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CLOSE-TO-STARLIKE HOLOMORPHIC FUNCTIONS
OF SEVERAL VARIABLES

J. A. PFALTZGRAFF AND T. J. SUFFRIDGE

Let X be a finite dimensional complex normed linear space
with unit ball B = {x 6 X: \\ x \\ < 1}. In this paper the notion
of a close-to-starlike holomorphic mapping from B into X
is defined. The definition is a direct generalization of W.
Kaplan's notion of one dimensional close-to-convex functions.
It is shown that close-to-starlike mappings of B into X are
univalent and these mappings are given an alternate charac-
terization in terms of subordination chains.

l Introduction* In 1952 [2] W. Kaplan defined the class of
close-to-convex functions: f{z) — z + analytic and

(1.1) Be {f'(z)/Φ'(z)} > 0

in \z\ < 1, for some univalent convex function φ(z) = az + « (\z\ <
1). Subsequent interest in this class stems from Kaplan's observation
that (1.1) implies f(z) is univalent in \z\ < 1. In this paper we
present the natural generalization of close-to-convex vector valued
functions in finite dimensional complex spaces. This is a continuation
of recent work on vector valued holomorphic starlike and convex
mappings [7], [8]. We use the notions of subordination chains of
holomorphic maps in Cn and the generalized Loewner differential
equation [5] to elucidate the geometry of the mappings.

2* Statement of main results* Let X be a finite dimensional
complex normed linear space with dual X* and J?f(X) the set of
continuous linear operators from X into X. We let £έf(B) denote the
set of functions f(x) that are holomorphic in the unit ball B — {x e
X: \\x\\ < 1} with values in X. The notation f(x) = ax + , a e C,
for / e Sίf(B) indicates that D/(0) = a I where I is the identity in

X).
For O ^ x e l w e define

α*0*0 = | | a | | and ||α?*|| - 1} ,

and note that T(x) is nonempty by the Hahn-Banach theorem. We
let ^£ denote the class of functions h(x) = x + e £ίf(B) such that
Re x*(h(x)) > 0 for each x e B — {0} and x* 6 T{x). A mapping g(x) =
x + G £ί?(B) is called starlike if g is univalent in B and tg(B) c
g{B) for all 0 ̂  t g 1.
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D E F I N I T I O N 1. A m a p p i n g f(x) = # + . . • e £έ?(B) is s a i d t o be
close-to-starlike if there exist h(x) e ^f and a starlike map g e £έf(B)
such that

(2.1) Df(x)(h(x)) = g(x), xeB.

REMARK. By this definition, close-to-starlike maps in X are a
generalization of Kaplan's close-to-convex functions in C. Indeed
when I = C a function h e Λ€ has the form h(z) = zP(z) where

= l,ReP(z)>0(\z\ < 1)

(see [8, p. 576]) and (2.1) is equivalent to the condition (1.1) for the

convex function φ(z) = \ g(x)/x dx. By using the criteria for star-
Jo

likeness and convexity of vector valued maps established in [7] one
can easily construct examples showing that Alexander's theorem (φ(z)
is convex if and only if g(z) = zφr(z) is starlike) fails in spaces of
dimension greater than one. Hence the name close-to-starlike seems
most natural in our work.

A mapping v(x) e έ%f(B) is called a Schwarz function if ||v(a?)|| ^
| | # | | for all xeB. A subordination chain ([5], [6]) is a function
f(x, t) from B x [0, oo) into X such that for each t ^ 0, ft(x) = f(x,
t) — eιx + is in £έf(B) and there exist Schwarz functions v(x, s, t)
such that

(2.2) f(x, s) - f(v(x, 8,t),t),0£8£t,xeB,

for a l l 0 ^ s ^ ί < o o . A univalent subordination chain is a sub-
ordination chain f(x, t) such that for each t ^ 0, ft(x) is univalent in B.

THEOREM 1. If f(x) = x + e £ίf(B) is locally biholomorphic
in B and close-to-starlike relative to the starlike function g(x) = x +
• then

(2.3) F(x, t) = f{x) + (e* -

is a univalent subordination chain. Hence f(x) is univalent in B.

