 2fέπ, then Z(J(H)) ^ G; and
(d) // 2 £ π, then the prime divisors ofd(H), of | Z(J(H)) \, and of

I F(G)\ coincide.
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In particular, if 2 £ π and G ̂  1, or if O2(G) ̂  1, then there exists a
nonidentity characteristic subgroup of H that is a normal subgroup of
G.

COROLLARY. Assume the hypothesis of Theorem 2 and assume
that 2,3 £ 7r. Then J{H) = J(F(G)).

Some related results for groups with a nilpotent Hall π- subgroup
were obtained by Schoenwaelder in [5].

All groups in this paper are assumed to be finite. Our notation is
standard and taken mainly from [41. In particular, let G be a
group. Then F(G) denotes the Fitting subgroup of G and [A,JB, C]
denotes the triple commutator [[A, J3], C] of three subgroups A, B, C of
G. Moreover, d(G) is the maximum of the orders of the Abelian
subgroups of G. Let sέ(G) be the set of all Abelian subgroups of order
d(G) in G. (This is denoted by A\G) in [41.) Then, as in [41, J(G) is the
subgroup of G generated by sέ(G), that is, the Thompson subgroup of
G.

For a prime power q, we will denote the finite field of q elements by
GF(q). Let p be a prime. Sometimes we will use Zp to denote
GF(p) considered as a field or as an additive group. We will often use
without reference the elementary result that if G is a group, π a set of
primes, and H a normal subgroup of G, then Oπ(H)C Oπ(G).

At times we shall assume one of the following hypotheses:
(H) (a) π is a set of primes

(b) G is a π-solvable group
(c) H is a Hall π- subgroup of G

(H2) (a) 7r, G, and H satisfy (H)
(b) G has an Abelian Sylow 2-subgroup.

(The concept of a π- solvable group is defined in §6.3 of [4], in which it is
proved that every TΓ- solvable group possesses a Hall π- subgroup.)

2. Preliminary results.

LEMMA 1. Suppose p is a prime, V is a finite nonidentity elemen-
tary Abelian additive p-group, and A is an Abelian group of automorph -
isms of V. Regard V as a vector space over Zp. Assume that A acts
irreducibly on V and that A preserves some nondegenerate alternating
bilinear form on V into Zp. Let F be the ring of endomorphisms of V
generated by the elements of A.

Then:
(a) There exists a positive integer k such that \V\ = p2k, F =

GF(p2k), and \A | divides l + p \
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(b) Let E be the unique subfield of F that is isomorphic to
GF(pk). Take v0G V-{0} and let W = υ0E. Then for every non-
degenerate alternating bilinear form f on V that is preserved by A,

f(w,w') = 0 for all w9w'EW.

Proof Let Fo be the set (ring) of all endomorphisms of V that
commute with every element of A. We regard Zp as a subfield of
Fo. As is well known, F() is a division algebra ([4], page 76) and, since it
is finite, Fo is a field. Clearly, F is a subfield of Fo. Hence the
multiplicative group F- {0} is cyclic. As A is a subgroup of F- {0}, A is
cyclic. Let pm = | V |. We may regard V as a vector space over F;
then V is a direct sum of 1-dimensional subspaces over F As
A | F - { 0 } and A acts irreducibly on V, V is 1-dimensional over
F. Therefore, | F | = | V| = p m .

Let N be the set of all nondegenerate alternating bilinear forms on
V into Zp that are preserved by A. By hypothesis, JV is not
empty. Hence m is even. Choose a generator α of A. Define g(x)
to be the minimal polynomial of a over Zp. Then g(x) can be
expressed as

where α0, * ',&m £ Z p and am = 1. By the elementary theory of fields,

the roots of g(x) over F are distinct and are precisely α, α p , , α p m '.

Take some f E. N and some v E V- {0}. Let i;' = i ;g(a" f ) . Then,

for all w E V,

S i n c e / is not degenerate, u ' = 0 . As ϋ was chosen arbitrarily, g ( α ' ) =

0. Hence, a~ι = ap> for some i such that O ^ i ^ / n - 1 . If / = 0, then

a2 = 1, contrary to the fact that m ^ 2 and α ^ α p . Therefore, 1 ̂  / ^

m - 1. Now

a =

Since α generates F and F = GF{pm), 2ί is a multiple of
m. Consequently, ί =^m. Let k =\m. Then α 1 = ap\ and α l + p k =
1. this proves (a).
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Let δ = α -hα"1. Since

