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SPINOR NORMS OF LOCAL INTEGRAL ROTATIONS I
J. S. Hsia

The spinor norms of integral rotations on a modular
quadratic form over a local field are determined. Whenever
possible, these results are expressed in convenient closed
forms.

In studying integral quadratic forms over a global field, the
obstruction to a Hasse-type local-global principle is measured by the
class number of a form in its genus. The spinor genus occupies a
vital intermediate level between the class and the genus. Even in
the indefinite theory, where the class and the spinor genus should
coincide (when there are three or more variables involved), the
genus generally is strictly larger than the spinor genus. Thus, it is
important that one be able to determine the number of spinor genera
in a genus. This number can be computed by means of an idélic
index formula, which requires the knowledge of spinor norms of local
integral rotations associated to the given form. Via the Jordan
decompositions, the local computations of these spinor norms depend
in turn on the modular components. Therefore, it is essential that
we know the spinor norms of these local integral “modular” rotations.
By scaling, it is sufficient to restrict to the unimodular situation,
which is the scope of the present article. We adopt the geometric
language of quadratic spaces and lattices instead of the more classical
terminology of fractional and integral forms. Our notations used
here are those from O’Meara’s fundamental text, [1]. Thus, F denotes
a local field of characteristic different from 2, o the ring of integers
in F, P = mo the unique nonzero prime ideal of o, 11 the group of
units in o, ¢ = ord (2) the ramification index of 2 in the (dyadic) field
F, ®(-) the quadratic defect function, 4 the unique (modulo a unit
square) unit of quadratic defect 40, V' a regular quadratic space of
dimension n over F, L a unimodular lattice of determinant (discri-
minant) d on V, wL = bo the weight ideal of L, gL = ao* + bo the
norm group of L where a and b denote respectively the norm and
weight generators, O*(V) the group of rotations on V, O*(L) the
corresponding subgroup of units of L, and 6(-) the spinor norm
function.

If » =1, it is clear that 6(0"(L)) = F*:. When F is nondyadic,
0(0*(L)) = UF-* for n = 2 (see 92:5, [1]). Thus, we need only be
concerned with the dyadic case. So, whenever % =8, 6(07(L)) con-
tains UF** by 93:20, [1]. Proposition A below provides the complete
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answer for n = 3. However, we first need a lemma.

LEmMMA 1. For any totally improper unimodular lattice L (i.e.,
Q(x) € 20 for every xe L), 0(07(L)) = UF2

Proof. (i) We first show for L = A(2, 20), adapted say to a
basis {x, ¥}. Any vector v which is primitive in L and such that the
symmetry S, lies in O(L) must satisfy: Q(v) = 0, and ord (Q(v)) = e.
As every integral rotation ¢ on L is a product of two integral sym-
metries, 0(c) e UF**. On the other hand, given any unit ¢, there is
a primitive vector » in L with Q(u) = 2¢. So, 4(S,S,) = ¢F-%. Thus,
(0% (L)) = UF-.

(ii) We next show for L a hyperbolic lattice, i.e., L = m x A(0,0).
Suppose m is either 1 or greater or equal to 8. Then, a theorem of
O’Meara-Pollak (see [2]) asserts that O(L) is generated by integral
symmetries. Once again, a primitive anisotropic vector » in L gives
rise to an integral symmetry S, if and only if ord (Q(v)) = e. Thus,
an even product of these S,’s will always yield a spinor norm that
lies in NF-%. Conversely, as L represents all of 20 primitively, every
square class in WF*? will be caught. For m = 2, we need only to
observe the following trivial inclusions: 07(4(0, 0)) S 07(2 x A(0, 0)) =
0(8 x A(0, 0)).

(iii) The general case now follows from the well-known isometry
between A(0, 0) L A(0, 0) and A(2, 20) L A(2, 20).

PROPOSITION A. Let n = 3. Then, 0(07(L)) = UF? ¢f and only
if ord (a) + ord (b) is even (writ ab ~ 1). When ord (a) + ord (b) is
odd (writ ab ~ ), (07 (L)) = F"-.