We shall give the proof of Theorem 1 in §3 below. The subor-
dination chain characterization (2.3) yields the linear accessibility of
the images of the balls Br = {x e X: \\ x || < r) (0 < r < 1) (compare [1]
and [3]).

COROLLARY 1. If f and g satisfy the hypotheses of Theorem 1
then for each r, 0 < r < 1, the complement (in X) of f(Br) is the
union of nonintersecting rays.
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Proof. We assume that Theorem 1 holds and therefore the rays

L ( t : x , r) = { / ( a ? ) + tg(x): t ^ O x fixed, || x\\ = r }

are clearly disjoint and fill up the complement of f(Br).

THEOREM 2. Suppose f(x) = x + is holomorphic in B and
that g(x) = x + e ̂ f{B) is starlike. If

(2.3) F(x, t) = f{x) + (eι

is a univalent subordination chain then f is close-to-starlike relative
to g.

We shall prove this theorem in §4 below. By the results in [8]
a mapping f(x) = x + e £ϊf{B) is starlike univalent if and only
if it is close-to-starlike relative to itself, i.e., (2.1) holds with g = / .
Thus from Theorems 1 and 2 we have immediately the

COROLLARY 2. Let f(x) — x + be locally biholomorphic in B.
Then f is univalent and starlike in B if and only if F(x, t) = e*f(x)
is a univalent subordination chain.

This extends to higher dimensional spaces Pommerenke's one dimen-
sional result in Folgerung 2 of [6],

3* Proof of Theorem 1. We shall give the proof in a sequence
of three lemmas. We use the notation fr(x) = f(rx)/rf gr{x) = g(rx)/r
and Fr(x, t) - fr(x) + (e* - ί)gr(x) for 0 ̂  r ^ 1, t ^ 0. Let R = {r:
0 ^ r ^ 1 and Fp(x, t) is a univalent subordination chain for p < r}.
Then 0 e R and clearly R is closed. We wish to show that R is open
so R - [0, 1].

LEMMA 3.1. If r e R then Fr(x, t) is a univalent subordination
chain.

Proof. Since fo(x) = Df(0)(x) = x = go(x) we have F0(x, t) = x +
(β* — 1)# — e*# which is clearly a univalent subordination chain. Now
if 0 < r e R, p ^X < r then for s ^t and || #|| < p/λ we have

Fλ(vλ(x, 8, ί), t) = i^(aj, s) = /(λaθ/λ + (βf

- {pM[(Vp)f{pfaΦ)) + (Vp)(es - l)g(/K\x/p))]

= {pMFP{Xxlp, s) - (p/\)Fp(vP(Xx/p, 8, t\ t)

= Fλ((p/X)vP(Xx/p, 8, t), ί) .

Hence (p/X)vp((X/p)xf s, t) is independent of ^ when |O <; λ and | |aj | | <
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p/X (vp(x, s, t), vx(x, s, t) are the univalent Schwarz functions postulated
by the fact that Fp{x, t) and Fλ(x, t) are univalent subordination chains).
Hence we may define vr(x, s, t) — (p/r)vp((r/ρ)x, s, t) where | | $ | | < 1 and
p satisfies \\x\\ < p/r <1. Then vr is well defined in B, it is a
univalent Schwarz function and

Fr(x, s) = (p/r)Fp(rx/p, s) = (p/r)FP(vP(rx/pf s, t), t)

= Fr((ρ/r)vp(rx/p, s, ί), ί) = Fr(vr(x, s, t), ί)

when 11 a? 11 < p/r < 1, 0 ^ s ^ t. Therefore Fr(x, t) is a univalent sub-
ordination chain.

LEMMA 3.2. // reR,r<l then there exists ε0 > 0 such that
Fr+ε(x, t) is a univalent function of xeB for each t ^ 0 and 0 ^
e < e0.