δ E E. Since a generates F over Zp, it follows that a, ap, ,ap2k '
form a basis of F over Zp. Hence δ,δp, ,δ p k ' are distinct. So, δ
generates E over Zp and δ, δp, , δp k ' form a basis of E over Zp, that
is,

a+a~\ α p + α ~ p , ,αp* ' + <*-""'

is a basis of E over Zp.
Take / G N and w, w' G W as in (b). If w = 0, then/(w, w') =

0, as desired. Assume that w ̂  0. Then there exists β E E such that
W>' = H>/3. Take bOybu- ,bΛ_,GE such that

For i = 0, - -,/c — 1,

/(H>, w(αp' + α^"')) = f(w, wa"') + f(w, wa~")

= /(w, wa"') + f{wa>', w) = 0,

since / is an alternating form. Hence,

as desired. This completes the proof of (b) and thus of Lemma 1.

LEMMA 2. Suppose p is a prime, B is a finite, nonΆbelian p-group,
and A is an Abelian group of automorphisms ofB. Assume that A acts
irreducibly on BIΦ(B) and that OP(A) acts trivially on Φ(J8).

Then:
(a) there exists a positive integer k such that | JB/Φ(JB)| = p 2*;
(b) I A I divides l+pk; and
(c) B contains an Abelian subgroup Bo such that B0^Φ(B) and

\B0IΦ(B)\ = pk.

Proof. For convenience in notation, we embed A and B in the
natural manner in their semi-direct product AB.

Let Ap = OP(A), A* = OP(A), and V - BIΦ(B). Since A acts
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irreducibly on V, A/CA(V) acts faithfully and irreducibly on V. We
may regard V as a vector space over Zp. By [4], Theorem 3.1.3, page
62,

Hence

(1) Ap C CA(V) and A * acts irreducibly on V.

Since B is not Abelian, B is not cyclic. Therefore, | V | =
IBIΦ(B)\^p2. It follows that l/[V,A*] and therefore that

(2) [V,A*]=V.

Consequently, B = [B,A*]Φ(B). By [4], page 173.

(3) B=[B,A*].

By (1) and the hypothesis of this lemma,

[A P ,B,A*]C[Φ(B),A*] = 1 and [A*,Ap,B] = [l,B] = L

Therefore, by (3) and the Three Subgroups Lemma ([4], page 19),

As Ap C AutB, Ap = 1. Hence A is a p'-group and A = A*. By a
theorem of Burnside ([4], page 174),

(4) A acts faithfully on V.

Since CAB(Φ(B)) is a normal subgroup of AB that contains A, (3)
yields that CAB{Φ(B)) contains B. Therefore, Φ(B) C Z(B). Since B
is not Abelian and B' C Φ(B) C Z(J3), B has nilpotence class two. By
an easy calculation, [JC, y]p - [xp, y ] - 1 for all JC, y E B. Thus

(5) B' is an elementary Abelian group.

Take any subgroup C of index p in B'. Let φ be an isomorphism
of BΊC onto the additive group of Zp. Since Φ(B)CZ(J5), the
mapping /: V x V —»ZP given by
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is a well-defined, nonzero, alternating bilinear form on V into Zp. As A
acts trivially on B', A.preserves /. Therefore, A preserves the radical
of /, that is, the group R/Φ(B), where

RDΦ(B)DC and R/C = Z(BIC).

As i?/Φ(β)CV and A acts irreducibly on V, R/Φ(B) =
1. Consequently, / is a nondegenerate form. By (4) and Lemma 1,
there exists a positive integer k such that | V| = p2k and \A | divides
1 + p \ This yields (a) and (b).

Take E and W as in Lemma l(b). Define a subgroup Bo of B such
that Bo Ώ Φ(β) and B0IΦ(B) = W. Then

Suppose BΌ^ 1. Then, by (5), there exists a subgroup C* of index p in
JB' such that BΌglC*. For convenience in notation, we will assume
that C* is the group C chosen above. Take a form / as above. Take
JC, y G Bo such that [JC, y] £ C. Then

/(JCΦ(B), yΦ(B)) = φ([x,y]C) ϊ 0,

contrary to Lemma l(b). This contradiction proves that B'o= I and
hence completes the proof of (c) and of Lemma 2.

LEMMA 3. Assume (H) and assume that O7ΐ{G)= 1. Then:
(a) C G (F(G))CF(G), and
(b) // A /s a subgroup of Aut G that fixes every element of F(G)

and if \ A | and \ G | are relatively prime, then A = 1.