Proof. By the lemma, we may suppose that ord(a) <e. If
ab ~ 1, then L is equivalent to either A0, 0) L --- 1 A(0, 0) L {*+d)
or A0,0) L --- L A(0, 0) 1L A(e, @), « €20. The generation of O(L) by
integral symmetries is again guaranteed by O’Meara-Pollak’s theorem.
Any primitive vector ve L with S,e O(L) must have ord (Q(v)) < e.
Should strict inequality prevail, then Q(v) is congruent to either d¢?
or at* modulo 20, for some ¢ co with ord (¢)) < e, so that 6(0"(L)) &
WF-%. Containment in the other direction is clear since L always
contains A(0, 0). Now, let ab ~ 7. We already know that 6(0*(L))
contains 1LF"? as » = 3. Also, L represents all the weight generators
b. Hence, there is a rotation ¢ on L with spinor norm 6(c) = abF*.
Thus, 6(07(L)) catches all of F™-.

In view of this proposition, we shall henceforth be concerned
only with binary unimodular lattices. Furthermore, we may suppose
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these lattices are not totally improper. In particular, every integral
rotation is a product of two integral symmetries, the first or the
second of which may be arbitrarily specified (a consequence of the
so-called Cartan-Dieudonné theorem). We fix some notations here
that will be used throughout the remaining of this article. Write
L = A(a, —da™"), adapted to a basis {x, y}, where D + ) = do and
—o0a™" belongs to WL = bo. Put ord(a) =v and g =e—v. Also,
let A = {veL|v primitive and ord (Q(v)) < ¢}, and

D= {Q()|veA}.

Thus, from the remarks made above, it is evident that 6(07(L)) =
aDF*%. In most situations, we shall see that the set aDF“* can be
very explicitly determined and the results are expressible in con-
venient closed forms.

PrOPOSITION B. Let L = A(a, b)(i.e.,, b = —da™) with ab ~ 7.
Then, 6(07(L)) = 60(07(V))= Q(1, d)) F**. (Note: ab ~ w occurs whenever
WL exceeds 20.)

Proof. Take any ze V with Q(z) in the norm group gL. Write
Q(2) = s’a + 2st + btY, s,te F. If sco, then ¢t is also integral since
ord (bt?) < ord (2st) whenever t¢ B. Similarly, if ¢co, then seo. If
neither s nor ¢ lies in o, then one sees from the non-archimedean
nature of the valuation together with the hypothesis ord (¢b) being
odd that

ord (Q(z)) = Min {ord (s’a), ord (bt?)} .

Therefore, both s and ¢ belong to o, and we have z ¢ L. This means
the lattice L is characterized by the set L = {ze V|Q(z)egL}. In
particular, every fractional isometry on V is in fact an integral iso-
metry on L as well. Thus, 6(0"(L)) = 6(07(V)). But, 6(00*(V)) is
unaffected by scaling, and the rest is clear.

REMARK (a). From the results obtained so far, the unramified
dyadic case follows immediately. L can only assume one of the
following five possibilities: A(0, 0), A(2, 20), A(1, 0), A(1, 4p), and
Ale, 2f), ¢, f are units. Since both A(1, 0) and A(1, 40) represent all
the units, we see that the first four cases all yield 4(07(L)) = UF"?,
while the last case by Proposition B gives Q(<1, d))F* where

d = det (A(c, 2f)) .

We may now further restrict ourselves to the binary “depleted”
unimodular case, i.e., when the weight WL = bo = 20 is minimal.
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Depletedness implies then —oda'e20. The next lemma gives both
the upper and lower bounds for aDF'-%.

LEMMA 2. Let L be a binary depleted unimodular lattice over
F. Assume the defect D(—d) = oo #= 2a0. Then,

(1 + B F* < 6(0*(L)) S UF" .

Proof. We may suppose by Lemma 1 that L is not totally
improper. So, ord (¢) = v <e. We also have ord (6a™?) >e. If ze
A and Q(z) = s’a(l + 2t/sa — 0t*/s’a’), then surely a@Q(z)F-* belongs to
nE-2

We now show that (1 + $*)F-* < aDF**. Take any element of
the form 1+ k, heP*. If 6 = 0, the vector v = 2 + (ha/2)y lies in
A, and 6(S,S,) = 1 + h)F-% If 6 +# 0, consider the polynomial

F(X) = X* — (2a/0)X + (ha?/s) .

As ord (f(X)) = ord (2¢/0), f(X) is reducible by Hensel’s lemma (see
13:9, [1]). Write f(X) = (X — »)(X — r,). Since

ord (r, + 7,) = ord (2a/d)

and ord (»r,) = ord (ha®/d), at least one root, say r,, of f(X) is in-
tegral. Thus, 6(S.S,.,,) = 1 + h)F*.