Proof. Since Fr(x, t) is a univalent subordination chain, fr(x) is

univalent in the closed ball B (for otherwise, there exist p < r, x, y,

t, x Φ y, \\x\\ = \\y\\ < p/r, t > 0 such that vr(x, 0, t) = vr(y, 0, ί)). Let

G(x, y) be the n x n determinant whose &th column is

SY /If 1 -LIT" f fϊ I m. « fϊ t A* rn.rn.rn. A* 1 T 4 ίϊ I *.*.*. f\ /

Xk — yk) lJ r\Vl9 9 Vk-lf Xkf 9 Xn) ~~ J\Vl9 9 VkJ

-fr(y»

and define H(x, y) = \G(x, y)\ + ||/r(a?) - fr{y)\\ where x,yeBi+ε, 1 +
ε < 1/r. If a? = y we have Jϊ(cc, x) = | det Dfr{x) \ > 0 since / r is
biholomorphic. If α? ̂  y and /r(a?) ^ /r(i/) then H(x, y) > 0. If # ^
y and fr{x) - / r(») then Σfc=ife - Vk)Ak - /r(a?) - fr{y) - 0 and
jff(a?, y) — 0 since the columns of (?(#, /̂) are dependent. Thus H(x,
y) — 0 if and only if fr{x) — fr{v) and x Φ y. We conclude that
£Γ(ίc, ?/) has a positive minimum o n ί x δ and in fact H(x, y) > 0 if
(#, /̂) e B1+ε x J51+ε when 0 ^ ε < ε' for some ε' > 0. This implies that
fr+ε is univalent in B for 0 <£ ε < ε" for some ε" > 0.

For small ε > 0, e~ίjPr+ε(α;, t) converges to gr+ε(x) uniformly in B
as t —> oo. Hence î r+είίc, t) is univalent and starlike for t > ί0 for
some ί0 > 0.

Now assume the lemma is false. Then there exist sequences {εk},
{tk} of positive numbers and points {xk}, {yk} in B such that ε̂  —* 0,
%k Φ Vu, \\Xk\\ = WVuW = 1, tk <t0 and F r + ε f c ( % , tA) - Fr+εk(yk, tk). (We

may assume ||ajfc|| = \\yk\\ = 1 since by the reasoning of Ono in [4]
univalence on the boundary of B implies univalence in the interior.)
By choosing subsequences we may find limit points s, u, v, 0 < s <Ξ t0,
\\u\\ = \\v\\ = 1 such that Fr(u, s) = jPr(v, s). Since JP7

r(a?, ί) is a uni-
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valent subordination chain we must have u = v. Hence

0 = » h ) == D F , J x k -, J xk-yk \

\\χk-yk\\ ' M l * * - v * l ! '

(DFr+εk(yk, tk) - DFr{yk, tk))( x* " y\ )
Ml** - yΛ1

(DFr(yk, tk) - DFr(u, s))ί Xk " Vk ) + o(xk - yk)
\\\Xk - Vk\\'

and by using appropriate subsequences we conclude that DFr(u, s) is
singular. This is a contradiction since DFr{u, s) = DFr{vr{x, s, t),
t)Dvr(x, s, t) is the composition of two nonsingular maps in ^f(X),
and the lemma is established.

LEMMA 3.3. Let ε0 be as determined in Lemma 3.2. Then for
0 :£ ε < ε0 Fr+ε (x, t) is a nnivalent subordination chain.

Proof. We must show that for 0 Φ x e B and x* e T(x) we have

for then d\\vr+ε(x, s, t)\\/dt ^ 0, s ^ t. It will follow that vr+ε(x, s, t) =
F^+e(Fr+t(xf s), t) is a univalent Schwarz function.

Let a?* G T(x)f 0 Φ x e B and suppose

Rex*{[DFr+ε(%,t)Γ(g(x))}<0

for some t. Then since the reverse inequality holds for t = 0 and suffi-
ciently large t, there exist s, t, u, v, 0 < s < t < oo} u, v e X, Re x*(u) =
Re x*(v) = 0 such that

(3.1) e°g(x) = Df(x)(u) + (e8 -

(3.2) e'flf(a?) - Df(x)(v) + (β1 - l)Dg(x)(v) .