Proo/. (a) Let N = Oπ(G) and C = CG(F(G)). Then N is a
solvable group. Clearly, F(N) = F(G). By [4], Theorem 6.3.2,
CG(N)CN.

Suppose x is a ττ'-element in C. Let L = (N,JC). Then

N = Oπ(L) and [N, Oπ (L)] C N Π Oπ (L) = 1.

Since CG(N) C N, it follows that Oπ(L)=\. Hence F(N) =
F(L). Since L is solvable,

JC G C Π L = CL(F(L)) C F(L) = F(N),

by [4], page 218. Therefore, x = 1.
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Thus, C is a TΓ-group. Since C ^G, C C θ π ( G ) = JV. By [4],
page 218 again, C = CN(F(N)) C F(N).

(b) Embed A and G in their semi-direct product AG. Let
B = OAAG). Since B ΠGQ Oπ(G) = 1, | B | divides \AG/G |, that is,
| B | divides \A\. Since \A | and | G | are relatively prime and

divides \AGjB | , B C A . However,

[G, B] C [G, O^(AG)] C OV(G) = 1.

As B is a group of automorphisms of G, 2? = 1. Hence F{AG) =
F(G). By (a), A CF(G). Therefore, A = 1.

LEMMA 4. Assume (H). Suppose p E TΓ, O^G) = 1, and Γ is a
p-subgroup of Op P(G) tfiaί centralizes F(OP(G)). Then T C OP(G).

Proo/. Let K = Op (G). Apply Lemma 3 with X in place of G
and TICτ(K) in place of A. We obtain the conclusion that T/CT(K) =
1, in other words, T centralizes X. Let JR be a Sylow p-subgroup of
OPΊJ(G) that contains T. Let Γ* = CR(K). Then Opφ(G) = X/? and
Γ* is normalized by X and by R. Hence Γ* ^ XJR and

Γ C P C OP(KR) C OP(G).

We also use the following result of J. Thompson, whose proof is
sketched in the remark on page 164 of [3J:

THEOREM OF THOMPSON. Suppose p is an odd prime, G is a
p-solvable group, and S is a Sylow p-subgroup of G. Assume that
OP{G) = 1. Assume also that G satisfies one of the following condi-
tions :

(i) P^7;
(ii) p = 5 and G has an Abelian Sylow 2-subgroup.
ThenJ(S)COp(G).

LEMMA 5. Assume (H2). Suppose p G TΓ, S is a Sylow
p-subgroup of G, and A Esί(S). Assume that p ^ 5 and that A
centralizes F(OP(G)). Then A C OP(G).

Proof Let K = OP(G). Note that G is p-solvable. By the
Theorem of Thompson,
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AKIK c OP(G/K) = Op.φ(G)IK.

Hence A C OP',P(G). By Lemma 4, A C OP(G), as desired.

LEMMA 6. Suppose p is an odd prime, G is a p-solvable group, and
S is a Sylow p-subgroup of G. If p = 3, assume also that G has an
Λbelian Sylow 2-subgroup. Then

OP(G)Z(J(S))^G.

Proof. Let K = OP(G), G* = GjK, and 5* = 5K/X. Then
OP(G*)=1 and 5* is a Sylow p-subgroup of G*. From the
hypothesis, G* must be p-constrained and p- stable. By a theorem of
the second author ([4], pages 268-269 and 279, or [2], Theorem A),
Z(J(S*))**G*. Since

the result follows.
The next result can be easily verified by calculation. It is a special

case of Lemma 10.1, page 1131, of [2].

LEMMA 7. Let K be a group of linear transformations on a
finite-dimensional vector space V over a field F. Let V* be the dual
space of V over F and let K act on V* in the natural manner, i.e.,

f'{v)=f(v°-1), for feV*,g£K,vEV.

Let T be the set of all ordered triples (v,f,a) for v E V, fE V*,
a E F. Define multiplication on T by the rule

For each g E K, define a mapping M(g) of T into itself by

Then:
(a) T forms a group under multiplication;
(b) for (v,f,a), (vx,fuax) and (v2,f2,a2) in T,

(v,f,ayι = (-v, -/, -f(v)-a)

and
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[(i;,,/,,α,), (ϋ2,/2,α2)] = (0,0,/2(i;1)-/I(ϋ2)); and

(c) Λί is an isomorphism of K into the automorphism group of T.