REMARK (b). All the assumptions imposed on this lemma are
necessary for either containment. Suppose the depletedness condition
were removed, take an anisotropic space V = <1, d) with d = —4.
As the group index [F": Q(V)] = 2, exactly half of the odd-ordered
elements and half of the nonzero even-ordered scalars are represented
by V. Hence, the containment

6(0+(L)) & Ur+*

surely breaks down. Lemma 3 below will show that the other end
of the inclusion will also fail. Next suppose do = 2ao, then D(—d) =
0opD4o (as v < e) so that ord (9) is odd which means ab ~ m, and
Proposition B applies. Again, Lemma 3 will show (1 + P¥)F** is not
contained in 6(0*(L)).

LemMmA 3 (Duality). Let ¢ be a unit of quadratic defect D(c) = ¥,
where 1 <t < 2e. Then, there s a unit f such that the Hilbert
symbol (¢, f)y = —1, and the defect D(f) = P .

Proof. Write ¢ = s*(1 + n'r) with s, » units. Removing s* changes
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neither the defect nor the value of the Hilbert symbol, so we may
assume s = 1. The binary quadratic space W = {¢, 4 — ¢) has for its
determinant a prime element since ¢ is odd. As W represents 4, it
cannot also represent 1. Hence, the Hilbert symbol (¢, 4—¢)y = —1. On
the other hand, the binary space (¢, —7r) clearly represents 1, so
(¢, —mr)y = 1. Therefore, (¢, h)y = —1 where h = r(c — 4)/z*. Put
S =h/r*=1+ 4p(@'r)". Manifestedly, (¢, /) = —1 and D(f) = P

REMARK (c). If c¢F"*e6(0"(L)), ¢ must necessarily be represented
by {1, d)>. Hence, the Hilbert symbol (—d, ¢), must be 1.

REMARK (d). Let L be as in Lemma 2, ande =1+ s + ¢t s,
e, Then, cFe6(0(L)) if and only if (1 + s)F** e 6(0*(L)). This
is because by Lemma 2, 1 + (t/1 + s) belongs to 0(0%(L)), and ¢ =
@+ s)@ + ¢/1 + 9)).

REMARK (e). If k <e, then (1 + PB*)F-2 = (1 + P*)F-2 This
follows as an immediate consequence of the perfectness of the residue
class field of F.

PrROPOSITION C. Let L = A(a, —o6a™Y) with 0 = either 0 or 4p,
and ord (a) < e. We have:

p=0,1(mod4) — A(0*(L)) = (1 + Per)F-2
r=2modd) —— O0*(L)) = (L + Pl F2
r=3(modd) — 0(0%(L) = (1 + Py,

(Here [—] denotes the usual greatest integer function.)

Proof. When 6 =0, let v =sx + tycA. Clearly, 0(0*(L)) is
contained in the respective sets cited above. Conversely, any element
of the form 1 + h, h € P+ 1+ can be caught by 0(S,S, . e/y) Provided
ord (k) = . If ord (k) < g, let s = 2/ha. Then, ord (s’a) = 2¢ — v —
2ord (k) e, v=sx+yecAd, and 0(S,S,) = 1 + k)F:. The rest fol-
lows from Remark (e).

When ¢ = 4p, again the containment of ¢(0*(L)) in the respective
sets is easy to see. Let h, s, and » be as just above. By Lemma 2,
we may suppose ord (k) < p. 6(S,S,) = 1L + k — 4p/s’a®) F**. As
40/s%a* € B¢, Remark (d) applies.

We are now left with L = A(a, —da™) where ¢ < ord (da™") < e +
¢. we break into two classes, the first of which still admits for
6(0*(L)) to be expressible in closed form —in fact, it extends Pro-
position C to the cases where 2¢ > ord (0) > e + v + [#/2], and the
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second class does not.

PROPOSITION D. Let e + p > ord (da™") > e + [¢/2]. Then, 6(07(L))
18 given as in Proposition C.

ProrosiTION E. Let ¢ + [¢/2] = ord (da™) > e. Then, we have:
1 4 Preromanrty g2 o 9(0*(L)), while (1 + PFor@)F* &£ 6(0*(L)).

To handle these two propositions, we need another lemma.

LEMMA 4. Let c=1+41t be a unit with defect to, P Cio & P.
Supposing t6 ¢ 4B and

[/2] + 1 if g2 = 3 (mod 4)

ord (t) = [4/2] if otherwise

Then, cF"* € 6(07(L)).