Let

L^{ye X: Re x*(y) = 0}

and

I* = Z, Π (Df(x)rι(Dg(*XL)) = LΠ {Dg(x)Y\Df{x){L))

and view L and Li as linear spaces over the real numbers. If L — Llf

then g(x) is in the space Df(x)(L) — Dg(x)(L) which is impossible since
Rex*{[Df{x)]-\g{x))} > 0 by (2.1). Thus L and Lλ have real dimension
2n — 1 and 2w — 2 respectively where n is the complex dimension of X.

We wish to show that u = v and s = t. Let yoeL — Lx and
observe that we may write u and i; uniquely in the form u =
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ulf v — by0 + vλ where a and b are real, uu v1 e Lx. Then (3.1) and
(3.2) yield that

g(x) = a[e-sDf(x)(yQ) + (1 - e-°)Dg(x)(y0)] + wt
{ ' } = b[e-*Df(x)(y0) + (1 - e-°)Dg(x)(y0)] + w2

where wu w2 e Dg{x){L^ — Df{x)(L^. We shall show that g(x) has a
unique representation of the form ocDf(x)(y0) + βDg(y0) + w where
w e Dg(x){Lύ and af β are real. To this end, we assume that

aDf(x)(y0) + βDg(x)(yo)eDg(x)(L1)

for some real a, β. Then Df(x){ayQ) = Dg{x)(wz — βy0) for some
w3 6 Lt and consequently <X2/0 e 1^. This implies that α: = 0 and then
βy0 = w3eLj_ and /3 = 0. Thus from (3.3) we conclude ae~* = δe~*,
α(l — β~8) = 6(1 — e~ι) and therefore α = 6 and s = t. This contradicts
our assumption that s < t and completes the proof of the lemma.

The proof of Theorem 1 is now complete for we have shown that
B is a nonempty subset of [0, 1] that is both open and closed. Hence
H = [0, 1] and F(x, t) = F^x, t) is a univalent subordination chain by
Lemma 3.1.

4* Proof of Theorem 2. By hypothesis there are univalent
Schwarz functions v(xf s, t) such that F(x, s) = F(v(x, s, t\ t)(0 ̂ s ^t)
for the chain F(x, t) defined in (2.3). It is clear from the form of
(2.3) that the derivative

(4.1) Jfjx, t) = lim F^x' s> ~ F^' *>
Ot »-*t S — t

exists and the convergence is uniform on compact subsets of B.
We fix t > 0, let s < t and write

F(x, s) - F{x, t) = F(x, s) - F(v(x, s, t), t)

= DF{x, t)(v(xf β, ί) - α) + o(v - a?)

where o(v — x)/\\v — x\\ tends to zero uniformly for a; in a compact
subset of B as v(x, s, t) — x tends to zero. Thus

( 4 2 ) F(x, s) - F(x, t) = Dp,χ tJx-v(x,8,t)\ + o(v - x)
s — t ' \ t — s J s — t

and since DF(x, t) is nonsingular we can argue (as in [8] Lemma 2)
that (x — v(x, s, t))/(t — s) is bounded and tends to a limit, and that
o(v(x, s, t) — x)/(s — t) tends to zero as s tends to £ (the univalence
of the chain insures that v(x, s, t) tends to x as s —• £)• Since £ — 5 >
0 and
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Re x*(x - v{x, s, t)) = 11 a; 11 - Be x*(v(x, s, t))

for each x* e T(x) it follows that the function

(4.3) h(x, t) = Urn x ~ v(χ> s> l\ t > 0 ,
«-*. t — s

is in the class ^ C

From (4.1) — (4.3) we conclude that F{x, t) satisfies the generalized
Loewner differential equation [5]

(4.4) dF(x, t)/3t = DF(x, t)(h(x, t))f x 6 B ,

for each t > 0. For the specific subordination chain (2.3) it is clear
that we may let t tend to zero in (4.4) to obtain

g(x) = Df(x)(h(x, 0)) ,

and h(x, 0) 6 ̂  since the properties of ^ are preserved by local
uniform convergence. This completes the proof of Theorem 2.