3. Some Properties of s&(G).

PROPOSITION 1. Suppose G is group, A ELS£{G), B is a nilpotent
subgroup of G, and A normalizes B. Assume that B has an Abelian
Sylow 2-subgroup and that either \A\ is odd or B is Abelian. Then AB
is nilpotent.

Proof. Assume that the result is false, that G is a counter-example
of minimal order, and that, within G, B has minimal order.

Clearly, G = AB and G D F(G) 2 B. Therefore, A £ F(G). For
some prime p, OP(A)£F(G). Let Ap = OP(A). Then
Ap^Op(G). Hence APBP^\G. Since A normalizes APBP, B does
not. Consequently, there exists a prime q such that Oq{B) does not
normalize APBP. Let Bq = Oq(B). Then Bq does not centralize APBP

and therefore does not centralize Ap. Thus ABq is not nilpotent. By
the minimal choice of B, B = Bq.

Let A*=Oq>(A) and V = B/B'. Then A* does not centralize
B. By [4], page 174, A * does not centralize V. By the minimal choice
of β,

(7) A* centralizes Φ(B).

From [4], page 177, V = CV(A*) x[V9A*]. By the minimal choice of
B,

V = [V,A*] and C V G4*)=1.

Let W be a minimal A- invariant subgroup of V. Then W is elemen-
tary Abelian. Since CW(A*) C CV(A*) = 1, the minimal choice of V
yields that V = W. Hence Φ(B) C B ' C Φ(B). Consequently,

(8) β ' = Φ(B) and A acts irreducibly and nontrivially on BIB'.

Let C = CA(B) and n = |Λ/C| . Then A/C acts faithfully as a
group of automorphisms of B. By (8),

(9) CΠBCB'.

Take Bx^d{B). Since CJ9, is Abelian and A <Ξsέ{G),
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by (9). Hence

(10) n

Suppose first that B is Abelian. Then B' = \ and d(B) =
\B\. For every aGΛ-Q CB(a)CB and CB(a)^AB; by (8),
CB(a) = 1. Hence every non-identity element of A\C acts in a fixed-
point-free manner on B, and

\AIC\^\B-{\}\<\B\ = d(B)l\B' .

However, this contradicts (10).
Thus B is not Abelian. By hypothesis,

(11) q is an odd prime and | A | is odd.

By (7) and (8), A and B satisfy the hypothesis of Lemma 2. Take k
and Bo as in Lemma 2. Then

BIB'\ = q2k

9n divides 1 + q \ BQ is abelian, and | Bo/B' | = q k

Therefore, by (10), n^d(B)l\B'\^\B0IB'\ = qk. Since n divides
\ + qk, n = \ + qk. But this is impossible, by (11). This contradiction
completes the proof of Proposition 1.

PROPOSITION 2. Assume (H2). Suppose Oπ(G)= 1. Then

O2(G) = O2(H) - O2(Z(J(H))) = O2(Z(J(G))).

Proof. Let K = O2{Z(J(H))) and N = (MG). Then N is a solv-
able group. By (H2), K centralizes 02{G). For every odd prime p,

OP(G) C O,(tf) C CG(02(H)) C CG(K).

Hence K centralizes F(G). By Lemma 3, KCCG(F(G))C
F(G). So KC O2{F(G)) = O2{G).

On the other hand, let A G ̂ ( H ) and B = O2(G). By Proposition
1, AJB is nilpotent. Therefore, O2(A) centralizes B. By (H2), A
centralizes B. Hence B C CH(A) = A. Thus β CZ(J(H)) and β C
X. Consequently, B = X, as desired. Since π,H, and H satisfy (H2),
we obtain as a special case that K = O2(H).
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A similar argument with A Estf(G) and B = O2(G) = X shows that
KCZ(J(G)). Hence

X C O2(Z(/(G))) C O2(G) = K.

So K = O2(Z(J(G))).

PROPOSITION 3. Assume (H2). Suppose p Eπ and A E sί(H).
Assume that OW<G)=1, d(H) is odd, and p ^ 5 . Then OP(A)C
OP(G).

Proof. We use induction on the order of G. Let Ap = OP(A),
T = OP(G), X = OPP{G) and G* = AX, and H* = A(HΠ K). Then
H Π K is a Hall π- subgroup of X and H* is a Hall π- subgroup of G *.