Proof. Clearly, ord (¢) is odd. Consider the equation:

tx*— 2x4 9% —9.
a o
The discriminant of the polynomial is 4(1 — 6¢)/a®. If we write —dt =
4w, then Local Square Theorem (see 63:1, [1]) gives it as 4/a*(1 +
2z R)* for some B eo. The roots of the equation are:

2(1 + #B) Y = —2r8

r, =
at at

and so ord(r) < ord(r). If g is even, then ord (r}) = 2¢ — 2v —
20rd (t) < p. If ¢ =1 (mod4), then the oddness of ord (¢) still implies
ord (¢) = [#¢/2] + 1. So, when g is odd we also have ord (r}) < .
Hence, v =r2 + ye A and 6(S,S,) = cF"*.

Before proving Propositions D and E, we make some remarks
below which serve to illustrate why we cannot expect the answer
for 6(0*(L)), in the case when e + [¢£/2] = ord (da™") > e, to be expres-
sible in the convenient closed forms as those given in earlier proposi-
tions. For simplicity, we work with the special case when a = 1.

REMARKS. (i) Generally, V represents more units than L. In
the case at hand, L only represents those units with defect contained
in 20, while V' can surely represent units with defect exceeding 2o.

(ii) This example will show why we cannot express 6(07(L)) in
the closed form as that given in Propositions C and D. Indeed, if
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e were even, say =0 (mod4). Take ¢ = 2r and an s with ord (s?) =
e. Then, the unit ¢ =1 + 2/s — d/s* lies in (0"(L)) and has defect
PB. Yet, by Lemma 3 there is a unit f with defect ~ord® = et
that cannot be caught by DF?. Next, if ¢ were odd, say =3 (mod 4),
take an s with ord (s) = [¢/2], and take ord (0) =e¢ + [¢/2] — 1 =¢ +
(¢ — 3)/2. We have then D + 2/s — 0/s*) = P/*. Again, there is
a unit with defect 3t/*+% not in DF".

(iii) If DF'-* were expressible in a closed form analogous to that
in Proposition B, then we might be expecting some answer in the
form such as: 6(0°(L)) = (Q(1, d>) N N)F:. But, consider the unit
¢c=1+4 2/s — 0/s* with ¢F-*e DF**. Let 0 = 4x™*. V = {1, d) repre-
sents the unit f =1+ 2/m — d/m* where m = 277°, and D(f) = .
While fF"* belongs to (Q((1, d) N N)F"% it cannot be caught by DF-*
since the latter is contained in (1 + P**)F?, which does not contain
1 + %) when e > 0.

Our aim now is to determine the least power P" such that (1 +
P)F-? lies in 6(0%(L)). Lemma 3 asserts that » > 2¢ — ord (6). This
inequality turns out to be also sufficient by Proposition E.

Proof of Proposition D. If v =sx +tyed, let ¢ be the unit
1+ 2t/sa — ot¥/s*a®. If ord(s) =0, then cel + P*. If ord(s) >0,
using the hypothesis on ord (d), one sees that ¢ belongs to 1 -+ rr/2a+t
when ¢ = 3 (mod 4) and belongs to 1 + P/ otherwise. Thus, 6(07(L))
is contained in the respective sets as required. Conversely, if ¢ =
1 + ¢ is a unit ord (¢) as specified in Lemma 4, then a routine com-
putation shows that ord (¢0) > 2¢, and so Lemma 4 applies. The
modification at ¢ = 2 (mod 4) is allowed by Remark (e).

Proof of Proposition E. If (1 + P*@)F* also were contained
in 6(07(L)), then for every unit ¢ =1+ ¢ teP* %, we have the
Hilbert symbol (¢, —d), = 1 by Remark (c). But, as D(—d) = Rra@,
Lemma 3 asserts there is a unit f with defect P gsuch that
(¢, f)e = —1. This is impossible!

It now remains to show that if ¢ = 1 + ¢, ¢t ¢ "9+, then cF-%¢
6(0+(L)). It is sufficient to show that the hypotheses for Lemma 4
ig satisfied. Ord (¢0) = 2¢ — ord (3) + 1 — ord (d) > 2¢. Also, ord (¢) =
2 —ord(0) +1=2e+1—e—v—[p2]=p—[2] +1=[g/2] + 1.
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