5* EXAMPLES. (1) Let f(z) = z + ••• be close to the starlike
function g(z) = z + where / and g are complex valued analytic
functions of z in the open unit disk, \z\ < 1. Let X be a complex
finite dimensional inner product space with inner product <,> and let
#oeX, 11 α?o 11 = l Define the vector valued holomorphic maps

F(x) = /«*, *°»Xf G{x) =

for a? in B, the unit ball in X. Then

(x,

where / e ^ ( J ) is the identity. A similar formula holds for DF(x).
Setting H(x) = g{{x, xo))x/((xf α;0> '̂«^, a?0») we see that He^f and
DG(x)(H(x)) = G(ί») so G is starlike [7]. Similarly if K(x) = flr«a;,
Xo»xl«x, 3o>/'«s, «o») then U Γ G ^ ^ and JDFίajXJΓίaj)) = G(aj) so F is
close-to-star like. Note that F and G both reduce to the identity map
on the subspace orthogonal to xQ. An interesting choice of / and g is
f(z) = (1/2) log [(1 + z)l(l - z)\ g(z) = z/(l + z)\ Then / + (e* - l)g
maps the unit disk onto the entire plane slit along two parallel rays
when 0 < ί < oo. Also F(x) + (β* — l)G(x) has similar behavior on the
one dimensional slice {axo:aeC, \a\ < 1}.

(2) Let X — C2 with the usual inner product and Euclidean norm
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<X, V> = it XM, \\X\\ = <X,X>11\

where x = (xlf x2) and y = (ylf y2) are in C2. We define the functions

(5.1) f(x) = (2"1[(1 - Xl)-2 ~ 1], *2 + O»A) ,

(5.2) g(x) = fo/flL - O2, a»[l + 2δ^3 + baft) ,

(5.3) Λ(«) = (*i(l - «Λ ^[1 + 4axJ{2a - 1)])

where \\x\\ < 1, 6 = α(2α + l)/(2α — 1) and a is a complex number
with small modulus. We claim that if \a\ is sufficiently small then:
(I) h(x) belongs to the class ^*C (II) g(x) = » + .... e £ίf(B) is starlike,
(III) fix) = x + e Jĝ (-B) is close-to-0(#), and (IV) / is not starlike.

( I ) Clearly (5.3) is holomorphic in B and has the required
normalization hix) = x + . Furthermore, if \a\ is sufficiently small
then

(5.4) Re < h(x), x) = |^ | 2 i2e(l - xx) + | ^ | 2 i2β( l + 4aXl ) > 0

for all xeB and h z ^ [8, p. 577].
(II) The holomorphy and normalization of (5.2) are clear. We

must show that iΌgix))~\gix)) belongs to ^^ if |α | is small. Ele-
mentary computations with (5.2) yield that

and therefore i?e {iΏgix))~\gix)\ x) ^ 0 for all xeJ5 and small |α | .
(III) It is easy to verify that (5.1), (5.2), and (5.3) satisfy the

equation Dfix)ihix)) = gix) and hence that / is close-to-g.
(IV) We must show that iDfixfr'ifix)) does not belong to

This follows when \a\ is small since

(Df(x)r(f(x)) = (*»(2-*•)(!-*>), x Γi _
2 L 1 ~r CLXi

and Re (2 — #,)(1 — xt) < 0 at some points in the unit disk |αs,| < 1.
Finally we mention that the functions (5.1), (5.2), and (5.3) provide

an example similar to the preceding one when we consider X = C2

with the sup norm, || x |U = max (| xλ |, | x21). In this setting the condition
(5.4) for membership in ^ is replaced by the condition Re ihjix)/Xj) > 0
when | | α | L = \xj\ > 0 [8].
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