Suppose G*CG. Since A c H*, d(if*) = d(H). By induction,
Λ COP(G*). Hence

[X,ΛJ C X Π OP(G*) C OP(X) = Γ.

Therefore, APT/T CCGIT(K/T). By [4], page 228, CG/Γ(X/Γ)C
X/Γ. Consequently, Λp C X. So,

as desired.
Suppose G* = G. Then APT is a Sylow p-subgroup of G. Let

Λ* = OP'(Λ). By hypothesis, \A \ is odd. By Proposition 1, AT is
nilpotent. Therefore, A* centralizes T and hence APT For every
Abelian subgroup B of ΛPΓ, A*B is Abelian and

|Λ*| |Λp | = | A | ^ | A * β | = |A*| \B\.

Hence Λ P G^(Λ P Γ). By Proposition 1, AF(OP(G)) is
nilpotent. Then Ap centralizes F(OP(G)).' By Lemma 5, Ap C OP(G),
as desired.

PROPOSITION 4. Assume (H2). Suppose π is a set of odd primes
and OΛG)=\.

Let K = Cc(Oy(G)). For every pGπ and Λ E sd(H), let Ap =
OP(A). Define d3 to be the maximum of \C\ for all Abelian 3-
subgroups C of H Π X and define si3 to be the set of all Abelian
3-subgroups of order d3 in H Π X. Let S be any Sylow 3-subgroup of
X. Then:
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(a) {ΛP\Λ Gs4(H)} = sd(Op(G)), for every prime p ̂ 5 ;
(b) {A3|A G^(//)} = ^ 3 ;
(c) OP(Z(J(H))) = Z(J(OP(G))), for every prime p ^ 5; and
(d) O3(Z(/(H))) = Z(J(S)) <3 G and d, = d(S).

Proof Note that d(H) is odd.
(a) Assume p ^ 5. Let A G ̂ ( H ) . Let A * = Op (A) and M =

OP(G). By Proposition 3, Ap CM. By Proposition 1, A* centralizes
Λί. Hence, for every Abelian subgroup B of M, A * x B is
Abelian. Therefore, |Λp | = d(M), and A * x f l 6 i ( H ) for every
B E ̂ ( M ) . This proves (a).

(b) Suppose A<Ξsd(H). By Proposition 1, AF{G) is
nilpotent. Hence, A3 centralizes F(Oy(G)). Since

A3 centralizes O3(G), by Lemma 3. By (a), OV(A) C O3'(G). Now (b)
follows by an argument similar to that of (a).

(c) This follows immediately from (a).
(d) Assume first that K is a 3'-group. Then ^ 3 = {1} and S =

1. Since Z(J(H))CA for every AGsd(H), O3(Z(/(H))) = 1 =
Z(/(5)), as desired.

Now assume that K is not a 3'-group. Then 5 ^ 1 . Let T =
O3(Z(/(H))) and U = Z(J(S)). By Lemma 6, UOy(K)^K. Since
Ov(K) C Ov(G) and K = CG(O3(G)),

UOV(K)= UxOv(K).

Hence

(12) 1 C U = O,(UOV(K)) ^K.

As OAG) - 1 and 1 C U C O3(K) C O3(G), 3 G π.
Suppose A G ̂ ( H ) . By (b), A 3 C / ί Π K Let A * - OΎ(A) and

let 5* be a Sylow 3-subgroup of H Π K that contains A3. Since K <i G
and 3 G 7r, H Π K is a Hall π-subgroup of K and S* is a Sylow
3-subgroup of X. As S* and S are conjugate in X, (12) yields that

(13) U = ZJ(S*).

By (a), A * C O 3 ( G ) . Therefore, S* centralizes A*. Since A =
and dλ = |A3 | = d(S*) = d(5). By (13), ί/C

A 3CA. As A is an arbitrary element of sέ{H), U CZ(J(H)). So,
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U CT. On the other hand, TCΛ3 for every
A <Ξsd(H). Consequently, TCB for every B <=s$(S), by (b), and
hence TCU. Thus T = U.

By (12), U = Z(J(R)) for every Sylow 3-subgroup R of
K. Therefore, U is a characteristic subgroup of K and hence a normal
subgroup of G. This completes the proof of (d) and thus of Proposition
4.

4. Proof of Theorems.

We first prove Theorem 2. Parts (a) and (b) follow directly from
Proposition 2 and 3. Since

Z(J(H)) = (Op(Z(J(H)))\p G π),

(c) follows from Proposition 4. To prove (d), assume 2£π and let
77i,772, and π3 be the sets of prime divisors of |Z(J(H))|, d(H), and
\F(G)\ respectively. Since Z(J(H))CA for every A E.M(H\

(14) π, C τr2.

Take S as in Proposition 4. Note that O3(G)CK, so O3(G)C
S. Therefore,

(15) 3 E TΓI if and only if 3 E τr3,

by Proposition 4(d). By parts (b) and (d) of Proposition 4,

(16) if 3 E τr2, then ^ 3 ̂  {1}, S^ 1, and 3 E π3.

Now (14), (15), and (16) yield that 3 belongs to all of π,, ττ2, and τr3 or
none of them. Parts (a) and (c) of Proposition 4 yield an analogous
statement for each prime greater than 3. This completes the proof of
Theorem 2.

Finally, we prove Theorem 1. For each prime p, define d(p) to be
the highest power of p that divides d(H). Let σ be the set of all odd
primes. We may and will assume that 2 £ π. Define d3 as in Proposi-
tion 4.

Parts (a) and (b) of Theorem 1 are special cases of Theorem 2. By
Proposition 4,

d(3) = d3 and d(p) = d(Op(G)) for every prime p > 3.

Hence d(H) = d3Πp > 3d(Op(G)). Thus, d(H) does not depend on the



318 Z. ARAD AND G. GLAUBERMAN

choice of π, provided that πCσ and OV(G)=\. As G is a Hall
σ- subgroup of G, d{G) = rf(H). A similar argument from Proposition
4 shows that Z(J(G)) = Z(J(H)).

5. Some examples.

EXAMPLE 1. Let g be a power of a prime p. Let fϊ = GF(q) and
F = GF(q2). Take a fixed element μ of F-E and define B to be the set
of all ordered pairs of the form (α, β) for a E F and β G E. Define
multiplication on B by the rule

(α, j3) (γ, δ) = (α + γ, β + δ + αμγ« + α V γ ) .

By calculation one may show that fl is a group of order
q\ Moreover, for (a,β)G B,

{ ( γ , ) | γ , E £ } if α^O.

By further calculations,

(17) d{B) = q2 and B' = Φ(B) = Z(B) = {(0,β)|β G £}.

Take a nonzero element γ of F that has multiplicative order
q + 1. The mapping φ: B-+B given by

φ((α,β)) = (αγ,β)

is an automorphism of JB that has order ρ + 1. Let G be the semidirect
product of B by (φ). Embed (φ) and B in G in the natural
manner. Let A = (φ,Br). Then A is Abelian and \A\ = (q + \)q >
d(B), by (17). A short argument shows that CG(b)CB for every
b E B-B1 and that d(G) = (q + 1)<| and Λ E jrf(G).

The group of automorphisms (</>) yields an example of the 'ex-
treme' cases of Lemmas 1 and 2, that is, Kφ)| = l + p * for pk =
q. Since B is nilpotent and AB is not nilpotent, G violates the
conclusion of Proposition 1; here, B is not Abelian, B is a 2-group if
p = 2, and | A | is even if p / 2.

Let 7r be the set of all prime divisors of | G | and let H = G. Then
G violates various conclusions of Theorems 1 and 2. For every
rEτr-{p}, Or(A)/ 1 and Or(G)= 1, although it is possible that r ^
5. Furthermore, every element of TΓ divides d(G), but p is the only
prime divisor of \Z(J(G))\ and is the only prime divisor of
\F(G)\. Note, however, that obviously Z{J(H))^G.
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EXAMPLE 2. Let F = GF(3) and let V be a 3-dimensional vector
space over F. Then there exists a group K of linear transformations of
V over F such that K has order 39 and is not cyclic. Define T and M
as in Lemma 7, and define K to be an operator group on T by the rule
ί* =tMi°)ίor tGT,gEK.

Let G be the semi-direct product of T by K and embed T and K in
G in the natural manner. Let π be {3} and H be a Sylow 3-subgroup of
G. Then Γ is an extra-special group of order 37, T = F(G), and
d(H) = d(T) = 3\ There exists A E i ( H ) such that Λ £ Γ . Then
A =Oi(A)£Oi(G)=T. Thus, part (a) of Theorem 1, part (b) of
Theorem 2, and the corollary of Theorem 2 cannot be extended to
include the case in which p = 3.

EXAMPLE 3. Here G is defined as in Example 2 except that K is
taken to be isomorphic to the alternating group of degree 4.
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